aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/attic/algnum_basic.v
diff options
context:
space:
mode:
authorEnrico Tassi2015-03-09 11:07:53 +0100
committerEnrico Tassi2015-03-09 11:24:38 +0100
commitfc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch)
treec16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/attic/algnum_basic.v
Initial commit
Diffstat (limited to 'mathcomp/attic/algnum_basic.v')
-rw-r--r--mathcomp/attic/algnum_basic.v535
1 files changed, 535 insertions, 0 deletions
diff --git a/mathcomp/attic/algnum_basic.v b/mathcomp/attic/algnum_basic.v
new file mode 100644
index 0000000..a302e7a
--- /dev/null
+++ b/mathcomp/attic/algnum_basic.v
@@ -0,0 +1,535 @@
+(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *)
+Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice fintype tuple div.
+Require Import bigop prime finset fingroup ssralg finalg zmodp abelian.
+Require Import matrix vector falgebra finfield action poly ssrint cyclotomic.
+Require Import fieldext mxalgebra mxpoly.
+
+(************************************************************************************************)
+(* Basic algebraic number theory concepts from Milne, J.S.: Algebraic Number Theory. *)
+(* We work in the setting of an extension field L0 : fieldextType F. At this point, *)
+(* an integral domain is represented as a collective predicate on L0 closed under *)
+(* subring operations. A module over the integral domain A is represented as a *)
+(* Prop-valued predicate closed under the operations (0, x + y, x - y, x * y). It *)
+(* is not a-priori made a collective predicate since we first need to establish the *)
+(* Basis Lemma in order to show decidability. *)
+(* *)
+(* integral A l <-> l is integral over the domain A, i.e., it satisfies a polynomial *)
+(* over A. This is currently a Prop-valued predicate since we *)
+(* quantify over all polynomials over A. An alternative definition *)
+(* would be to say that the minimal polynomial of l over the field *)
+(* of fractions of A is itself a polynomial over A. The latter is *)
+(* a decidable property and the equivalence of the two definitions *)
+(* is provided by Prop. 2.11 in Milne. *)
+(* int_closed A <-> A is integrally closed. *)
+(* int_closure A L == The integral closure of A in L. This is currently a Prop-valued *)
+(* predicate. *)
+(* is_frac_field A K <-> K is the field of fractions of A. The condition of every k \in K *)
+(* arising as a quotient a / b for a,b \in K is skolemized. This is *)
+(* not strictly necessary since L0 has a canonical choiceType *)
+(* structure but it facilitates some of the later proofs. *)
+(* frac_field_alg_int A == Every element l arises as a quotient b / a, where a is in A and b *)
+(* is integral over A. The statement of the theorem is skolemized, *)
+(* which is not strictly necessary. *)
+(* int_clos_incl A == Every element of A is integral over A. *)
+(* int_subring_closed A == The integral closure of A is closed under the subring operations *)
+(* (a - b, a * b). The proof of this lemma uses an equivalent *)
+(* characterization of integrality, cf. Prop. 2.4 in Milne, which is *)
+(* captured by the Lemmas intPl and intPr. The former states that *)
+(* if there exists a nonzero finitely-generated A-module closed under *)
+(* multiplication by l, then l is integral over A. The latter states *)
+(* that if l is integral over A, then the A-algebra generated by l is *)
+(* closed under multiplication by l. Note: These lemmas probably need *)
+(* better names. *)
+(* int_zmod_closed A == The integral closure of A is closed under subtraction. *)
+(* int_mulr_closed A == The integral closure of A is closed under multiplication. *)
+(* tr L l k == The trace of l * k on L; the result is in the field of scalars F. *)
+(* The function tr is scalar in its first argument. *)
+(* tr_sym == The trace function is commutative. *)
+(* ndeg Q V <-> The binary function Q : vT -> vT -> rT is nondegenerate on the *)
+(* subspace V. *)
+(* dual_basis U X == The dual basis of U for X, with respect to the trace bilinear form. *)
+(* trK K L == The trace function on L viewed as a subfield over K. *)
+(* trK_int A K L == If k and l are integral over A then their trace is in A, provided *)
+(* A is an integrally closed domain, K is its field of fractions, and *)
+(* L extends K. *)
+(* module A M <-> M is an A-module. *)
+(* span_mod A X == The A-module generated by X. *)
+(* submod A M N <-> M is a submodule of N over A. *)
+(* basis_of_mod A M X <-> X is the basis of the A-module M. *)
+(* ideal A N <-> N is an A-ideal. *)
+(* PID A <-> Every ideal in A is principal. *)
+(* int_mod_closed A L == The integral closure of A in L is an A-module. *)
+(* basis_lemma I Ifr K == The integral closure of I in K is a free module, provided I is an *)
+(* integrally-closed principal ideal domain contained in K, Ifr is the *)
+(* field of fractions of I, and the trace function trK Ifr K is *)
+(* nondegenerate on K. *)
+(************************************************************************************************)
+
+Import GRing.Theory.
