aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/basic/bigop.v
diff options
context:
space:
mode:
authorEnrico Tassi2015-11-05 11:36:58 +0100
committerEnrico Tassi2015-11-05 16:26:24 +0100
commit14c9a3a752e8c21b239ff0800089271c5a5ddfb2 (patch)
tree8f7095e1702d5ad56003f8d87df84786902dfec0 /mathcomp/basic/bigop.v
parent35124d2e255e5f88d99ddc65361d6997b0a2b751 (diff)
merge basic/ into ssreflect/
Diffstat (limited to 'mathcomp/basic/bigop.v')
-rw-r--r--mathcomp/basic/bigop.v1778
1 files changed, 0 insertions, 1778 deletions
diff --git a/mathcomp/basic/bigop.v b/mathcomp/basic/bigop.v
deleted file mode 100644
index 5fed5bb..0000000
--- a/mathcomp/basic/bigop.v
+++ /dev/null
@@ -1,1778 +0,0 @@
-(* (c) Copyright 2006-2015 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrfun eqtype ssrnat seq path div fintype.
-From mathcomp
-Require Import tuple finfun.
-
-(******************************************************************************)
-(* This file provides a generic definition for iterating an operator over a *)
-(* set of indices (bigop); this big operator is parametrized by the return *)
-(* type (R), the type of indices (I), the operator (op), the default value on *)
-(* empty lists (idx), the range of indices (r), the filter applied on this *)
-(* range (P) and the expression we are iterating (F). The definition is not *)
-(* to be used directly, but via the wide range of notations provided and *)
-(* and which support a natural use of big operators. *)
-(* To improve performance of the Coq typechecker on large expressions, the *)
-(* bigop constant is OPAQUE. It can however be unlocked to reveal the *)
-(* transparent constant reducebig, to let Coq expand summation on an explicit *)
-(* sequence with an explicit test. *)
-(* The lemmas can be classified according to the operator being iterated: *)
-(* 1. Results independent of the operator: extensionality with respect to *)
-(* the range of indices, to the filtering predicate or to the expression *)
-(* being iterated; reindexing, widening or narrowing of the range of *)
-(* indices; we provide lemmas for the special cases where indices are *)
-(* natural numbers or bounded natural numbers ("ordinals"). We supply *)
-(* several "functional" induction principles that can be used with the *)
-(* ssreflect 1.3 "elim" tactic to do induction over the index range for *)
-(* up to 3 bigops simultaneously. *)
-(* 2. Results depending on the properties of the operator: *)
-(* We distinguish: monoid laws (op is associative, idx is an identity *)
-(* element), abelian monoid laws (op is also commutative), and laws with *)
-(* a distributive operation (semi-rings). Examples of such results are *)
-(* splitting, permuting, and exchanging bigops. *)
-(* A special section is dedicated to big operators on natural numbers. *)
-(******************************************************************************)
-(* Notations: *)
-(* The general form for iterated operators is *)
-(* <bigop>_<range> <general_term> *)
-(* - <bigop> is one of \big[op/idx], \sum, \prod, or \max (see below). *)
-(* - <general_term> can be any expression. *)
-(* - <range> binds an index variable in <general_term>; <range> is one of *)
-(* (i <- s) i ranges over the sequence s. *)
-(* (m <= i < n) i ranges over the nat interval m, m+1, ..., n-1. *)
-(* (i < n) i ranges over the (finite) type 'I_n (i.e., ordinal n). *)
-(* (i : T) i ranges over the finite type T. *)
-(* i or (i) i ranges over its (inferred) finite type. *)
-(* (i in A) i ranges over the elements that satisfy the collective *)
-(* predicate A (the domain of A must be a finite type). *)
-(* (i <- s | <condition>) limits the range to the i for which <condition> *)
-(* holds. <condition> can be any expression that coerces to *)
-(* bool, and may mention the bound index i. All six kinds of *)
-(* ranges above can have a <condition> part. *)
-(* - One can use the "\big[op/idx]" notations for any operator. *)
-(* - BIG_F and BIG_P are pattern abbreviations for the <general_term> and *)
-(* <condition> part of a \big ... expression; for (i in A) and (i in A | C) *)
-(* ranges the term matched by BIG_P will include the i \in A condition. *)
-(* - The (locked) head constant of a \big notation is bigop. *)
-(* - The "\sum", "\prod" and "\max" notations in the %N scope are used for *)
-(* natural numbers with addition, multiplication and maximum (and their *)
-(* corresponding neutral elements), respectively. *)
-(* - The "\sum" and "\prod" reserved notations are overloaded in ssralg in *)
-(* the %R scope; in mxalgebra, vector & falgebra in the %MS and %VS scopes; *)
-(* "\prod" is also overloaded in fingroup, in the %g and %G scopes. *)
-(* - We reserve "\bigcup" and "\bigcap" notations for iterated union and *)
-(* intersection (of sets, groups, vector spaces, etc). *)
-(******************************************************************************)
-(* Tips for using lemmas in this file: *)
-(* To apply a lemma for a specific operator: if no special property is *)
-(* required for the operator, simply apply the lemma; if the lemma needs *)
-(* certain properties for the operator, make sure the appropriate Canonical *)
-(* instances are declared. *)
-(******************************************************************************)
-(* Interfaces for operator properties are packaged in the Monoid submodule: *)
-(* Monoid.law idx == interface (keyed on the operator) for associative *)
-(* operators with identity element idx. *)
-(* Monoid.com_law idx == extension (telescope) of Monoid.law for operators *)
-(* that are also commutative. *)
-(* Monoid.mul_law abz == interface for operators with absorbing (zero) *)
-(* element abz. *)
-(* Monoid.add_law idx mop == extension of Monoid.com_law for operators over *)
-(* which operation mop distributes (mop will often also *)
-(* have a Monoid.mul_law idx structure). *)
-(* [law of op], [com_law of op], [mul_law of op], [add_law mop of op] == *)
-(* syntax for cloning Monoid structures. *)
-(* Monoid.Theory == submodule containing basic generic algebra lemmas *)
-(* for operators satisfying the Monoid interfaces. *)
-(* Monoid.simpm == generic monoid simplification rewrite multirule. *)
-(* Monoid structures are predeclared for many basic operators: (_ && _)%B, *)
-(* (_ || _)%B, (_ (+) _)%B (exclusive or) , (_ + _)%N, (_ * _)%N, maxn, *)
-(* gcdn, lcmn and (_ ++ _)%SEQ (list concatenation). *)
-(******************************************************************************)
-(* Additional documentation for this file: *)
-(* Y. Bertot, G. Gonthier, S. Ould Biha and I. Pasca. *)
-(* Canonical Big Operators. In TPHOLs 2008, LNCS vol. 5170, Springer. *)
-(* Article available at: *)
-(* http://hal.inria.fr/docs/00/33/11/93/PDF/main.pdf *)
-(******************************************************************************)
-(* Examples of use in: poly.v, matrix.v *)
-(******************************************************************************)
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Unset Printing Implicit Defensive.
-
-Reserved Notation "\big [ op / idx ]_ i F"
- (at level 36, F at level 36, op, idx at level 10, i at level 0,
- right associativity,
- format "'[' \big [ op / idx ]_ i '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i <- r | P ) F"
- (at level 36, F at level 36, op, idx at level 10, i, r at level 50,
- format "'[' \big [ op / idx ]_ ( i <- r | P ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i <- r ) F"
- (at level 36, F at level 36, op, idx at level 10, i, r at level 50,
- format "'[' \big [ op / idx ]_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( m <= i < n | P ) F"
- (at level 36, F at level 36, op, idx at level 10, m, i, n at level 50,
- format "'[' \big [ op / idx ]_ ( m <= i < n | P ) F ']'").
-Reserved Notation "\big [ op / idx ]_ ( m <= i < n ) F"
- (at level 36, F at level 36, op, idx at level 10, i, m, n at level 50,
- format "'[' \big [ op / idx ]_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i | P ) F"
- (at level 36, F at level 36, op, idx at level 10, i at level 50,
- format "'[' \big [ op / idx ]_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i : t | P ) F"
- (at level 36, F at level 36, op, idx at level 10, i at level 50,
- format "'[' \big [ op / idx ]_ ( i : t | P ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i : t ) F"
- (at level 36, F at level 36, op, idx at level 10, i at level 50,
- format "'[' \big [ op / idx ]_ ( i : t ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i < n | P ) F"
- (at level 36, F at level 36, op, idx at level 10, i, n at level 50,
- format "'[' \big [ op / idx ]_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i < n ) F"
- (at level 36, F at level 36, op, idx at level 10, i, n at level 50,
- format "'[' \big [ op / idx ]_ ( i < n ) F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i 'in' A | P ) F"
- (at level 36, F at level 36, op, idx at level 10, i, A at level 50,
- format "'[' \big [ op / idx ]_ ( i 'in' A | P ) '/ ' F ']'").
-Reserved Notation "\big [ op / idx ]_ ( i 'in' A ) F"
- (at level 36, F at level 36, op, idx at level 10, i, A at level 50,
- format "'[' \big [ op / idx ]_ ( i 'in' A ) '/ ' F ']'").
-
-Reserved Notation "\sum_ i F"
- (at level 41, F at level 41, i at level 0,
- right associativity,
- format "'[' \sum_ i '/ ' F ']'").
-Reserved Notation "\sum_ ( i <- r | P ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \sum_ ( i <- r | P ) '/ ' F ']'").
-Reserved Notation "\sum_ ( i <- r ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \sum_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\sum_ ( m <= i < n | P ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \sum_ ( m <= i < n | P ) '/ ' F ']'").
-Reserved Notation "\sum_ ( m <= i < n ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \sum_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\sum_ ( i | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \sum_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\sum_ ( i : t | P ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\sum_ ( i : t ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\sum_ ( i < n | P ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \sum_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\sum_ ( i < n ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \sum_ ( i < n ) '/ ' F ']'").
-Reserved Notation "\sum_ ( i 'in' A | P ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \sum_ ( i 'in' A | P ) '/ ' F ']'").
-Reserved Notation "\sum_ ( i 'in' A ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \sum_ ( i 'in' A ) '/ ' F ']'").
-
-Reserved Notation "\max_ i F"
- (at level 41, F at level 41, i at level 0,
- format "'[' \max_ i '/ ' F ']'").
-Reserved Notation "\max_ ( i <- r | P ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \max_ ( i <- r | P ) '/ ' F ']'").
-Reserved Notation "\max_ ( i <- r ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \max_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\max_ ( m <= i < n | P ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \max_ ( m <= i < n | P ) '/ ' F ']'").
-Reserved Notation "\max_ ( m <= i < n ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \max_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\max_ ( i | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \max_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\max_ ( i : t | P ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\max_ ( i : t ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\max_ ( i < n | P ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \max_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\max_ ( i < n ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \max_ ( i < n ) F ']'").
-Reserved Notation "\max_ ( i 'in' A | P ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \max_ ( i 'in' A | P ) '/ ' F ']'").
-Reserved Notation "\max_ ( i 'in' A ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \max_ ( i 'in' A ) '/ ' F ']'").
-
-Reserved Notation "\prod_ i F"
- (at level 36, F at level 36, i at level 0,
- format "'[' \prod_ i '/ ' F ']'").
-Reserved Notation "\prod_ ( i <- r | P ) F"
- (at level 36, F at level 36, i, r at level 50,
- format "'[' \prod_ ( i <- r | P ) '/ ' F ']'").
-Reserved Notation "\prod_ ( i <- r ) F"
- (at level 36, F at level 36, i, r at level 50,
- format "'[' \prod_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\prod_ ( m <= i < n | P ) F"
- (at level 36, F at level 36, i, m, n at level 50,
- format "'[' \prod_ ( m <= i < n | P ) '/ ' F ']'").
-Reserved Notation "\prod_ ( m <= i < n ) F"
- (at level 36, F at level 36, i, m, n at level 50,
- format "'[' \prod_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\prod_ ( i | P ) F"
- (at level 36, F at level 36, i at level 50,
- format "'[' \prod_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\prod_ ( i : t | P ) F"
- (at level 36, F at level 36, i at level 50,
- only parsing).
