aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/attic/forms.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/attic/forms.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/attic/forms.v')
-rw-r--r--mathcomp/attic/forms.v46
1 files changed, 23 insertions, 23 deletions
diff --git a/mathcomp/attic/forms.v b/mathcomp/attic/forms.v
index a1a987b..7098af9 100644
--- a/mathcomp/attic/forms.v
+++ b/mathcomp/attic/forms.v
@@ -20,7 +20,7 @@ Variable (R : fieldType).
Definition r2rv x: 'rV[R^o]_1 := \row_(i < 1) x .
Lemma r2rv_morph_p : linear r2rv.
-Proof. by move=> k x y; apply/matrixP=> [] [[|i] Hi] j;rewrite !mxE. Qed.
+Proof. by move=> k x y; apply/matrixP=> [] [[|i] Hi] j; rewrite !mxE. Qed.
Canonical Structure r2rv_morph := Linear r2rv_morph_p.
@@ -28,8 +28,8 @@ Definition rv2r (A: 'rV[R]_1): R^o := A 0 0.
Lemma r2rv_bij : bijective r2rv.
Proof.
-exists rv2r; first by move => x; rewrite /r2rv /rv2r /= mxE.
-by move => x; apply/matrixP=> i j; rewrite [i]ord1 [j]ord1 /r2rv /rv2r !mxE /=.
+exists rv2r; first by move=> x; rewrite /r2rv /rv2r /= mxE.
+by move=> x; apply/matrixP=> i j; rewrite [i]ord1 [j]ord1 /r2rv /rv2r !mxE /=.
Qed.
Canonical Structure RVMixin := Eval hnf in VectMixin r2rv_morph_p r2rv_bij.
@@ -48,7 +48,7 @@ Variable (F : fieldType) (V : vectType F).
Section SesquiLinearFormDef.
Structure fautomorphism:= FautoMorph {fval :> F -> F;
- _ : rmorphism fval;
+ _ : rmorphism fval;
_ : bijective fval}.
Variable theta: fautomorphism.
@@ -72,7 +72,7 @@ Variable f : sesquilinear_form.
Lemma bilin1 : forall x, {morph f x : y z / y + z}. Proof. by case f. Qed.
Lemma bilin2 : forall x, {morph f ^~ x : y z / y + z}. Proof. by case f. Qed.
Lemma bilina1 : forall a x y, f (a *: x) y = a * f x y. Proof. by case f. Qed.
-Lemma bilina2 : forall a x y, f x (a *: y) = (theta a) * (f x y).
+Lemma bilina2 : forall a x y, f x (a *: y) = (theta a) * (f x y).
Proof. by case f. Qed.
End SesquiLinearFormDef.
@@ -97,9 +97,9 @@ Inductive symmetricf (f : sqlf): Prop :=
Lemma fsym_f0: forall (f: sqlf) x y, (symmetricf f) ->
(f x y = 0 <-> f y x = 0).
Proof.
-move => f x y ;case; first by move=> [Htheta Hf];split; rewrite Hf.
- by move=> [Htheta Hf];split; rewrite Hf; move/eqP;rewrite oppr_eq0; move/eqP->.
-move=> Htheta;split; first by rewrite (Htheta y x) => ->; rewrite rmorph0.
+move=> f x y; case; first by move=> [Htheta Hf]; split; rewrite Hf.
+ by move=> [Htheta Hf]; split; rewrite Hf; move/eqP; rewrite oppr_eq0; move/eqP->.
+move=> Htheta; split; first by rewrite (Htheta y x) => ->; rewrite rmorph0.
by rewrite (Htheta x y) => ->; rewrite rmorph0.
Qed.
@@ -114,21 +114,21 @@ Section orthogonal.
Definition orthogonal x y := f x y = 0.
Lemma ortho_sym: forall x y, orthogonal x y <-> orthogonal y x.
-Proof. by move=> x y; apply:fsym_f0. Qed.
+Proof. by move=> x y; apply: fsym_f0. Qed.
Theorem Pythagore: forall u v, orthogonal u v -> f (u+v) (u+v) = f u u + f v v.