+Import DefaultKeying GRing.DefaultPred.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+Unset Printing Implicit Defensive.
+
+Local Open Scope ring_scope.
+
+Section Integral.
+
+Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (K L : {subfield L0}).
+
+Hypothesis Asubr : subring_closed A.
+
+Definition integral l := exists p, [/\ p \is monic, p \is a polyOver A & root p l].
+Definition int_closed := {in A, forall a b, integral (a / b) -> (a / b) \in A}.
+Definition int_closure l := l \in L /\ integral l.
+Definition is_frac_field := {subset A <= K} /\ exists f, forall k, f k != 0 /\
+ (k \in K -> f k \in A /\ f k * k \in A).
+
+Hypothesis AfracK : is_frac_field.
+
+Lemma frac_field_alg_int : exists f, forall l, [/\ f l != 0, f l \in A & integral (f l * l)].
+Proof.
+have [Aid _ Amcl] := Asubr; have Amulr : mulr_closed A := Asubr.
+have [AsubK [f /all_and2-[fH0 /(_ _)/all_and2-/all_and2-[fHa fHk]]]] := AfracK.
+pose g := fun l => let p := minPoly K l in \prod_(i < size p) f p`_i; exists g => l.
+pose p := minPoly K l; pose n := (size p).-1.
+pose s := mkseq (fun i => p`_i * (g l) ^+ (n - i)%N) (size p).
+have kI (i : 'I_(size p)) : p`_i \in K by apply/all_nthP => //; apply/minPolyOver.
+have glA : g l \in A by rewrite/g; elim/big_ind: _ => // i _; apply/fHa.
+have pmon: p`_n = 1 by have /monicP := monic_minPoly K l.
+have an1: nth 0 s n = 1 by rewrite /n nth_mkseq ?pmon ?mul1r ?subnn ?size_minPoly.
+have eqPs: (Poly s) = s :> seq L0.
+ by rewrite (PolyK (c := 0)) // -nth_last size_mkseq an1 oner_neq0.
+have ilen i : i < size p -> i <= n by move => iB; rewrite /n -ltnS prednK // size_minPoly.
+split => //; first by apply/prodf_neq0 => i _.
+exists (Poly s); split; last first; last by rewrite monicE lead_coefE eqPs // size_mkseq an1.
+ rewrite /root -(mulr0 ((g l) ^+ n)); have <- := minPolyxx K l.
+ rewrite !horner_coef eqPs size_mkseq big_distrr; apply/eqP/eq_bigr => i _.
+ rewrite nth_mkseq // exprMn //=; rewrite !mulrA; congr (_ * _); rewrite -mulrA mulrC.
+ by congr (_ * _); rewrite -exprD subnK ?ilen.
+apply/(all_nthP 0) => i; rewrite eqPs size_mkseq => iB; rewrite nth_mkseq //.