-Reserved Notation "\prod_ ( i : t ) F"
- (at level 36, F at level 36, i at level 50,
- only parsing).
-Reserved Notation "\prod_ ( i < n | P ) F"
- (at level 36, F at level 36, i, n at level 50,
- format "'[' \prod_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\prod_ ( i < n ) F"
- (at level 36, F at level 36, i, n at level 50,
- format "'[' \prod_ ( i < n ) '/ ' F ']'").
-Reserved Notation "\prod_ ( i 'in' A | P ) F"
- (at level 36, F at level 36, i, A at level 50,
- format "'[' \prod_ ( i 'in' A | P ) F ']'").
-Reserved Notation "\prod_ ( i 'in' A ) F"
- (at level 36, F at level 36, i, A at level 50,
- format "'[' \prod_ ( i 'in' A ) '/ ' F ']'").
-
-Reserved Notation "\bigcup_ i F"
- (at level 41, F at level 41, i at level 0,
- format "'[' \bigcup_ i '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i <- r | P ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \bigcup_ ( i <- r | P ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i <- r ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \bigcup_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( m <= i < n | P ) F"
- (at level 41, F at level 41, m, i, n at level 50,
- format "'[' \bigcup_ ( m <= i < n | P ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( m <= i < n ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \bigcup_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \bigcup_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i : t | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \bigcup_ ( i : t | P ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i : t ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \bigcup_ ( i : t ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i < n | P ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \bigcup_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i < n ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \bigcup_ ( i < n ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i 'in' A | P ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \bigcup_ ( i 'in' A | P ) '/ ' F ']'").
-Reserved Notation "\bigcup_ ( i 'in' A ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \bigcup_ ( i 'in' A ) '/ ' F ']'").
-
-Reserved Notation "\bigcap_ i F"
- (at level 41, F at level 41, i at level 0,
- format "'[' \bigcap_ i '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i <- r | P ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \bigcap_ ( i <- r | P ) F ']'").
-Reserved Notation "\bigcap_ ( i <- r ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \bigcap_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( m <= i < n | P ) F"
- (at level 41, F at level 41, m, i, n at level 50,
- format "'[' \bigcap_ ( m <= i < n | P ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( m <= i < n ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \bigcap_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \bigcap_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i : t | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \bigcap_ ( i : t | P ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i : t ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \bigcap_ ( i : t ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i < n | P ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \bigcap_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i < n ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \bigcap_ ( i < n ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i 'in' A | P ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \bigcap_ ( i 'in' A | P ) '/ ' F ']'").
-Reserved Notation "\bigcap_ ( i 'in' A ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \bigcap_ ( i 'in' A ) '/ ' F ']'").
-
-Module Monoid.
-
-Section Definitions.
-Variables (T : Type) (idm : T).
-
-Structure law := Law {
- operator : T -> T -> T;
- _ : associative operator;
- _ : left_id idm operator;
- _ : right_id idm operator
-}.
-Local Coercion operator : law >-> Funclass.
-
-Structure com_law := ComLaw {
- com_operator : law;
- _ : commutative com_operator
-}.
-Local Coercion com_operator : com_law >-> law.
-
-Structure mul_law := MulLaw {
- mul_operator : T -> T -> T;
- _ : left_zero idm mul_operator;
- _ : right_zero idm mul_operator
-}.
-Local Coercion mul_operator : mul_law >-> Funclass.
-
-Structure add_law (mul : T -> T -> T) := AddLaw {
- add_operator : com_law;
- _ : left_distributive mul add_operator;
- _ : right_distributive mul add_operator
-}.
-Local Coercion add_operator : add_law >-> com_law.
-
-Let op_id (op1 op2 : T -> T -> T) := phant_id op1 op2.
-
-Definition clone_law op :=
- fun (opL : law) & op_id opL op =>
- fun opmA op1m opm1 (opL' := @Law op opmA op1m opm1)
- & phant_id opL' opL => opL'.
-
-Definition clone_com_law op :=
- fun (opL : law) (opC : com_law) & op_id opL op & op_id opC op =>
- fun opmC (opC' := @ComLaw opL opmC) & phant_id opC' opC => opC'.
-
-Definition clone_mul_law op :=
- fun (opM : mul_law) & op_id opM op =>
- fun op0m opm0 (opM' := @MulLaw op op0m opm0) & phant_id opM' opM => opM'.
-
-Definition clone_add_law mop aop :=
- fun (opC : com_law) (opA : add_law mop) & op_id opC aop & op_id opA aop =>
- fun mopDm mopmD (opA' := @AddLaw mop opC mopDm mopmD)
- & phant_id opA' opA => opA'.
-
-End Definitions.
-
-Module Import Exports.
-Coercion operator : law >-> Funclass.
-Coercion com_operator : com_law >-> law.
-Coercion mul_operator : mul_law >-> Funclass.
-Coercion add_operator : add_law >-> com_law.
-Notation "[ 'law' 'of' f ]" := (@clone_law _ _ f _ id _ _ _ id)
- (at level 0, format"[ 'law' 'of' f ]") : form_scope.
-Notation "[ 'com_law' 'of' f ]" := (@clone_com_law _ _ f _ _ id id _ id)
- (at level 0, format "[ 'com_law' 'of' f ]") : form_scope.
-Notation "[ 'mul_law' 'of' f ]" := (@clone_mul_law _ _ f _ id _ _ id)
- (at level 0, format"[ 'mul_law' 'of' f ]") : form_scope.
-Notation "[ 'add_law' m 'of' a ]" := (@clone_add_law _ _ m a _ _ id id _ _ id)
- (at level 0, format "[ 'add_law' m 'of' a ]") : form_scope.
-End Exports.
-
-Section CommutativeAxioms.
-
-Variable (T : Type) (zero one : T) (mul add : T -> T -> T) (inv : T -> T).
-Hypothesis mulC : commutative mul.
-
-Lemma mulC_id : left_id one mul -> right_id one mul.
-Proof. by move=> mul1x x; rewrite mulC. Qed.
-
-Lemma mulC_zero : left_zero zero mul -> right_zero zero mul.
-Proof. by move=> mul0x x; rewrite mulC. Qed.
-
-Lemma mulC_dist : left_distributive mul add -> right_distributive mul add.
-Proof. by move=> mul_addl x y z; rewrite !(mulC x). Qed.
-
-End CommutativeAxioms.
-
-Module Theory.
-
-Section Theory.
-Variables (T : Type) (idm : T).
-
-Section Plain.
-Variable mul : law idm.
-Lemma mul1m : left_id idm mul. Proof. by case mul. Qed.
-Lemma mulm1 : right_id idm mul. Proof. by case mul. Qed.
-Lemma mulmA : associative mul. Proof. by case mul. Qed.
-Lemma iteropE n x : iterop n mul x idm = iter n (mul x) idm.
-Proof. by case: n => // n; rewrite iterSr mulm1 iteropS. Qed.
-End Plain.
-
-Section Commutative.
-Variable mul : com_law idm.
-Lemma mulmC : commutative mul. Proof. by case mul. Qed.
-Lemma mulmCA : left_commutative mul.
-Proof. by move=> x y z; rewrite !mulmA (mulmC x). Qed.
-Lemma mulmAC : right_commutative mul.
-Proof. by move=> x y z; rewrite -!mulmA (mulmC y). Qed.
-Lemma mulmACA : interchange mul mul.
-Proof. by move=> x y z t; rewrite -!mulmA (mulmCA y). Qed.
-End Commutative.
-
-Section Mul.
-Variable mul : mul_law idm.
-Lemma mul0m : left_zero idm mul. Proof. by case mul. Qed.
-Lemma mulm0 : right_zero idm mul. Proof. by case mul. Qed.
-End Mul.
-
-Section Add.
-Variables (mul : T -> T -> T) (add : add_law idm mul).
-Lemma addmA : associative add. Proof. exact: mulmA. Qed.
-Lemma addmC : commutative add. Proof. exact: mulmC. Qed.
-Lemma addmCA : left_commutative add. Proof. exact: mulmCA. Qed.
-Lemma addmAC : right_commutative add. Proof. exact: mulmAC. Qed.
-Lemma add0m : left_id idm add. Proof. exact: mul1m. Qed.
-Lemma addm0 : right_id idm add. Proof. exact: mulm1. Qed.
-Lemma mulm_addl : left_distributive mul add. Proof. by case add. Qed.
-Lemma mulm_addr : right_distributive mul add. Proof. by case add. Qed.
-End Add.
-
-Definition simpm := (mulm1, mulm0, mul1m, mul0m, mulmA).
-
-End Theory.
-
-End Theory.
-Include Theory.
-
-End Monoid.
-Export Monoid.Exports.
-
-Section PervasiveMonoids.
-
-Import Monoid.
-
-Canonical andb_monoid := Law andbA andTb andbT.
-Canonical andb_comoid := ComLaw andbC.
-
-Canonical andb_muloid := MulLaw andFb andbF.
-Canonical orb_monoid := Law orbA orFb orbF.
-Canonical orb_comoid := ComLaw orbC.
-Canonical orb_muloid := MulLaw orTb orbT.
-Canonical addb_monoid := Law addbA addFb addbF.
-Canonical addb_comoid := ComLaw addbC.
-Canonical orb_addoid := AddLaw andb_orl andb_orr.
-Canonical andb_addoid := AddLaw orb_andl orb_andr.
-Canonical addb_addoid := AddLaw andb_addl andb_addr.
-
-Canonical addn_monoid := Law addnA add0n addn0.
-Canonical addn_comoid := ComLaw addnC.
-Canonical muln_monoid := Law mulnA mul1n muln1.
-Canonical muln_comoid := ComLaw mulnC.
-Canonical muln_muloid := MulLaw mul0n muln0.
-Canonical addn_addoid := AddLaw mulnDl mulnDr.
-
-Canonical maxn_monoid := Law maxnA max0n maxn0.
-Canonical maxn_comoid := ComLaw maxnC.
-Canonical maxn_addoid := AddLaw maxn_mull maxn_mulr.
-
-Canonical gcdn_monoid := Law gcdnA gcd0n gcdn0.
-Canonical gcdn_comoid := ComLaw gcdnC.
-Canonical gcdnDoid := AddLaw muln_gcdl muln_gcdr.
-
-Canonical lcmn_monoid := Law lcmnA lcm1n lcmn1.
-Canonical lcmn_comoid := ComLaw lcmnC.
-Canonical lcmn_addoid := AddLaw muln_lcml muln_lcmr.
-
-Canonical cat_monoid T := Law (@catA T) (@cat0s T) (@cats0 T).
-
-End PervasiveMonoids.
-
-(* Unit test for the [...law of ...] Notations
-Definition myp := addn. Definition mym := muln.
-Canonical myp_mon := [law of myp].
-Canonical myp_cmon := [com_law of myp].
-Canonical mym_mul := [mul_law of mym].
-Canonical myp_add := [add_law _ of myp].
-Print myp_add.
-Print Canonical Projections.
-*)
-
-Delimit Scope big_scope with BIG.
-Open Scope big_scope.
-
-(* The bigbody wrapper is a workaround for a quirk of the Coq pretty-printer, *)
-(* which would fail to redisplay the \big notation when the <general_term> or *)
-(* <condition> do not depend on the bound index. The BigBody constructor *)
-(* packages both in in a term in which i occurs; it also depends on the *)
-(* iterated <op>, as this can give more information on the expected type of *)
-(* the <general_term>, thus allowing for the insertion of coercions. *)
-CoInductive bigbody R I := BigBody of I & (R -> R -> R) & bool & R.
-
-Definition applybig {R I} (body : bigbody R I) x :=
- let: BigBody _ op b v := body in if b then op v x else x.
-
-Definition reducebig R I idx r (body : I -> bigbody R I) :=
- foldr (applybig \o body) idx r.
-
-Module Type BigOpSig.
-Parameter bigop : forall R I, R -> seq I -> (I -> bigbody R I) -> R.