Proof.
-move => u v Huv; case:(ortho_sym u v ) => Hvu _.
+move=> u v Huv; case: (ortho_sym u v ) => Hvu _.
by rewrite !bilin1 !bilin2 Huv (Hvu Huv) add0r addr0.
Qed.
Lemma orthoD : forall u v w , orthogonal u v -> orthogonal u w -> orthogonal u (v + w).
Proof.
-by move => u v w Huv Huw; rewrite /orthogonal bilin1 Huv Huw add0r.
+by move=> u v w Huv Huw; rewrite /orthogonal bilin1 Huv Huw add0r.
Qed.
Lemma orthoZ: forall u v a, orthogonal u v -> orthogonal (a *: u) v.
-Proof. by move => u v a Huv; rewrite /orthogonal bilina1 Huv mulr0. Qed.
+Proof. by move=> u v a Huv; rewrite /orthogonal bilina1 Huv mulr0. Qed.
Variable x:V.
@@ -139,7 +139,7 @@ Definition alpha_lfun := (lfun_of_fun alpha).
Definition xbar := lker alpha_lfun .
Lemma alpha_lin: linear alpha.
-Proof. by move => a b c; rewrite /alpha bilin2 bilina1. Qed.
+Proof. by move=> a b c; rewrite /alpha bilin2 bilina1. Qed.
@@ -151,10 +151,10 @@ Qed.
Lemma dim_xbar :forall vs,(\dim vs ) - 1 <= \dim (vs :&: xbar).
-Proof.
+Proof.
move=> vs; rewrite -(addKn 1 (\dim (vs :&: xbar))) addnC leq_sub2r //.
have H :\dim (alpha_lfun @: vs )<= 1 by rewrite -(dimR F) -dimvf dimvS // subvf.
-by rewrite -(limg_ker_dim alpha_lfun vs)(leq_add (leqnn (\dim(vs :&: xbar)))).
+by rewrite -(limg_ker_dim alpha_lfun vs)(leq_add (leqnn (\dim(vs :&: xbar)))).
Qed.
(* to be improved*)
@@ -162,16 +162,16 @@ Lemma xbar_eqvs: forall vs, (forall v , v \in vs -> orthogonal v x )-> \dim (vs
move=> vs Hvs.
rewrite -(limg_ker_dim alpha_lfun vs).
suff-> : \dim (alpha_lfun @: vs) = 0%nat by rewrite addn0.
-apply/eqP; rewrite dimv_eq0; apply /vspaceP => w.
-rewrite memv0;apply/memv_imgP.
+apply/eqP; rewrite dimv_eq0; apply/vspaceP => w.
+rewrite memv0; apply/memv_imgP.
case e: (w==0).
- exists 0; split ;first by rewrite mem0v.
+ exists 0; split; first by rewrite mem0v.
apply sym_eq; rewrite (eqP e).
rewrite (lfun_of_funK alpha_lin 0).
rewrite /alpha_lfun /alpha /=.
- by move:(bilina1 f 0 x x); rewrite scale0r mul0r.
-move/eqP:e =>H2;case=> x0 [Hx0 Hw].
-apply H2;rewrite Hw;move: (Hvs x0 Hx0).
+ by move: (bilina1 f 0 x x); rewrite scale0r mul0r.
+move/eqP:e =>H2; case=> x0 [Hx0 Hw].
+apply H2; rewrite Hw; move: (Hvs x0 Hx0).
rewrite /orthogonal.
by rewrite (lfun_of_funK alpha_lin x0).
Qed.
@@ -189,9 +189,9 @@ Import GRing.Theory.
Lemma f2Q: forall x, Q x + Q x = f x x.
Proof.
-move=> x; apply:(@addrI _ (Q x + Q x)).
+move=> x; apply: (@addrI _ (Q x + Q x)).
rewrite !addrA -quadQ -[x + x](scaler_nat 2) quadQ.
-by rewrite -mulrA !mulr_natl -addrA.
+by rewrite -mulrA !mulr_natl -addrA.
Qed.
End LinearForm.