+ have := ilen _ iB; rewrite leq_eqVlt => /orP.
+ case; first by move /eqP ->; rewrite subnn pmon mulr1.
+ rewrite -subn_gt0 => {pmon ilen eqPs an1} /prednK <-; rewrite exprS mulrA /= Amcl ?rpredX //.
+ rewrite /g (bigD1 (Ordinal iB)) //= mulrA; apply/Amcl.
+ by rewrite mulrC; apply/fHk/(kI (Ordinal iB)).
+ by rewrite rpred_prod => // j _; apply/fHa.
+Qed.
+
+Lemma int_clos_incl a : a \in A -> integral a.
+Proof.
+move=> ainA; exists ('X - a%:P); rewrite monicXsubC root_XsubC.
+rewrite polyOverXsubC => //; by exact Asubr.
+Qed.
+
+Lemma intPl (I : eqType) G (r : seq I) l : has (fun x => G x != 0) r ->
+ (forall e, e \in r -> {f | \sum_(e' <- r) f e' * G e' = l * G e & forall e', f e' \in A}) ->
+ integral l.
+Proof.
+have Aaddr : addr_closed A := Asubr; have Amulr : mulr_closed A := Asubr.
+have Aoppr : oppr_closed A := Asubr; have [Aid _ _] := Asubr.
+move => rn gen; pose s := in_tuple r; pose g j := gen (tnth s j) (mem_tnth j s).
+pose f j := sval (g j); pose fH j := svalP (g j).
+pose M := \matrix_(i, j < size r) f j (tnth s i).
+exists (char_poly M); rewrite char_poly_monic; split => //.
+ apply/rpred_sum => p _; apply/rpredM; first by apply/rpredX; rewrite rpredN polyOverC.
+ apply/rpred_prod => i _; rewrite !mxE /= rpredB ?rpredMn ?polyOverX ?polyOverC ?/f //.
+ by have [_ fH2] := fH (perm.PermDef.fun_of_perm p i).
+rewrite -eigenvalue_root_char; apply/eigenvalueP; move: rn => /hasP[x] /(nthP x)[k kB <- xn].
+exists (\row_(i < size r) G (tnth s i)); last first.
+ move: xn; apply/contra => /eqP/matrixP-v0; have := v0 0 (Ordinal kB).
+ by rewrite !mxE (tnth_nth x) => <-.
+rewrite -rowP => j; rewrite !mxE; have [fH1 _] := fH j; rewrite -fH1 (big_nth x) big_mkord.
+by apply/eq_bigr => /= i _; rewrite /M !mxE (tnth_nth x) mulrC.
+Qed.
+
+Lemma intPr l : integral l -> exists r : seq L0,
+ [/\ r != nil, all A r & \sum_(i < size r) r`_i * l ^+ i = l ^+ (size r)].
+Proof.
+move => [p [pm pA pr]]; pose n := size p; pose r := take n.-1 (- p).
+have ps : n > 1.
+ rewrite ltnNge; apply/negP => /size1_polyC pc; rewrite pc in pr pm => {pc}.
+ move: pr => /rootP; rewrite hornerC => pc0.
+ by move: pm; rewrite monicE lead_coefC pc0 eq_sym oner_eq0.
+have rs : size r = n.-1 by rewrite /r size_takel // size_opp leq_pred.
+exists r; split.
+ apply/eqP => /nilP; rewrite /nilp /r size_takel; last by rewrite size_opp leq_pred.
+ by rewrite -subn1 subn_eq0 leqNgt ps.
+ have : - p \is a polyOver A by rewrite rpredN //; exact Asubr.
+ by move => /allP-popA; apply/allP => x /mem_take /popA.
+move: pr => /rootP; rewrite horner_coef -(prednK (n := size p)); last by rewrite ltnW.
+rewrite big_ord_recr /= rs; have := monicP pm; rewrite /lead_coef => ->; rewrite mul1r => /eqP.