-Axiom bigopE : bigop = reducebig.
-End BigOpSig.
-
-Module BigOp : BigOpSig.
-Definition bigop := reducebig.
-Lemma bigopE : bigop = reducebig. Proof. by []. Qed.
-End BigOp.
-
-Notation bigop := BigOp.bigop (only parsing).
-Canonical bigop_unlock := Unlockable BigOp.bigopE.
-
-Definition index_iota m n := iota m (n - m).
-
-Definition index_enum (T : finType) := Finite.enum T.
-
-Lemma mem_index_iota m n i : i \in index_iota m n = (m <= i < n).
-Proof.
-rewrite mem_iota; case le_m_i: (m <= i) => //=.
-by rewrite -leq_subLR subSn // -subn_gt0 -subnDA subnKC // subn_gt0.
-Qed.
-
-Lemma mem_index_enum T i : i \in index_enum T.
-Proof. by rewrite -[index_enum T]enumT mem_enum. Qed.
-Hint Resolve mem_index_enum.
-
-Lemma filter_index_enum T P : filter P (index_enum T) = enum P.
-Proof. by []. Qed.
-
-Notation "\big [ op / idx ]_ ( i <- r | P ) F" :=
- (bigop idx r (fun i => BigBody i op P%B F)) : big_scope.
-Notation "\big [ op / idx ]_ ( i <- r ) F" :=
- (bigop idx r (fun i => BigBody i op true F)) : big_scope.
-Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" :=
- (bigop idx (index_iota m n) (fun i : nat => BigBody i op P%B F))
- : big_scope.
-Notation "\big [ op / idx ]_ ( m <= i < n ) F" :=
- (bigop idx (index_iota m n) (fun i : nat => BigBody i op true F))
- : big_scope.
-Notation "\big [ op / idx ]_ ( i | P ) F" :=
- (bigop idx (index_enum _) (fun i => BigBody i op P%B F)) : big_scope.
-Notation "\big [ op / idx ]_ i F" :=
- (bigop idx (index_enum _) (fun i => BigBody i op true F)) : big_scope.
-Notation "\big [ op / idx ]_ ( i : t | P ) F" :=
- (bigop idx (index_enum _) (fun i : t => BigBody i op P%B F))
- (only parsing) : big_scope.
-Notation "\big [ op / idx ]_ ( i : t ) F" :=
- (bigop idx (index_enum _) (fun i : t => BigBody i op true F))
- (only parsing) : big_scope.
-Notation "\big [ op / idx ]_ ( i < n | P ) F" :=
- (\big[op/idx]_(i : ordinal n | P%B) F) : big_scope.
-Notation "\big [ op / idx ]_ ( i < n ) F" :=
- (\big[op/idx]_(i : ordinal n) F) : big_scope.
-Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" :=
- (\big[op/idx]_(i | (i \in A) && P) F) : big_scope.
-Notation "\big [ op / idx ]_ ( i 'in' A ) F" :=
- (\big[op/idx]_(i | i \in A) F) : big_scope.
-
-Notation BIG_F := (F in \big[_/_]_(i <- _ | _) F i)%pattern.
-Notation BIG_P := (P in \big[_/_]_(i <- _ | P i) _)%pattern.
-
-Local Notation "+%N" := addn (at level 0, only parsing).
-Notation "\sum_ ( i <- r | P ) F" :=
- (\big[+%N/0%N]_(i <- r | P%B) F%N) : nat_scope.
-Notation "\sum_ ( i <- r ) F" :=
- (\big[+%N/0%N]_(i <- r) F%N) : nat_scope.
-Notation "\sum_ ( m <= i < n | P ) F" :=
- (\big[+%N/0%N]_(m <= i < n | P%B) F%N) : nat_scope.
-Notation "\sum_ ( m <= i < n ) F" :=
- (\big[+%N/0%N]_(m <= i < n) F%N) : nat_scope.
-Notation "\sum_ ( i | P ) F" :=
- (\big[+%N/0%N]_(i | P%B) F%N) : nat_scope.
-Notation "\sum_ i F" :=
- (\big[+%N/0%N]_i F%N) : nat_scope.
-Notation "\sum_ ( i : t | P ) F" :=
- (\big[+%N/0%N]_(i : t | P%B) F%N) (only parsing) : nat_scope.
-Notation "\sum_ ( i : t ) F" :=
- (\big[+%N/0%N]_(i : t) F%N) (only parsing) : nat_scope.
-Notation "\sum_ ( i < n | P ) F" :=
- (\big[+%N/0%N]_(i < n | P%B) F%N) : nat_scope.
-Notation "\sum_ ( i < n ) F" :=
- (\big[+%N/0%N]_(i < n) F%N) : nat_scope.
-Notation "\sum_ ( i 'in' A | P ) F" :=
- (\big[+%N/0%N]_(i in A | P%B) F%N) : nat_scope.
-Notation "\sum_ ( i 'in' A ) F" :=
- (\big[+%N/0%N]_(i in A) F%N) : nat_scope.
-
-Local Notation "*%N" := muln (at level 0, only parsing).
-Notation "\prod_ ( i <- r | P ) F" :=
- (\big[*%N/1%N]_(i <- r | P%B) F%N) : nat_scope.
-Notation "\prod_ ( i <- r ) F" :=
- (\big[*%N/1%N]_(i <- r) F%N) : nat_scope.
-Notation "\prod_ ( m <= i < n | P ) F" :=
- (\big[*%N/1%N]_(m <= i < n | P%B) F%N) : nat_scope.
-Notation "\prod_ ( m <= i < n ) F" :=
- (\big[*%N/1%N]_(m <= i < n) F%N) : nat_scope.
-Notation "\prod_ ( i | P ) F" :=
- (\big[*%N/1%N]_(i | P%B) F%N) : nat_scope.
-Notation "\prod_ i F" :=
- (\big[*%N/1%N]_i F%N) : nat_scope.
-Notation "\prod_ ( i : t | P ) F" :=
- (\big[*%N/1%N]_(i : t | P%B) F%N) (only parsing) : nat_scope.
-Notation "\prod_ ( i : t ) F" :=
- (\big[*%N/1%N]_(i : t) F%N) (only parsing) : nat_scope.
-Notation "\prod_ ( i < n | P ) F" :=
- (\big[*%N/1%N]_(i < n | P%B) F%N) : nat_scope.
-Notation "\prod_ ( i < n ) F" :=
- (\big[*%N/1%N]_(i < n) F%N) : nat_scope.
-Notation "\prod_ ( i 'in' A | P ) F" :=
- (\big[*%N/1%N]_(i in A | P%B) F%N) : nat_scope.
-Notation "\prod_ ( i 'in' A ) F" :=
- (\big[*%N/1%N]_(i in A) F%N) : nat_scope.
-
-Notation "\max_ ( i <- r | P ) F" :=
- (\big[maxn/0%N]_(i <- r | P%B) F%N) : nat_scope.
-Notation "\max_ ( i <- r ) F" :=
- (\big[maxn/0%N]_(i <- r) F%N) : nat_scope.
-Notation "\max_ ( i | P ) F" :=
- (\big[maxn/0%N]_(i | P%B) F%N) : nat_scope.
-Notation "\max_ i F" :=
- (\big[maxn/0%N]_i F%N) : nat_scope.
-Notation "\max_ ( i : I | P ) F" :=
- (\big[maxn/0%N]_(i : I | P%B) F%N) (only parsing) : nat_scope.
-Notation "\max_ ( i : I ) F" :=
- (\big[maxn/0%N]_(i : I) F%N) (only parsing) : nat_scope.
-Notation "\max_ ( m <= i < n | P ) F" :=
- (\big[maxn/0%N]_(m <= i < n | P%B) F%N) : nat_scope.
-Notation "\max_ ( m <= i < n ) F" :=
- (\big[maxn/0%N]_(m <= i < n) F%N) : nat_scope.
-Notation "\max_ ( i < n | P ) F" :=
- (\big[maxn/0%N]_(i < n | P%B) F%N) : nat_scope.
-Notation "\max_ ( i < n ) F" :=
- (\big[maxn/0%N]_(i < n) F%N) : nat_scope.
-Notation "\max_ ( i 'in' A | P ) F" :=
- (\big[maxn/0%N]_(i in A | P%B) F%N) : nat_scope.
-Notation "\max_ ( i 'in' A ) F" :=
- (\big[maxn/0%N]_(i in A) F%N) : nat_scope.
-
-(* Induction loading *)
-Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F :
- K (\big[op/idx]_(i <- r | P i) F i) * K' (\big[op/idx]_(i <- r | P i) F i)
- -> K' (\big[op/idx]_(i <- r | P i) F i).
-Proof. by case. Qed.
-
-Implicit Arguments big_load [R K' I].
-
-Section Elim3.
-
-Variables (R1 R2 R3 : Type) (K : R1 -> R2 -> R3 -> Type).
-Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
-Variables (id2 : R2) (op2 : R2 -> R2 -> R2).
-Variables (id3 : R3) (op3 : R3 -> R3 -> R3).
-
-Hypothesis Kid : K id1 id2 id3.
-
-Lemma big_rec3 I r (P : pred I) F1 F2 F3
- (K_F : forall i y1 y2 y3, P i -> K y1 y2 y3 ->
- K (op1 (F1 i) y1) (op2 (F2 i) y2) (op3 (F3 i) y3)) :
- K (\big[op1/id1]_(i <- r | P i) F1 i)
- (\big[op2/id2]_(i <- r | P i) F2 i)
- (\big[op3/id3]_(i <- r | P i) F3 i).
-Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.
-
-Hypothesis Kop : forall x1 x2 x3 y1 y2 y3,
- K x1 x2 x3 -> K y1 y2 y3-> K (op1 x1 y1) (op2 x2 y2) (op3 x3 y3).
-Lemma big_ind3 I r (P : pred I) F1 F2 F3
- (K_F : forall i, P i -> K (F1 i) (F2 i) (F3 i)) :
- K (\big[op1/id1]_(i <- r | P i) F1 i)
- (\big[op2/id2]_(i <- r | P i) F2 i)
- (\big[op3/id3]_(i <- r | P i) F3 i).
-Proof. by apply: big_rec3 => i x1 x2 x3 /K_F; apply: Kop. Qed.
-
-End Elim3.
-
-Implicit Arguments big_rec3 [R1 R2 R3 id1 op1 id2 op2 id3 op3 I r P F1 F2 F3].
-Implicit Arguments big_ind3 [R1 R2 R3 id1 op1 id2 op2 id3 op3 I r P F1 F2 F3].
-
-Section Elim2.
-
-Variables (R1 R2 : Type) (K : R1 -> R2 -> Type) (f : R2 -> R1).
-Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
-Variables (id2 : R2) (op2 : R2 -> R2 -> R2).
-
-Hypothesis Kid : K id1 id2.
-
-Lemma big_rec2 I r (P : pred I) F1 F2
- (K_F : forall i y1 y2, P i -> K y1 y2 ->
- K (op1 (F1 i) y1) (op2 (F2 i) y2)) :
- K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
-Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.
-
-Hypothesis Kop : forall x1 x2 y1 y2,
- K x1 x2 -> K y1 y2 -> K (op1 x1 y1) (op2 x2 y2).
-Lemma big_ind2 I r (P : pred I) F1 F2 (K_F : forall i, P i -> K (F1 i) (F2 i)) :
- K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
-Proof. by apply: big_rec2 => i x1 x2 /K_F; apply: Kop. Qed.
-
-Hypotheses (f_op : {morph f : x y / op2 x y >-> op1 x y}) (f_id : f id2 = id1).
-Lemma big_morph I r (P : pred I) F :
- f (\big[op2/id2]_(i <- r | P i) F i) = \big[op1/id1]_(i <- r | P i) f (F i).
-Proof. by rewrite unlock; elim: r => //= i r <-; rewrite -f_op -fun_if. Qed.
-
-End Elim2.
-
-Implicit Arguments big_rec2 [R1 R2 id1 op1 id2 op2 I r P F1 F2].
-Implicit Arguments big_ind2 [R1 R2 id1 op1 id2 op2 I r P F1 F2].
-Implicit Arguments big_morph [R1 R2 id1 op1 id2 op2 I].
-
-Section Elim1.
-
-Variables (R : Type) (K : R -> Type) (f : R -> R).
-Variables (idx : R) (op op' : R -> R -> R).
-
-Hypothesis Kid : K idx.
-
-Lemma big_rec I r (P : pred I) F
- (Kop : forall i x, P i -> K x -> K (op (F i) x)) :
- K (\big[op/idx]_(i <- r | P i) F i).
-Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: Kop. Qed.
-
-Hypothesis Kop : forall x y, K x -> K y -> K (op x y).
-Lemma big_ind I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
- K (\big[op/idx]_(i <- r | P i) F i).
-Proof. by apply: big_rec => // i x /K_F /Kop; apply. Qed.
-
-Hypothesis Kop' : forall x y, K x -> K y -> op x y = op' x y.
-Lemma eq_big_op I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
- \big[op/idx]_(i <- r | P i) F i = \big[op'/idx]_(i <- r | P i) F i.
-Proof.
-by elim/(big_load K): _; elim/big_rec2: _ => // i _ y Pi [Ky <-]; auto.
-Qed.
-
-Hypotheses (fM : {morph f : x y / op x y}) (f_id : f idx = idx).
-Lemma big_endo I r (P : pred I) F :
- f (\big[op/idx]_(i <- r | P i) F i) = \big[op/idx]_(i <- r | P i) f (F i).
-Proof. exact: big_morph. Qed.
-
-End Elim1.
-
-Implicit Arguments big_rec [R idx op I r P F].
-Implicit Arguments big_ind [R idx op I r P F].
-Implicit Arguments eq_big_op [R idx op I].
-Implicit Arguments big_endo [R idx op I].
-
-Section Extensionality.
-
-Variables (R : Type) (idx : R) (op : R -> R -> R).
-
-Section SeqExtension.
-
-Variable I : Type.
-
-Lemma big_filter r (P : pred I) F :
- \big[op/idx]_(i <- filter P r) F i = \big[op/idx]_(i <- r | P i) F i.
-Proof. by rewrite unlock; elim: r => //= i r <-; case (P i). Qed.
-
-Lemma big_filter_cond r (P1 P2 : pred I) F :
- \big[op/idx]_(i <- filter P1 r | P2 i) F i
- = \big[op/idx]_(i <- r | P1 i && P2 i) F i.
-Proof.
-rewrite -big_filter -(big_filter r); congr bigop.
-by rewrite -filter_predI; apply: eq_filter => i; apply: andbC.
-Qed.
-
-Lemma eq_bigl r (P1 P2 : pred I) F :
- P1 =1 P2 ->
- \big[op/idx]_(i <- r | P1 i) F i = \big[op/idx]_(i <- r | P2 i) F i.
-Proof. by move=> eqP12; rewrite -!(big_filter r) (eq_filter eqP12). Qed.
-
-(* A lemma to permute aggregate conditions. *)
-Lemma big_andbC r (P Q : pred I) F :
- \big[op/idx]_(i <- r | P i && Q i) F i
- = \big[op/idx]_(i <- r | Q i && P i) F i.
-Proof. by apply: eq_bigl => i; apply: andbC. Qed.
-
-Lemma eq_bigr r (P : pred I) F1 F2 : (forall i, P i -> F1 i = F2 i) ->
- \big[op/idx]_(i <- r | P i) F1 i = \big[op/idx]_(i <- r | P i) F2 i.
-Proof. by move=> eqF12; elim/big_rec2: _ => // i x _ /eqF12-> ->. Qed.
-
-Lemma eq_big r (P1 P2 : pred I) F1 F2 :
- P1 =1 P2 -> (forall i, P1 i -> F1 i = F2 i) ->
- \big[op/idx]_(i <- r | P1 i) F1 i = \big[op/idx]_(i <- r | P2 i) F2 i.
-Proof. by move/eq_bigl <-; move/eq_bigr->. Qed.
-
-Lemma congr_big r1 r2 (P1 P2 : pred I) F1 F2 :
- r1 = r2 -> P1 =1 P2 -> (forall i, P1 i -> F1 i = F2 i) ->
- \big[op/idx]_(i <- r1 | P1 i) F1 i = \big[op/idx]_(i <- r2 | P2 i) F2 i.
-Proof. by move=> <-{r2}; apply: eq_big. Qed.
-
-Lemma big_nil (P : pred I) F : \big[op/idx]_(i <- [::] | P i) F i = idx.
-Proof. by rewrite unlock. Qed.
-
-Lemma big_cons i r (P : pred I) F :
- let x := \big[op/idx]_(j <- r | P j) F j in
- \big[op/idx]_(j <- i :: r | P j) F j = if P i then op (F i) x else x.
-Proof. by rewrite unlock. Qed.
-
-Lemma big_map J (h : J -> I) r (P : pred I) F :
- \big[op/idx]_(i <- map h r | P i) F i
- = \big[op/idx]_(j <- r | P (h j)) F (h j).
-Proof. by rewrite unlock; elim: r => //= j r ->. Qed.
-
-Lemma big_nth x0 r (P : pred I) F :
- \big[op/idx]_(i <- r | P i) F i
- = \big[op/idx]_(0 <= i < size r | P (nth x0 r i)) (F (nth x0 r i)).
-Proof. by rewrite -{1}(mkseq_nth x0 r) big_map /index_iota subn0. Qed.
-
-Lemma big_hasC r (P : pred I) F :
- ~~ has P r -> \big[op/idx]_(i <- r | P i) F i = idx.
-Proof.
-by rewrite -big_filter has_count -size_filter -eqn0Ngt unlock => /nilP->.
-Qed.
-
-Lemma big_pred0_eq (r : seq I) F : \big[op/idx]_(i <- r | false) F i = idx.
-Proof. by rewrite big_hasC // has_pred0. Qed.
-
-Lemma big_pred0 r (P : pred I) F :
- P =1 xpred0 -> \big[op/idx]_(i <- r | P i) F i = idx.
-Proof. by move/eq_bigl->; apply: big_pred0_eq. Qed.
-
-Lemma big_cat_nested r1 r2 (P : pred I) F :
- let x := \big[op/idx]_(i <- r2 | P i) F i in
- \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/x]_(i <- r1 | P i) F i.
-Proof. by rewrite unlock /reducebig foldr_cat. Qed.
-
-Lemma big_catl r1 r2 (P : pred I) F :
- ~~ has P r2 ->
- \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/idx]_(i <- r1 | P i) F i.
-Proof. by rewrite big_cat_nested => /big_hasC->. Qed.
-
-Lemma big_catr r1 r2 (P : pred I) F :
- ~~ has P r1 ->
- \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/idx]_(i <- r2 | P i) F i.
-Proof.
-rewrite -big_filter -(big_filter r2) filter_cat.
-by rewrite has_count -size_filter; case: filter.
-Qed.
-
-Lemma big_const_seq r (P : pred I) x :
- \big[op/idx]_(i <- r | P i) x = iter (count P r) (op x) idx.
-Proof. by rewrite unlock; elim: r => //= i r ->; case: (P i). Qed.
-
-End SeqExtension.
-
-(* The following lemmas can be used to localise extensionality to a specific *)
-(* index sequence. This is done by ssreflect rewriting, before applying *)
-(* congruence or induction lemmas. *)
-Lemma big_seq_cond (I : eqType) r (P : pred I) F :
- \big[op/idx]_(i <- r | P i) F i
- = \big[op/idx]_(i <- r | (i \in r) && P i) F i.
-Proof.
-by rewrite -!(big_filter r); congr bigop; apply: eq_in_filter => i ->.
-Qed.
-
-Lemma big_seq (I : eqType) (r : seq I) F :
- \big[op/idx]_(i <- r) F i = \big[op/idx]_(i <- r | i \in r) F i.
-Proof. by rewrite big_seq_cond big_andbC. Qed.
-
-Lemma eq_big_seq (I : eqType) (r : seq I) F1 F2 :
- {in r, F1 =1 F2} -> \big[op/idx]_(i <- r) F1 i = \big[op/idx]_(i <- r) F2 i.
-Proof. by move=> eqF; rewrite !big_seq (eq_bigr _ eqF). Qed.
-
-(* Similar lemmas for exposing integer indexing in the predicate. *)
-Lemma big_nat_cond m n (P : pred nat) F :
- \big[op/idx]_(m <= i < n | P i) F i
- = \big[op/idx]_(m <= i < n | (m <= i < n) && P i) F i.
-Proof.
-by rewrite big_seq_cond; apply: eq_bigl => i; rewrite mem_index_iota.
-Qed.
-
-Lemma big_nat m n F :
- \big[op/idx]_(m <= i < n) F i = \big[op/idx]_(m <= i < n | m <= i < n) F i.
-Proof. by rewrite big_nat_cond big_andbC. Qed.
-
-Lemma congr_big_nat m1 n1 m2 n2 P1 P2 F1 F2 :
- m1 = m2 -> n1 = n2 ->
- (forall i, m1 <= i < n2 -> P1 i = P2 i) ->
- (forall i, P1 i && (m1 <= i < n2) -> F1 i = F2 i) ->
- \big[op/idx]_(m1 <= i < n1 | P1 i) F1 i
- = \big[op/idx]_(m2 <= i < n2 | P2 i) F2 i.
-Proof.
-move=> <- <- eqP12 eqF12; rewrite big_seq_cond (big_seq_cond _ P2).
-apply: eq_big => i; rewrite ?inE /= !mem_index_iota.
- by apply: andb_id2l; apply: eqP12.
-by rewrite andbC; apply: eqF12.
-Qed.
-
-Lemma eq_big_nat m n F1 F2 :
- (forall i, m <= i < n -> F1 i = F2 i) ->
- \big[op/idx]_(m <= i < n) F1 i = \big[op/idx]_(m <= i < n) F2 i.
-Proof. by move=> eqF; apply: congr_big_nat. Qed.
-
-Lemma big_geq m n (P : pred nat) F :
- m >= n -> \big[op/idx]_(m <= i < n | P i) F i = idx.
-Proof. by move=> ge_m_n; rewrite /index_iota (eqnP ge_m_n) big_nil. Qed.
-
-Lemma big_ltn_cond m n (P : pred nat) F :
- m < n -> let x := \big[op/idx]_(m.+1 <= i < n | P i) F i in
- \big[op/idx]_(m <= i < n | P i) F i = if P m then op (F m) x else x.
-Proof.
-by case: n => [//|n] le_m_n; rewrite /index_iota subSn // big_cons.
-Qed.
-
-Lemma big_ltn m n F :
- m < n ->
- \big[op/idx]_(m <= i < n) F i = op (F m) (\big[op/idx]_(m.+1 <= i < n) F i).
-Proof. by move=> lt_mn; apply: big_ltn_cond. Qed.
-
-Lemma big_addn m n a (P : pred nat) F :
- \big[op/idx]_(m + a <= i < n | P i) F i =
- \big[op/idx]_(m <= i < n - a | P (i + a)) F (i + a).
-Proof.
-rewrite /index_iota -subnDA addnC iota_addl big_map.
-by apply: eq_big => ? *; rewrite addnC.
-Qed.
-
-Lemma big_add1 m n (P : pred nat) F :
- \big[op/idx]_(m.+1 <= i < n | P i) F i =
- \big[op/idx]_(m <= i < n.-1 | P (i.+1)) F (i.+1).
-Proof.
-by rewrite -addn1 big_addn subn1; apply: eq_big => ? *; rewrite addn1.
-Qed.
-
-Lemma big_nat_recl n m F : m <= n ->
- \big[op/idx]_(m <= i < n.+1) F i =
- op (F m) (\big[op/idx]_(m <= i < n) F i.+1).
-Proof. by move=> lemn; rewrite big_ltn // big_add1. Qed.
-
-Lemma big_mkord n (P : pred nat) F :
- \big[op/idx]_(0 <= i < n | P i) F i = \big[op/idx]_(i < n | P i) F i.