+rewrite addrC addr_eq0 -sumrN => /eqP => ->; apply/eq_bigr => i _; rewrite /r nth_take //.
+by rewrite coefN mulNr.
+Qed.
+
+Lemma int_subring_closed a b : integral a -> integral b ->
+ integral (a - b) /\ integral (a * b).
+Proof.
+have [A0 _ ] := (Asubr : zmod_closed A); have [A1 Asubr2 Amulr2] := Asubr.
+move => /intPr[ra [/negbTE-ran raA raS]] /intPr[rb [/negbTE-rbn rbA rbS]].
+pose n := size ra; pose m := size rb; pose r := Finite.enum [finType of 'I_n * 'I_m].
+pose G (z : 'I_n * 'I_m) := let (k, l) := z in a ^ k * b ^l.
+have [nz mz] : 0 < n /\ 0 < m.
+ by rewrite !lt0n; split; apply/negP; move => /nilP/eqP; rewrite ?ran ?rbn.
+have rnn : has (fun x => G x != 0) r.
+ apply/hasP; exists (Ordinal nz, Ordinal mz); first by rewrite /r -enumT mem_enum.
+ by rewrite /G mulr1 oner_neq0.
+pose h s i : 'I_(size s) -> L0 := fun k => if (i != size s) then (i == k)%:R else s`_k.
+pose f i j (z : 'I_n * 'I_m) : L0 := let (k, l) := z in h ra i k * h rb j l.
+have fA i j : forall z, f i j z \in A.
+ have hA s k l : all A s -> h s k l \in A.
+ move => /allP-sa; rewrite /h; case (eqVneq k (size s)) => [/eqP ->|->].
+ by apply/sa/mem_nth.
+ by case (eqVneq k l) => [/eqP ->|/negbTE ->].
+ by move => [k l]; rewrite /f; apply/Amulr2; apply/hA.
+have fS i j : (i <= n) -> (j <= m) -> \sum_(z <- r) f i j z * G z = a ^ i * b ^ j.
+ have hS s k c : (k <= size s) -> \sum_(l < size s) s`_l * c ^ l = c ^ (size s) ->
+ \sum_(l < size s) h s k l * c ^ l = c ^ k.
+ move => kB sS; rewrite /h; case (eqVneq k (size s)) => [->|kn {sS}]; first by rewrite eqxx.
+ rewrite kn; rewrite leq_eqVlt (negbTE kn) /= in kB => {kn}.
+ rewrite (bigD1 (Ordinal kB)) //= eqxx mul1r /= -[RHS]addr0; congr (_ + _).
+ by apply/big1 => l; rewrite eq_sym => kl; have : k != l := kl => /negbTE ->; rewrite mul0r.
+ move => iB jB; rewrite -(hS ra i a) // -(hS rb j b) // mulr_suml.
+ rewrite (eq_bigr (fun k => \sum_(l < m) (h ra i k * a ^ k) * (h rb j l * b ^ l))).
+ rewrite pair_bigA; apply eq_bigr => [[k l] _]; rewrite !mulrA; congr (_ * _).
+ by rewrite -!mulrA [in h rb j l * a ^ k] mulrC.
+ by move => k _; rewrite mulr_sumr.
+pose fB i j z := f i.+1 j z - f i j.+1 z; pose fM i j z := f i.+1 j.+1 z.
+have fBA i j z : fB i j z \in A by rewrite /fB Asubr2.
+have fBM i j z : fM i j z \in A by rewrite /fM.
+split; apply/(@intPl _ G r) => //= [[i j] _]; [exists (fB i j) | exists (fM i j)] => //.
+ rewrite /fB [in RHS]/G mulrBl mulrA -exprS [in b * (a ^ i * b ^ j)] mulrC -mulrA -exprSr.
+ rewrite -(fS _ _ (ltnW (ltn_ord i))) // -(fS _ _ _ (ltnW (ltn_ord j))) //.
+ by rewrite -sumrB; apply/eq_bigr => [[k l] _]; apply/mulrBl.
+by rewrite /fM [in RHS]/G mulrA [in (a * b) * a ^ i] mulrC mulrA -exprSr -mulrA -exprS -!fS.
+Qed.
+
+Lemma int_zmod_closed a b : integral a -> integral b -> integral (a - b).
+Proof. by move => aI bI; have [Azmod] := int_subring_closed aI bI. Qed.
+
+Lemma int_mulr_closed a b : integral a -> integral b -> integral (a * b).
+Proof. by move => aI bI; have [_] := int_subring_closed aI bI. Qed.
+
+End Integral.
+
+Section Trace.
+
+Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (L : {subfield L0}).
+
+Implicit Types k l : L0.
+
+Definition tr : L0 -> L0 -> F := fun l k =>
+ let X := vbasis L in
+ let M := \matrix_(i, j) coord X i (l * k * X`_j)
+ in \tr M.
+
+Fact tr_is_scalar l : scalar (tr l).
+Proof.
+move => c a b; rewrite /tr -!linearP /=; congr (\tr _); apply/matrixP => i j; rewrite !mxE.
+by rewrite mulrDr mulrDl linearD /= -scalerAr -scalerAl linearZ.
+Qed.
+
+Canonical tr_additive l := Additive (@tr_is_scalar l).
+Canonical tr_linear l := AddLinear (@tr_is_scalar l).
+
+Lemma tr_sym : commutative tr.
+Proof. by move => a b; rewrite /tr mulrC. Qed.
+
+Hypothesis Asubr : subring_closed A.
+Hypothesis Aint : int_closed A.
+Hypothesis Afrac : is_frac_field A 1%AS.
+
+Lemma tr_int k l : integral A k -> integral A l -> (tr k l)%:A \in A.
+Proof. admit. Qed.
+
+Section NDeg.
+
+Variable (vT : vectType F) (rT : ringType) (Q : vT -> vT -> rT) (V : {vspace vT}).
+
+Definition ndeg := forall (l : vT), l != 0 -> l \in V -> exists (k : vT), k \in V /\ Q l k != 0.
+
+End NDeg.
+
+Variable (U : {vspace L0}).
+Let m := \dim U.
+Variable (X : m.-tuple L0).
+
+Lemma dual_basis_def :
+ {Y : m.-tuple L0 | ndeg tr U -> basis_of U X -> basis_of U Y /\
+ forall (i : 'I_m), tr X`_i Y`_i = 1 /\
+ forall (j : 'I_m), j != i -> tr X`_i Y`_j = 0}.
+Proof.
+pose Uv := subvs_vectType U; pose Fv := subvs_FalgType (1%AS : {aspace L0});
+pose HomV := [vectType _ of 'Hom(Uv, Fv)].
+pose tr_sub : Uv -> Uv -> Fv := fun u v => (tr (vsval u) (vsval v))%:A.
+have HomVdim : \dim {:HomV} = m by rewrite dimvf /Vector.dim /= /Vector.dim /= dimv1 muln1.
+have [f fH] : {f : 'Hom(Uv, HomV) | forall u, f u =1 tr_sub u}.
+ have lf1 u : linear (tr_sub u) by move => c x y; rewrite /tr_sub linearP scalerDl scalerA.
+ have lf2 : linear (fun u => linfun (Linear (lf1 u))).
+ move => c x y; rewrite -lfunP => v; rewrite add_lfunE scale_lfunE !lfunE /= /tr_sub.
+ by rewrite tr_sym linearP scalerDl scalerA /=; congr (_ + _); rewrite tr_sym.
+ by exists (linfun (Linear lf2)) => u v; rewrite !lfunE.
+have [Xdual XdualH] : {Xdual : m.-tuple HomV |
+ forall (i : 'I_m) u, Xdual`_i u = (coord X i (vsval u))%:A}.