-Proof.
-rewrite /index_iota subn0 -(big_map (@nat_of_ord n)).
-by congr bigop; rewrite /index_enum unlock val_ord_enum.
-Qed.
-
-Lemma big_nat_widen m n1 n2 (P : pred nat) F :
- n1 <= n2 ->
- \big[op/idx]_(m <= i < n1 | P i) F i
- = \big[op/idx]_(m <= i < n2 | P i && (i < n1)) F i.
-Proof.
-move=> len12; symmetry; rewrite -big_filter filter_predI big_filter.
-have [ltn_trans eq_by_mem] := (ltn_trans, eq_sorted_irr ltn_trans ltnn).
-congr bigop; apply: eq_by_mem; rewrite ?sorted_filter ?iota_ltn_sorted // => i.
-rewrite mem_filter !mem_index_iota andbCA andbA andb_idr => // /andP[_].
-by move/leq_trans->.
-Qed.
-
-Lemma big_ord_widen_cond n1 n2 (P : pred nat) (F : nat -> R) :
- n1 <= n2 ->
- \big[op/idx]_(i < n1 | P i) F i
- = \big[op/idx]_(i < n2 | P i && (i < n1)) F i.
-Proof. by move/big_nat_widen=> len12; rewrite -big_mkord len12 big_mkord. Qed.
-
-Lemma big_ord_widen n1 n2 (F : nat -> R) :
- n1 <= n2 ->
- \big[op/idx]_(i < n1) F i = \big[op/idx]_(i < n2 | i < n1) F i.
-Proof. by move=> le_n12; apply: (big_ord_widen_cond (predT)). Qed.
-
-Lemma big_ord_widen_leq n1 n2 (P : pred 'I_(n1.+1)) F :
- n1 < n2 ->
- \big[op/idx]_(i < n1.+1 | P i) F i
- = \big[op/idx]_(i < n2 | P (inord i) && (i <= n1)) F (inord i).
-Proof.
-move=> len12; pose g G i := G (inord i : 'I_(n1.+1)).
-rewrite -(big_ord_widen_cond (g _ P) (g _ F) len12) {}/g.
-by apply: eq_big => i *; rewrite inord_val.
-Qed.
-
-Lemma big_ord0 P F : \big[op/idx]_(i < 0 | P i) F i = idx.
-Proof. by rewrite big_pred0 => [|[]]. Qed.
-
-Lemma big_tnth I r (P : pred I) F :
- let r_ := tnth (in_tuple r) in
- \big[op/idx]_(i <- r | P i) F i
- = \big[op/idx]_(i < size r | P (r_ i)) (F (r_ i)).
-Proof.
-case: r => /= [|x0 r]; first by rewrite big_nil big_ord0.
-by rewrite (big_nth x0) big_mkord; apply: eq_big => i; rewrite (tnth_nth x0).
-Qed.
-
-Lemma big_index_uniq (I : eqType) (r : seq I) (E : 'I_(size r) -> R) :
- uniq r ->
- \big[op/idx]_i E i = \big[op/idx]_(x <- r) oapp E idx (insub (index x r)).
-Proof.
-move=> Ur; apply/esym; rewrite big_tnth; apply: eq_bigr => i _.
-by rewrite index_uniq // valK.
-Qed.
-
-Lemma big_tuple I n (t : n.-tuple I) (P : pred I) F :
- \big[op/idx]_(i <- t | P i) F i
- = \big[op/idx]_(i < n | P (tnth t i)) F (tnth t i).
-Proof. by rewrite big_tnth tvalK; case: _ / (esym _). Qed.
-
-Lemma big_ord_narrow_cond n1 n2 (P : pred 'I_n2) F (le_n12 : n1 <= n2) :
- let w := widen_ord le_n12 in
- \big[op/idx]_(i < n2 | P i && (i < n1)) F i
- = \big[op/idx]_(i < n1 | P (w i)) F (w i).
-Proof.
-case: n1 => [|n1] /= in le_n12 *.
- by rewrite big_ord0 big_pred0 // => i; rewrite andbF.
-rewrite (big_ord_widen_leq _ _ le_n12); apply: eq_big => i.
- by apply: andb_id2r => le_i_n1; congr P; apply: val_inj; rewrite /= inordK.
-by case/andP=> _ le_i_n1; congr F; apply: val_inj; rewrite /= inordK.
-Qed.
-
-Lemma big_ord_narrow_cond_leq n1 n2 (P : pred _) F (le_n12 : n1 <= n2) :
- let w := @widen_ord n1.+1 n2.+1 le_n12 in
- \big[op/idx]_(i < n2.+1 | P i && (i <= n1)) F i
- = \big[op/idx]_(i < n1.+1 | P (w i)) F (w i).
-Proof. exact: (@big_ord_narrow_cond n1.+1 n2.+1). Qed.
-
-Lemma big_ord_narrow n1 n2 F (le_n12 : n1 <= n2) :
- let w := widen_ord le_n12 in
- \big[op/idx]_(i < n2 | i < n1) F i = \big[op/idx]_(i < n1) F (w i).
-Proof. exact: (big_ord_narrow_cond (predT)). Qed.
-
-Lemma big_ord_narrow_leq n1 n2 F (le_n12 : n1 <= n2) :
- let w := @widen_ord n1.+1 n2.+1 le_n12 in
- \big[op/idx]_(i < n2.+1 | i <= n1) F i = \big[op/idx]_(i < n1.+1) F (w i).
-Proof. exact: (big_ord_narrow_cond_leq (predT)). Qed.
-
-Lemma big_ord_recl n F :
- \big[op/idx]_(i < n.+1) F i =
- op (F ord0) (\big[op/idx]_(i < n) F (@lift n.+1 ord0 i)).
-Proof.
-pose G i := F (inord i); have eqFG i: F i = G i by rewrite /G inord_val.
-rewrite (eq_bigr _ (fun i _ => eqFG i)) -(big_mkord _ (fun _ => _) G) eqFG.
-rewrite big_ltn // big_add1 /= big_mkord; congr op.
-by apply: eq_bigr => i _; rewrite eqFG.
-Qed.
-
-Lemma big_const (I : finType) (A : pred I) x :
- \big[op/idx]_(i in A) x = iter #|A| (op x) idx.
-Proof. by rewrite big_const_seq -size_filter cardE. Qed.
-
-Lemma big_const_nat m n x :
- \big[op/idx]_(m <= i < n) x = iter (n - m) (op x) idx.
-Proof. by rewrite big_const_seq count_predT size_iota. Qed.
-
-Lemma big_const_ord n x :
- \big[op/idx]_(i < n) x = iter n (op x) idx.
-Proof. by rewrite big_const card_ord. Qed.
-
-Lemma big_nseq_cond I n a (P : pred I) F :
- \big[op/idx]_(i <- nseq n a | P i) F i = if P a then iter n (op (F a)) idx else idx.
-Proof. by rewrite unlock; elim: n => /= [|n ->]; case: (P a). Qed.
-
-Lemma big_nseq I n a (F : I -> R):
- \big[op/idx]_(i <- nseq n a) F i = iter n (op (F a)) idx.
-Proof. exact: big_nseq_cond. Qed.
-
-End Extensionality.
-
-Section MonoidProperties.
-
-Import Monoid.Theory.
-
-Variable R : Type.
-
-Variable idx : R.
-Notation Local "1" := idx.
-
-Section Plain.
-
-Variable op : Monoid.law 1.
-
-Notation Local "*%M" := op (at level 0).
-Notation Local "x * y" := (op x y).
-
-Lemma eq_big_idx_seq idx' I r (P : pred I) F :
- right_id idx' *%M -> has P r ->
- \big[*%M/idx']_(i <- r | P i) F i =\big[*%M/1]_(i <- r | P i) F i.
-Proof.
-move=> op_idx'; rewrite -!(big_filter _ _ r) has_count -size_filter.
-case/lastP: (filter P r) => {r}// r i _.
-by rewrite -cats1 !(big_cat_nested, big_cons, big_nil) op_idx' mulm1.
-Qed.
-
-Lemma eq_big_idx idx' (I : finType) i0 (P : pred I) F :
- P i0 -> right_id idx' *%M ->
- \big[*%M/idx']_(i | P i) F i =\big[*%M/1]_(i | P i) F i.
-Proof.
-by move=> Pi0 op_idx'; apply: eq_big_idx_seq => //; apply/hasP; exists i0.
-Qed.
-
-Lemma big1_eq I r (P : pred I) : \big[*%M/1]_(i <- r | P i) 1 = 1.
-Proof.
-by rewrite big_const_seq; elim: (count _ _) => //= n ->; apply: mul1m.
-Qed.
-
-Lemma big1 I r (P : pred I) F :
- (forall i, P i -> F i = 1) -> \big[*%M/1]_(i <- r | P i) F i = 1.
-Proof. by move/(eq_bigr _)->; apply: big1_eq. Qed.
-
-Lemma big1_seq (I : eqType) r (P : pred I) F :
- (forall i, P i && (i \in r) -> F i = 1) ->
- \big[*%M/1]_(i <- r | P i) F i = 1.
-Proof. by move=> eqF1; rewrite big_seq_cond big_andbC big1. Qed.
-
-Lemma big_seq1 I (i : I) F : \big[*%M/1]_(j <- [:: i]) F j = F i.
-Proof. by rewrite unlock /= mulm1. Qed.
-
-Lemma big_mkcond I r (P : pred I) F :
- \big[*%M/1]_(i <- r | P i) F i =
- \big[*%M/1]_(i <- r) (if P i then F i else 1).
-Proof. by rewrite unlock; elim: r => //= i r ->; case P; rewrite ?mul1m. Qed.
-
-Lemma big_mkcondr I r (P Q : pred I) F :
- \big[*%M/1]_(i <- r | P i && Q i) F i =
- \big[*%M/1]_(i <- r | P i) (if Q i then F i else 1).
-Proof. by rewrite -big_filter_cond big_mkcond big_filter. Qed.
-
-Lemma big_mkcondl I r (P Q : pred I) F :
- \big[*%M/1]_(i <- r | P i && Q i) F i =
- \big[*%M/1]_(i <- r | Q i) (if P i then F i else 1).
-Proof. by rewrite big_andbC big_mkcondr. Qed.
-
-Lemma big_cat I r1 r2 (P : pred I) F :
- \big[*%M/1]_(i <- r1 ++ r2 | P i) F i =
- \big[*%M/1]_(i <- r1 | P i) F i * \big[*%M/1]_(i <- r2 | P i) F i.
-Proof.
-rewrite !(big_mkcond _ P) unlock.
-by elim: r1 => /= [|i r1 ->]; rewrite (mul1m, mulmA).
-Qed.
-
-Lemma big_pred1_eq (I : finType) (i : I) F :
- \big[*%M/1]_(j | j == i) F j = F i.
-Proof. by rewrite -big_filter filter_index_enum enum1 big_seq1. Qed.
-
-Lemma big_pred1 (I : finType) i (P : pred I) F :
- P =1 pred1 i -> \big[*%M/1]_(j | P j) F j = F i.
-Proof. by move/(eq_bigl _ _)->; apply: big_pred1_eq. Qed.
-
-Lemma big_cat_nat n m p (P : pred nat) F : m <= n -> n <= p ->
- \big[*%M/1]_(m <= i < p | P i) F i =
- (\big[*%M/1]_(m <= i < n | P i) F i) * (\big[*%M/1]_(n <= i < p | P i) F i).
-Proof.
-move=> le_mn le_np; rewrite -big_cat -{2}(subnKC le_mn) -iota_add subnDA.
-by rewrite subnKC // leq_sub.
-Qed.
-
-Lemma big_nat1 n F : \big[*%M/1]_(n <= i < n.+1) F i = F n.
-Proof. by rewrite big_ltn // big_geq // mulm1. Qed.
-
-Lemma big_nat_recr n m F : m <= n ->
- \big[*%M/1]_(m <= i < n.+1) F i = (\big[*%M/1]_(m <= i < n) F i) * F n.