+ have lg (i : 'I_m) : linear (fun u : Uv => (coord X i (vsval u))%:A : Fv).
+ by move => c x y; rewrite linearP /= scalerDl scalerA.
+ exists (mktuple (fun i => linfun (Linear (lg i)))) => i u.
+ by rewrite -tnth_nth tnth_mktuple !lfunE.
+have [finv finvH] : {finv : 'Hom(HomV, L0) | finv =1 vsval \o (f^-1)%VF}.
+ by exists (linfun vsval \o f^-1)%VF => u; rewrite comp_lfunE lfunE.
+pose Y := map_tuple finv Xdual; exists Y => Und Xb.
+have Ydef (i : 'I_m) : Y`_i = finv Xdual`_i by rewrite -!tnth_nth tnth_map.
+have XiU (i : 'I_m) : X`_i \in U by apply/(basis_mem Xb)/mem_nth; rewrite size_tuple.
+have Xii (i : 'I_m) : coord X i X`_i = 1%:R.
+ by rewrite coord_free ?eqxx //; exact (basis_free Xb).
+have Xij (i j : 'I_m) : j != i -> coord X i X`_j = 0%:R.
+ by rewrite coord_free; [move => /negbTE -> | exact (basis_free Xb)].
+have Xdualb : basis_of fullv Xdual.
+ suffices Xdualf : free Xdual.
+ rewrite /basis_of Xdualf andbC /= -dimv_leqif_eq ?subvf // eq_sym HomVdim.
+ by move: Xdualf; rewrite /free => /eqP => ->; rewrite size_tuple.
+ apply/freeP => k sX i.
+ suffices: (\sum_(i < m) k i *: Xdual`_i) (vsproj U X`_i) = (k i)%:A.
+ by rewrite sX zero_lfunE => /esym /eqP; rewrite scaler_eq0 oner_eq0 orbF => /eqP.
+ rewrite sum_lfunE (bigD1 i) //= scale_lfunE XdualH vsprojK // Xii.
+ rewrite scaler_nat -[RHS]addr0; congr (_ + _); apply/big1 => j; rewrite eq_sym => ineqj.
+ by rewrite scale_lfunE XdualH vsprojK ?Xij // scaler_nat scaler0.
+have finj : (lker f = 0)%VS.
+ apply/eqP; rewrite -subv0; apply/subvP=> u; rewrite memv_ker memv0 => /eqP-f0.
+ apply/contraT => un0; have {un0} [k [kiU /negP[]]] := Und (vsval u) un0 (subvsP u).
+ have /eqP := fH u (vsproj U k).
+ by rewrite /tr_sub vsprojK // f0 zero_lfunE eq_sym scaler_eq0 oner_eq0 orbF.
+have flimg : limg f = fullv.
+ apply/eqP; rewrite -dimv_leqif_eq ?subvf // limg_dim_eq; last by rewrite finj capv0.
+ by rewrite HomVdim dimvf /Vector.dim.
+have finvK : cancel finv (f \o vsproj U).
+ by move => u; rewrite finvH /= vsvalK; apply/limg_lfunVK; rewrite flimg memvf.
+have finv_inj : (lker finv = 0)%VS by apply/eqP/lker0P/(can_inj finvK).
+have finv_limg : limg finv = U.
+ apply/eqP; rewrite -dimv_leqif_eq; first by rewrite limg_dim_eq ?HomVdim ?finv_inj ?capv0.
+ by apply/subvP => u /memv_imgP [h _] ->; rewrite finvH subvsP.
+have Xt (i j : 'I_m) : (f \o vsproj U) Y`_j (vsproj U X`_i) = (tr Y`_j X`_i)%:A.
+ by rewrite fH /tr_sub !vsprojK // Ydef finvH subvsP.
+have Xd (i j : 'I_m) : (f \o vsproj U) Y`_j (vsproj U X`_i) = Xdual`_j (vsproj U X`_i).