-Proof. by move=> lemn; rewrite (@big_cat_nat n) ?leqnSn // big_nat1. Qed.
-
-Lemma big_ord_recr n F :
- \big[*%M/1]_(i < n.+1) F i =
- (\big[*%M/1]_(i < n) F (widen_ord (leqnSn n) i)) * F ord_max.
-Proof.
-transitivity (\big[*%M/1]_(0 <= i < n.+1) F (inord i)).
- by rewrite big_mkord; apply: eq_bigr=> i _; rewrite inord_val.
-rewrite big_nat_recr // big_mkord; congr (_ * F _); last first.
- by apply: val_inj; rewrite /= inordK.
-by apply: eq_bigr => [] i _; congr F; apply: ord_inj; rewrite inordK //= leqW.
-Qed.
-
-Lemma big_sumType (I1 I2 : finType) (P : pred (I1 + I2)) F :
- \big[*%M/1]_(i | P i) F i =
- (\big[*%M/1]_(i | P (inl _ i)) F (inl _ i))
- * (\big[*%M/1]_(i | P (inr _ i)) F (inr _ i)).
-Proof.
-by rewrite /index_enum {1}[@Finite.enum]unlock /= big_cat !big_map.
-Qed.
-
-Lemma big_split_ord m n (P : pred 'I_(m + n)) F :
- \big[*%M/1]_(i | P i) F i =
- (\big[*%M/1]_(i | P (lshift n i)) F (lshift n i))
- * (\big[*%M/1]_(i | P (rshift m i)) F (rshift m i)).
-Proof.
-rewrite -(big_map _ _ (lshift n) _ P F) -(big_map _ _ (@rshift m _) _ P F).
-rewrite -big_cat; congr bigop; apply: (inj_map val_inj).
-rewrite /index_enum -!enumT val_enum_ord map_cat -map_comp val_enum_ord.
-rewrite -map_comp (map_comp (addn m)) val_enum_ord.
-by rewrite -iota_addl addn0 iota_add.
-Qed.
-
-Lemma big_flatten I rr (P : pred I) F :
- \big[*%M/1]_(i <- flatten rr | P i) F i
- = \big[*%M/1]_(r <- rr) \big[*%M/1]_(i <- r | P i) F i.
-Proof.
-by elim: rr => [|r rr IHrr]; rewrite ?big_nil //= big_cat big_cons -IHrr.
-Qed.
-
-End Plain.
-
-Section Abelian.
-
-Variable op : Monoid.com_law 1.
-
-Notation Local "'*%M'" := op (at level 0).
-Notation Local "x * y" := (op x y).
-
-Lemma eq_big_perm (I : eqType) r1 r2 (P : pred I) F :
- perm_eq r1 r2 ->
- \big[*%M/1]_(i <- r1 | P i) F i = \big[*%M/1]_(i <- r2 | P i) F i.
-Proof.
-move/perm_eqP; rewrite !(big_mkcond _ _ P).
-elim: r1 r2 => [|i r1 IHr1] r2 eq_r12.
- by case: r2 eq_r12 => // i r2; move/(_ (pred1 i)); rewrite /= eqxx.
-have r2i: i \in r2 by rewrite -has_pred1 has_count -eq_r12 /= eqxx.
-case/splitPr: r2 / r2i => [r3 r4] in eq_r12 *; rewrite big_cat /= !big_cons.
-rewrite mulmCA; congr (_ * _); rewrite -big_cat; apply: IHr1 => a.
-by move/(_ a): eq_r12; rewrite !count_cat /= addnCA; apply: addnI.
-Qed.
-
-Lemma big_uniq (I : finType) (r : seq I) F :
- uniq r -> \big[*%M/1]_(i <- r) F i = \big[*%M/1]_(i in r) F i.
-Proof.
-move=> uniq_r; rewrite -(big_filter _ _ _ (mem r)); apply: eq_big_perm.
-by rewrite filter_index_enum uniq_perm_eq ?enum_uniq // => i; rewrite mem_enum.
-Qed.
-
-Lemma big_rem (I : eqType) r x (P : pred I) F :
- x \in r ->
- \big[*%M/1]_(y <- r | P y) F y
- = (if P x then F x else 1) * \big[*%M/1]_(y <- rem x r | P y) F y.
-Proof.
-by move/perm_to_rem/(eq_big_perm _)->; rewrite !(big_mkcond _ _ P) big_cons.
-Qed.
-
-Lemma big_undup (I : eqType) (r : seq I) (P : pred I) F :
- idempotent *%M ->
- \big[*%M/1]_(i <- undup r | P i) F i = \big[*%M/1]_(i <- r | P i) F i.
-Proof.
-move=> idM; rewrite -!(big_filter _ _ _ P) filter_undup.
-elim: {P r}(filter P r) => //= i r IHr.
-case: ifP => [r_i | _]; rewrite !big_cons {}IHr //.
-by rewrite (big_rem _ _ r_i) mulmA idM.
-Qed.
-
-Lemma eq_big_idem (I : eqType) (r1 r2 : seq I) (P : pred I) F :
- idempotent *%M -> r1 =i r2 ->
- \big[*%M/1]_(i <- r1 | P i) F i = \big[*%M/1]_(i <- r2 | P i) F i.
-Proof.
-move=> idM eq_r; rewrite -big_undup // -(big_undup r2) //; apply/eq_big_perm.
-by rewrite uniq_perm_eq ?undup_uniq // => i; rewrite !mem_undup eq_r.
-Qed.
-
-Lemma big_undup_iterop_count (I : eqType) (r : seq I) (P : pred I) F :
- \big[*%M/1]_(i <- undup r | P i) iterop (count_mem i r) *%M (F i) 1
- = \big[*%M/1]_(i <- r | P i) F i.
-Proof.
-rewrite -[RHS](eq_big_perm _ F (perm_undup_count _)) big_flatten big_map.
-by rewrite big_mkcond; apply: eq_bigr => i _; rewrite big_nseq_cond iteropE.
-Qed.
-
-Lemma big_split I r (P : pred I) F1 F2 :
- \big[*%M/1]_(i <- r | P i) (F1 i * F2 i) =
- \big[*%M/1]_(i <- r | P i) F1 i * \big[*%M/1]_(i <- r | P i) F2 i.
-Proof.
-by elim/big_rec3: _ => [|i x y _ _ ->]; rewrite ?mulm1 // mulmCA -!mulmA mulmCA.
-Qed.
-
-Lemma bigID I r (a P : pred I) F :
- \big[*%M/1]_(i <- r | P i) F i =
- \big[*%M/1]_(i <- r | P i && a i) F i *
- \big[*%M/1]_(i <- r | P i && ~~ a i) F i.
-Proof.
-rewrite !(big_mkcond _ _ _ F) -big_split.
-by apply: eq_bigr => i; case: (a i); rewrite !simpm.
-Qed.
-Implicit Arguments bigID [I r].
-
-Lemma bigU (I : finType) (A B : pred I) F :
- [disjoint A & B] ->
- \big[*%M/1]_(i in [predU A & B]) F i =
- (\big[*%M/1]_(i in A) F i) * (\big[*%M/1]_(i in B) F i).
-Proof.
-move=> dAB; rewrite (bigID (mem A)).
-congr (_ * _); apply: eq_bigl => i; first by rewrite orbK.
-by have:= pred0P dAB i; rewrite andbC /= !inE; case: (i \in A).
-Qed.
-
-Lemma bigD1 (I : finType) j (P : pred I) F :
- P j -> \big[*%M/1]_(i | P i) F i
- = F j * \big[*%M/1]_(i | P i && (i != j)) F i.
-Proof.
-move=> Pj; rewrite (bigID (pred1 j)); congr (_ * _).
-by apply: big_pred1 => i; rewrite /= andbC; case: eqP => // ->.
-Qed.
-Implicit Arguments bigD1 [I P F].
-
-Lemma bigD1_seq (I : eqType) (r : seq I) j F :
- j \in r -> uniq r ->
- \big[*%M/1]_(i <- r) F i = F j * \big[*%M/1]_(i <- r | i != j) F i.
-Proof. by move=> /big_rem-> /rem_filter->; rewrite big_filter. Qed.
-
-Lemma cardD1x (I : finType) (A : pred I) j :
- A j -> #|SimplPred A| = 1 + #|[pred i | A i & i != j]|.
-Proof.
-move=> Aj; rewrite (cardD1 j) [j \in A]Aj; congr (_ + _).
-by apply: eq_card => i; rewrite inE /= andbC.
-Qed.
-Implicit Arguments cardD1x [I A].
-
-Lemma partition_big (I J : finType) (P : pred I) p (Q : pred J) F :
- (forall i, P i -> Q (p i)) ->
- \big[*%M/1]_(i | P i) F i =
- \big[*%M/1]_(j | Q j) \big[*%M/1]_(i | P i && (p i == j)) F i.
-Proof.
-move=> Qp; transitivity (\big[*%M/1]_(i | P i && Q (p i)) F i).
- by apply: eq_bigl => i; case Pi: (P i); rewrite // Qp.
-elim: {Q Qp}_.+1 {-2}Q (ltnSn #|Q|) => // n IHn Q.
-case: (pickP Q) => [j Qj | Q0 _]; last first.
- by rewrite !big_pred0 // => i; rewrite Q0 andbF.
-rewrite ltnS (cardD1x j Qj) (bigD1 j) //; move/IHn=> {n IHn} <-.
-rewrite (bigID (fun i => p i == j)); congr (_ * _); apply: eq_bigl => i.
- by case: eqP => [-> | _]; rewrite !(Qj, simpm).
-by rewrite andbA.
-Qed.
-
-Implicit Arguments partition_big [I J P F].
-
-Lemma reindex_onto (I J : finType) (h : J -> I) h' (P : pred I) F :
- (forall i, P i -> h (h' i) = i) ->
- \big[*%M/1]_(i | P i) F i =
- \big[*%M/1]_(j | P (h j) && (h' (h j) == j)) F (h j).
-Proof.
-move=> h'K; elim: {P}_.+1 {-3}P h'K (ltnSn #|P|) => //= n IHn P h'K.
-case: (pickP P) => [i Pi | P0 _]; last first.
- by rewrite !big_pred0 // => j; rewrite P0.
-rewrite ltnS (cardD1x i Pi); move/IHn {n IHn} => IH.
-rewrite (bigD1 i Pi) (bigD1 (h' i)) h'K ?Pi ?eq_refl //=; congr (_ * _).
-rewrite {}IH => [|j]; [apply: eq_bigl => j | by case/andP; auto].
-rewrite andbC -andbA (andbCA (P _)); case: eqP => //= hK; congr (_ && ~~ _).
-by apply/eqP/eqP=> [<-|->] //; rewrite h'K.
-Qed.
-Implicit Arguments reindex_onto [I J P F].
-
-Lemma reindex (I J : finType) (h : J -> I) (P : pred I) F :
- {on [pred i | P i], bijective h} ->
- \big[*%M/1]_(i | P i) F i = \big[*%M/1]_(j | P (h j)) F (h j).
-Proof.
-case=> h' hK h'K; rewrite (reindex_onto h h' h'K).
-by apply: eq_bigl => j; rewrite !inE; case Pi: (P _); rewrite //= hK ?eqxx.
-Qed.
-Implicit Arguments reindex [I J P F].
-
-Lemma reindex_inj (I : finType) (h : I -> I) (P : pred I) F :
- injective h -> \big[*%M/1]_(i | P i) F i = \big[*%M/1]_(j | P (h j)) F (h j).
-Proof. by move=> injh; apply: reindex (onW_bij _ (injF_bij injh)). Qed.
-Implicit Arguments reindex_inj [I h P F].
-
-Lemma big_nat_rev m n P F :
- \big[*%M/1]_(m <= i < n | P i) F i
- = \big[*%M/1]_(m <= i < n | P (m + n - i.+1)) F (m + n - i.+1).
-Proof.
-case: (ltnP m n) => ltmn; last by rewrite !big_geq.
-rewrite -{3 4}(subnK (ltnW ltmn)) addnA.
-do 2!rewrite (big_addn _ _ 0) big_mkord; rewrite (reindex_inj rev_ord_inj) /=.
-by apply: eq_big => [i | i _]; rewrite /= -addSn subnDr addnC addnBA.
-Qed.
-
-Lemma pair_big_dep (I J : finType) (P : pred I) (Q : I -> pred J) F :
- \big[*%M/1]_(i | P i) \big[*%M/1]_(j | Q i j) F i j =
- \big[*%M/1]_(p | P p.1 && Q p.1 p.2) F p.1 p.2.
-Proof.
-rewrite (partition_big (fun p => p.1) P) => [|j]; last by case/andP.
-apply: eq_bigr => i /= Pi; rewrite (reindex_onto (pair i) (fun p => p.2)).
- by apply: eq_bigl => j; rewrite !eqxx [P i]Pi !andbT.
-by case=> i' j /=; case/andP=> _ /=; move/eqP->.
-Qed.
-
-Lemma pair_big (I J : finType) (P : pred I) (Q : pred J) F :
- \big[*%M/1]_(i | P i) \big[*%M/1]_(j | Q j) F i j =
- \big[*%M/1]_(p | P p.1 && Q p.2) F p.1 p.2.
-Proof. exact: pair_big_dep. Qed.
-
-Lemma pair_bigA (I J : finType) (F : I -> J -> R) :
- \big[*%M/1]_i \big[*%M/1]_j F i j = \big[*%M/1]_p F p.1 p.2.
-Proof. exact: pair_big_dep. Qed.
-
-Lemma exchange_big_dep I J rI rJ (P : pred I) (Q : I -> pred J)
- (xQ : pred J) F :
- (forall i j, P i -> Q i j -> xQ j) ->
- \big[*%M/1]_(i <- rI | P i) \big[*%M/1]_(j <- rJ | Q i j) F i j =
- \big[*%M/1]_(j <- rJ | xQ j) \big[*%M/1]_(i <- rI | P i && Q i j) F i j.
-Proof.
-move=> PQxQ; pose p u := (u.2, u.1).
-rewrite (eq_bigr _ _ _ (fun _ _ => big_tnth _ _ rI _ _)) (big_tnth _ _ rJ).
-rewrite (eq_bigr _ _ _ (fun _ _ => (big_tnth _ _ rJ _ _))) big_tnth.
-rewrite !pair_big_dep (reindex_onto (p _ _) (p _ _)) => [|[]] //=.
-apply: eq_big => [] [j i] //=; symmetry; rewrite eqxx andbT andb_idl //.
-by case/andP; apply: PQxQ.
-Qed.
-Implicit Arguments exchange_big_dep [I J rI rJ P Q F].
-
-Lemma exchange_big I J rI rJ (P : pred I) (Q : pred J) F :
- \big[*%M/1]_(i <- rI | P i) \big[*%M/1]_(j <- rJ | Q j) F i j =
- \big[*%M/1]_(j <- rJ | Q j) \big[*%M/1]_(i <- rI | P i) F i j.
-Proof.
-rewrite (exchange_big_dep Q) //; apply: eq_bigr => i /= Qi.
-by apply: eq_bigl => j; rewrite Qi andbT.
-Qed.
-
-Lemma exchange_big_dep_nat m1 n1 m2 n2 (P : pred nat) (Q : rel nat)
- (xQ : pred nat) F :
- (forall i j, m1 <= i < n1 -> m2 <= j < n2 -> P i -> Q i j -> xQ j) ->
- \big[*%M/1]_(m1 <= i < n1 | P i) \big[*%M/1]_(m2 <= j < n2 | Q i j) F i j =
- \big[*%M/1]_(m2 <= j < n2 | xQ j)
- \big[*%M/1]_(m1 <= i < n1 | P i && Q i j) F i j.
-Proof.
-move=> PQxQ; rewrite (eq_bigr _ _ _ (fun _ _ => big_seq_cond _ _ _ _ _)).
-rewrite big_seq_cond /= (exchange_big_dep xQ) => [|i j]; last first.
- by rewrite !mem_index_iota => /andP[mn_i Pi] /andP[mn_j /PQxQ->].
-rewrite 2!(big_seq_cond _ _ _ xQ); apply: eq_bigr => j /andP[-> _] /=.
-by rewrite [rhs in _ = rhs]big_seq_cond; apply: eq_bigl => i; rewrite -andbA.
-Qed.
-Implicit Arguments exchange_big_dep_nat [m1 n1 m2 n2 P Q F].
-
-Lemma exchange_big_nat m1 n1 m2 n2 (P Q : pred nat) F :
- \big[*%M/1]_(m1 <= i < n1 | P i) \big[*%M/1]_(m2 <= j < n2 | Q j) F i j =
- \big[*%M/1]_(m2 <= j < n2 | Q j) \big[*%M/1]_(m1 <= i < n1 | P i) F i j.
-Proof.
-rewrite (exchange_big_dep_nat Q) //.
-by apply: eq_bigr => i /= Qi; apply: eq_bigl => j; rewrite Qi andbT.
-Qed.
-
-End Abelian.
-
-End MonoidProperties.
-
-Implicit Arguments big_filter [R op idx I].
-Implicit Arguments big_filter_cond [R op idx I].
-Implicit Arguments congr_big [R op idx I r1 P1 F1].
-Implicit Arguments eq_big [R op idx I r P1 F1].
-Implicit Arguments eq_bigl [R op idx I r P1].
-Implicit Arguments eq_bigr [R op idx I r P F1].
-Implicit Arguments eq_big_idx [R op idx idx' I P F].
-Implicit Arguments big_seq_cond [R op idx I r].
-Implicit Arguments eq_big_seq [R op idx I r F1].
-Implicit Arguments congr_big_nat [R op idx m1 n1 P1 F1].
-Implicit Arguments big_map [R op idx I J r].
-Implicit Arguments big_nth [R op idx I r].
-Implicit Arguments big_catl [R op idx I r1 r2 P F].
-Implicit Arguments big_catr [R op idx I r1 r2 P F].
-Implicit Arguments big_geq [R op idx m n P F].
-Implicit Arguments big_ltn_cond [R op idx m n P F].
-Implicit Arguments big_ltn [R op idx m n F].
-Implicit Arguments big_addn [R op idx].
-Implicit Arguments big_mkord [R op idx n].
-Implicit Arguments big_nat_widen [R op idx] .
-Implicit Arguments big_ord_widen_cond [R op idx n1].
-Implicit Arguments big_ord_widen [R op idx n1].
-Implicit Arguments big_ord_widen_leq [R op idx n1].
-Implicit Arguments big_ord_narrow_cond [R op idx n1 n2 P F].
-Implicit Arguments big_ord_narrow_cond_leq [R op idx n1 n2 P F].
-Implicit Arguments big_ord_narrow [R op idx n1 n2 F].
-Implicit Arguments big_ord_narrow_leq [R op idx n1 n2 F].
-Implicit Arguments big_mkcond [R op idx I r].
-Implicit Arguments big1_eq [R op idx I].
-Implicit Arguments big1_seq [R op idx I].
-Implicit Arguments big1 [R op idx I].
-Implicit Arguments big_pred1 [R op idx I P F].
-Implicit Arguments eq_big_perm [R op idx I r1 P F].
-Implicit Arguments big_uniq [R op idx I F].
-Implicit Arguments big_rem [R op idx I r P F].
-Implicit Arguments bigID [R op idx I r].
-Implicit Arguments bigU [R op idx I].
-Implicit Arguments bigD1 [R op idx I P F].
-Implicit Arguments bigD1_seq [R op idx I r F].
-Implicit Arguments partition_big [R op idx I J P F].
-Implicit Arguments reindex_onto [R op idx I J P F].
-Implicit Arguments reindex [R op idx I J P F].
-Implicit Arguments reindex_inj [R op idx I h P F].
-Implicit Arguments pair_big_dep [R op idx I J].
-Implicit Arguments pair_big [R op idx I J].
-Implicit Arguments exchange_big_dep [R op idx I J rI rJ P Q F].
-Implicit Arguments exchange_big_dep_nat [R op idx m1 n1 m2 n2 P Q F].
-Implicit Arguments big_ord_recl [R op idx].
-Implicit Arguments big_ord_recr [R op idx].
-Implicit Arguments big_nat_recl [R op idx].
-Implicit Arguments big_nat_recr [R op idx].
-
-Section Distributivity.
-
-Import Monoid.Theory.
-
-Variable R : Type.
-Variables zero one : R.
-Notation Local "0" := zero.
-Notation Local "1" := one.
-Variable times : Monoid.mul_law 0.
-Notation Local "*%M" := times (at level 0).
-Notation Local "x * y" := (times x y).
-Variable plus : Monoid.add_law 0 *%M.
-Notation Local "+%M" := plus (at level 0).
-Notation Local "x + y" := (plus x y).
-
-Lemma big_distrl I r a (P : pred I) F :
- \big[+%M/0]_(i <- r | P i) F i * a = \big[+%M/0]_(i <- r | P i) (F i * a).
-Proof. by rewrite (big_endo ( *%M^~ a)) ?mul0m // => x y; apply: mulm_addl. Qed.
-
-Lemma big_distrr I r a (P : pred I) F :
- a * \big[+%M/0]_(i <- r | P i) F i = \big[+%M/0]_(i <- r | P i) (a * F i).
-Proof. by rewrite big_endo ?mulm0 // => x y; apply: mulm_addr. Qed.
-
-Lemma big_distrlr I J rI rJ (pI : pred I) (pJ : pred J) F G :
- (\big[+%M/0]_(i <- rI | pI i) F i) * (\big[+%M/0]_(j <- rJ | pJ j) G j)
- = \big[+%M/0]_(i <- rI | pI i) \big[+%M/0]_(j <- rJ | pJ j) (F i * G j).
-Proof. by rewrite big_distrl; apply: eq_bigr => i _; rewrite big_distrr. Qed.
-
-Lemma big_distr_big_dep (I J : finType) j0 (P : pred I) (Q : I -> pred J) F :
- \big[*%M/1]_(i | P i) \big[+%M/0]_(j | Q i j) F i j =
- \big[+%M/0]_(f in pfamily j0 P Q) \big[*%M/1]_(i | P i) F i (f i).
-Proof.
-pose fIJ := {ffun I -> J}; pose Pf := pfamily j0 (_ : seq I) Q.
-rewrite -big_filter filter_index_enum; set r := enum P; symmetry.
-transitivity (\big[+%M/0]_(f in Pf r) \big[*%M/1]_(i <- r) F i (f i)).
- apply: eq_big => f; last by rewrite -big_filter filter_index_enum.
- by apply: eq_forallb => i; rewrite /= mem_enum.
-have: uniq r by apply: enum_uniq.
-elim: {P}r => /= [_ | i r IHr].
- rewrite (big_pred1 [ffun => j0]) ?big_nil //= => f.
- apply/familyP/eqP=> /= [Df |->{f} i]; last by rewrite ffunE !inE.
- by apply/ffunP=> i; rewrite ffunE; apply/eqP/Df.
-case/andP=> /negbTE nri; rewrite big_cons big_distrl => {IHr}/IHr <-.
-rewrite (partition_big (fun f : fIJ => f i) (Q i)) => [|f]; last first.
- by move/familyP/(_ i); rewrite /= inE /= eqxx.
-pose seti j (f : fIJ) := [ffun k => if k == i then j else f k].
-apply: eq_bigr => j Qij.
-rewrite (reindex_onto (seti j) (seti j0)) => [|f /andP[_ /eqP fi]]; last first.
- by apply/ffunP=> k; rewrite !ffunE; case: eqP => // ->.
-rewrite big_distrr; apply: eq_big => [f | f eq_f]; last first.
- rewrite big_cons ffunE eqxx !big_seq; congr (_ * _).
- by apply: eq_bigr => k; rewrite ffunE; case: eqP nri => // -> ->.
-rewrite !ffunE !eqxx andbT; apply/andP/familyP=> /= [[Pjf fij0] k | Pff].
- have:= familyP Pjf k; rewrite /= ffunE inE; case: eqP => // -> _.
- by rewrite nri -(eqP fij0) !ffunE !inE !eqxx.
-split; [apply/familyP | apply/eqP/ffunP] => k; have:= Pff k; rewrite !ffunE.
- by rewrite inE; case: eqP => // ->.
-by case: eqP => // ->; rewrite nri /= => /eqP.
-Qed.
-
-Lemma big_distr_big (I J : finType) j0 (P : pred I) (Q : pred J) F :
- \big[*%M/1]_(i | P i) \big[+%M/0]_(j | Q j) F i j =
- \big[+%M/0]_(f in pffun_on j0 P Q) \big[*%M/1]_(i | P i) F i (f i).
-Proof.
-rewrite (big_distr_big_dep j0); apply: eq_bigl => f.
-by apply/familyP/familyP=> Pf i; case: ifP (Pf i).
-Qed.
-
-Lemma bigA_distr_big_dep (I J : finType) (Q : I -> pred J) F :
- \big[*%M/1]_i \big[+%M/0]_(j | Q i j) F i j
- = \big[+%M/0]_(f in family Q) \big[*%M/1]_i F i (f i).
-Proof.
-case: (pickP J) => [j0 _ | J0]; first exact: (big_distr_big_dep j0).
-rewrite {1 4}/index_enum -enumT; case: (enum I) (mem_enum I) => [I0 | i r _].
- have f0: I -> J by move=> i; have:= I0 i.
- rewrite (big_pred1 (finfun f0)) ?big_nil // => g.
- by apply/familyP/eqP=> _; first apply/ffunP; move=> i; have:= I0 i.
-have Q0 i': Q i' =1 pred0 by move=> j; have:= J0 j.
-rewrite big_cons /= big_pred0 // mul0m big_pred0 // => f.
-by apply/familyP=> /(_ i); rewrite [_ \in _]Q0.
-Qed.
-
-Lemma bigA_distr_big (I J : finType) (Q : pred J) (F : I -> J -> R) :
- \big[*%M/1]_i \big[+%M/0]_(j | Q j) F i j
- = \big[+%M/0]_(f in ffun_on Q) \big[*%M/1]_i F i (f i).
-Proof. exact: bigA_distr_big_dep. Qed.
-
-Lemma bigA_distr_bigA (I J : finType) F :
- \big[*%M/1]_(i : I) \big[+%M/0]_(j : J) F i j
- = \big[+%M/0]_(f : {ffun I -> J}) \big[*%M/1]_i F i (f i).
-Proof. by rewrite bigA_distr_big; apply: eq_bigl => ?; apply/familyP. Qed.
-
-End Distributivity.
-
-Implicit Arguments big_distrl [R zero times plus I r].
-Implicit Arguments big_distrr [R zero times plus I r].
-Implicit Arguments big_distr_big_dep [R zero one times plus I J].
-Implicit Arguments big_distr_big [R zero one times plus I J].
-Implicit Arguments bigA_distr_big_dep [R zero one times plus I J].
-Implicit Arguments bigA_distr_big [R zero one times plus I J].
-Implicit Arguments bigA_distr_bigA [R zero one times plus I J].
-
-Section BigBool.
-
-Section Seq.
-
-Variables (I : Type) (r : seq I) (P B : pred I).
-
-Lemma big_has : \big[orb/false]_(i <- r) B i = has B r.
-Proof. by rewrite unlock. Qed.
-
-Lemma big_all : \big[andb/true]_(i <- r) B i = all B r.
-Proof. by rewrite unlock. Qed.
-
-Lemma big_has_cond : \big[orb/false]_(i <- r | P i) B i = has (predI P B) r.
-Proof. by rewrite big_mkcond unlock. Qed.
-
-Lemma big_all_cond :
- \big[andb/true]_(i <- r | P i) B i = all [pred i | P i ==> B i] r.
-Proof. by rewrite big_mkcond unlock. Qed.
-
-End Seq.
-
-Section FinType.
-
-Variables (I : finType) (P B : pred I).
-
-Lemma big_orE : \big[orb/false]_(i | P i) B i = [exists (i | P i), B i].
-Proof. by rewrite big_has_cond; apply/hasP/existsP=> [] [i]; exists i. Qed.
-
-Lemma big_andE : \big[andb/true]_(i | P i) B i = [forall (i | P i), B i].
-Proof.
-rewrite big_all_cond; apply/allP/forallP=> /= allB i; rewrite allB //.
-exact: mem_index_enum.
-Qed.
-
-End FinType.
-
-End BigBool.
-
-Section NatConst.
-
-Variables (I : finType) (A : pred I).
-
-Lemma sum_nat_const n : \sum_(i in A) n = #|A| * n.
-Proof. by rewrite big_const iter_addn_0 mulnC. Qed.
-
-Lemma sum1_card : \sum_(i in A) 1 = #|A|.
-Proof. by rewrite sum_nat_const muln1. Qed.
-
-Lemma sum1_count J (r : seq J) (a : pred J) : \sum_(j <- r | a j) 1 = count a r.
-Proof. by rewrite big_const_seq iter_addn_0 mul1n. Qed.
-
-Lemma sum1_size J (r : seq J) : \sum_(j <- r) 1 = size r.
-Proof. by rewrite sum1_count count_predT. Qed.
-
-Lemma prod_nat_const n : \prod_(i in A) n = n ^ #|A|.
-Proof. by rewrite big_const -Monoid.iteropE. Qed.
-
-Lemma sum_nat_const_nat n1 n2 n : \sum_(n1 <= i < n2) n = (n2 - n1) * n.
-Proof. by rewrite big_const_nat; elim: (_ - _) => //= ? ->. Qed.
-
-Lemma prod_nat_const_nat n1 n2 n : \prod_(n1 <= i < n2) n = n ^ (n2 - n1).
-Proof. by rewrite big_const_nat -Monoid.iteropE. Qed.
-
-End NatConst.
-
-Lemma leqif_sum (I : finType) (P C : pred I) (E1 E2 : I -> nat) :
- (forall i, P i -> E1 i <= E2 i ?= iff C i) ->
- \sum_(i | P i) E1 i <= \sum_(i | P i) E2 i ?= iff [forall (i | P i), C i].
-Proof.
-move=> leE12; rewrite -big_andE.
-by elim/big_rec3: _ => // i Ci m1 m2 /leE12; apply: leqif_add.
-Qed.
-
-Lemma leq_sum I r (P : pred I) (E1 E2 : I -> nat) :
- (forall i, P i -> E1 i <= E2 i) ->
- \sum_(i <- r | P i) E1 i <= \sum_(i <- r | P i) E2 i.
-Proof. by move=> leE12; elim/big_ind2: _ => // m1 m2 n1 n2; apply: leq_add. Qed.
-
-Lemma sum_nat_eq0 (I : finType) (P : pred I) (E : I -> nat) :
- (\sum_(i | P i) E i == 0)%N = [forall (i | P i), E i == 0%N].
-Proof. by rewrite eq_sym -(@leqif_sum I P _ (fun _ => 0%N) E) ?big1_eq. Qed.
-
-Lemma prodn_cond_gt0 I r (P : pred I) F :
- (forall i, P i -> 0 < F i) -> 0 < \prod_(i <- r | P i) F i.
-Proof. by move=> Fpos; elim/big_ind: _ => // n1 n2; rewrite muln_gt0 => ->. Qed.
-
-Lemma prodn_gt0 I r (P : pred I) F :
- (forall i, 0 < F i) -> 0 < \prod_(i <- r | P i) F i.
-Proof. by move=> Fpos; apply: prodn_cond_gt0. Qed.
-
-Lemma leq_bigmax_cond (I : finType) (P : pred I) F i0 :
- P i0 -> F i0 <= \max_(i | P i) F i.
-Proof. by move=> Pi0; rewrite (bigD1 i0) ?leq_maxl. Qed.
-Implicit Arguments leq_bigmax_cond [I P F].
-
-Lemma leq_bigmax (I : finType) F (i0 : I) : F i0 <= \max_i F i.
-Proof. exact: leq_bigmax_cond. Qed.
-Implicit Arguments leq_bigmax [I F].
-
-Lemma bigmax_leqP (I : finType) (P : pred I) m F :
- reflect (forall i, P i -> F i <= m) (\max_(i | P i) F i <= m).
-Proof.
-apply: (iffP idP) => leFm => [i Pi|].
- by apply: leq_trans leFm; apply: leq_bigmax_cond.
-by elim/big_ind: _ => // m1 m2; rewrite geq_max => ->.
-Qed.
-
-Lemma bigmax_sup (I : finType) i0 (P : pred I) m F :
- P i0 -> m <= F i0 -> m <= \max_(i | P i) F i.
-Proof. by move=> Pi0 le_m_Fi0; apply: leq_trans (leq_bigmax_cond i0 Pi0). Qed.
-Implicit Arguments bigmax_sup [I P m F].
-
-Lemma bigmax_eq_arg (I : finType) i0 (P : pred I) F :
- P i0 -> \max_(i | P i) F i = F [arg max_(i > i0 | P i) F i].
-Proof.
-move=> Pi0; case: arg_maxP => //= i Pi maxFi.
-by apply/eqP; rewrite eqn_leq leq_bigmax_cond // andbT; apply/bigmax_leqP.
-Qed.
-Implicit Arguments bigmax_eq_arg [I P F].
-
-Lemma eq_bigmax_cond (I : finType) (A : pred I) F :
- #|A| > 0 -> {i0 | i0 \in A & \max_(i in A) F i = F i0}.
-Proof.
-case: (pickP A) => [i0 Ai0 _ | ]; last by move/eq_card0->.
-by exists [arg max_(i > i0 in A) F i]; [case: arg_maxP | apply: bigmax_eq_arg].
-Qed.
-
-Lemma eq_bigmax (I : finType) F : #|I| > 0 -> {i0 : I | \max_i F i = F i0}.
-Proof. by case/(eq_bigmax_cond F) => x _ ->; exists x. Qed.
-
-Lemma expn_sum m I r (P : pred I) F :
- (m ^ (\sum_(i <- r | P i) F i) = \prod_(i <- r | P i) m ^ F i)%N.
-Proof. exact: (big_morph _ (expnD m)). Qed.
-
-Lemma dvdn_biglcmP (I : finType) (P : pred I) F m :
- reflect (forall i, P i -> F i %| m) (\big[lcmn/1%N]_(i | P i) F i %| m).
-Proof.
-apply: (iffP idP) => [dvFm i Pi | dvFm].
- by rewrite (bigD1 i) // dvdn_lcm in dvFm; case/andP: dvFm.
-by elim/big_ind: _ => // p q p_m; rewrite dvdn_lcm p_m.
-Qed.
-
-Lemma biglcmn_sup (I : finType) i0 (P : pred I) F m :
- P i0 -> m %| F i0 -> m %| \big[lcmn/1%N]_(i | P i) F i.
-Proof.
-by move=> Pi0 m_Fi0; rewrite (dvdn_trans m_Fi0) // (bigD1 i0) ?dvdn_lcml.
-Qed.
-Implicit Arguments biglcmn_sup [I P F m].
-
-Lemma dvdn_biggcdP (I : finType) (P : pred I) F m :
- reflect (forall i, P i -> m %| F i) (m %| \big[gcdn/0]_(i | P i) F i).
-Proof.
-apply: (iffP idP) => [dvmF i Pi | dvmF].
- by rewrite (bigD1 i) // dvdn_gcd in dvmF; case/andP: dvmF.
-by elim/big_ind: _ => // p q m_p; rewrite dvdn_gcd m_p.
-Qed.
-
-Lemma biggcdn_inf (I : finType) i0 (P : pred I) F m :
- P i0 -> F i0 %| m -> \big[gcdn/0]_(i | P i) F i %| m.
-Proof. by move=> Pi0; apply: dvdn_trans; rewrite (bigD1 i0) ?dvdn_gcdl. Qed.
-Implicit Arguments biggcdn_inf [I P F m].
-
-Unset Implicit Arguments.