+ by rewrite Ydef finvK.
+have Ainj := fmorph_inj [rmorphism of in_alg Fv].
+split => [| i]; first by rewrite -{1}finv_limg limg_basis_of // capfv finv_inj.
+split => [| j]; first by have := Xt i i; rewrite tr_sym Xd XdualH vsprojK // Xii => /Ainj.
+by rewrite eq_sym => inj; have := Xt i j; rewrite tr_sym Xd XdualH vsprojK // Xij // => /Ainj.
+Qed.
+
+Definition dual_basis : m.-tuple L0 := sval dual_basis_def.
+
+Hypothesis Und : ndeg tr U.
+Hypothesis Xb : basis_of U X.
+
+Lemma dualb_basis : basis_of U dual_basis.
+Proof. have [Yb _] := svalP dual_basis_def Und Xb; exact Yb. Qed.
+
+Lemma dualb_orth :
+ forall (i : 'I_m), tr X`_i dual_basis`_i = 1 /\
+ forall (j : 'I_m), j != i -> tr X`_i dual_basis`_j = 0.
+Proof. by have [_] := svalP dual_basis_def Und Xb. Qed.
+
+End Trace.
+
+Section TraceFieldOver.
+
+Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (K L : {subfield L0}).
+
+Implicit Types k l : L0.
+
+Let K' := subvs_fieldType K.
+Let L0' := fieldOver_fieldExtType K.
+
+Definition trK : L0 -> L0 -> K' := tr (aspaceOver K L).
+
+Lemma trK_ndeg (U : {aspace L0}) : (K <= U)%VS ->
+ (ndeg trK U <-> ndeg (tr (aspaceOver K L)) (aspaceOver K U)).
+Proof.
+move => UsubL; have UU' : aspaceOver K U =i U := mem_aspaceOver UsubL.
+split => [ndK l lnz | nd l lnz].
+ by rewrite UU' => liU; have [k] := ndK l lnz liU; exists k; rewrite UU'.
+by rewrite -UU' => liU'; have [k] := nd l lnz liU'; exists k; rewrite -UU'.
+Qed.
+
+Hypothesis Asubr : subring_closed A.
+Hypothesis Aint : int_closed A.
+Hypothesis Afrac : is_frac_field A K.
+Hypothesis AsubL : {subset A <= L}.
+
+Lemma trK_int k l : integral A k -> integral A l -> ((trK k l)%:A : L0') \in A.
+Proof. admit. Qed.
+
+End TraceFieldOver.
+
+Section BasisLemma.
+
+Section Modules.
+
+Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0).
+
+Implicit Types M N : L0 -> Prop.
+
+Definition module M := M 0 /\ forall a k l, a \in A -> M k -> M l -> M (a * k - l).
+Definition span_mod X m := exists2 r : (size X).-tuple L0,
+ all A r & m = \sum_(i < size X) r`_i * X`_i.
+Definition submod M N := forall m, M m -> N m.
+Definition basis_of_mod M X := free X /\ submod M (span_mod X) /\ forall m, m \in X -> M m.
+Definition ideal N := submod N A /\ module N.
+Definition PID := forall (N : L0 -> Prop), ideal N ->
+ exists2 a, N a & forall v, N v -> exists2 d, d \in A & d * a = v.
+
+Variable L : {subfield L0}.
+
+Hypothesis Asubr : subring_closed A.
+Hypothesis AsubL : {subset A <= L}.
+
+Lemma int_mod_closed : module (int_closure A L).
+Proof.
+have [A0 _] : zmod_closed A := Asubr; split.
+ by rewrite /int_closure mem0v; split => //; apply/int_clos_incl.
+move => a k l aA [kI kL] [lI lL]; split; first by rewrite rpredB ?rpredM //; apply/AsubL.
+by apply/int_zmod_closed => //; apply/int_mulr_closed => //; apply/int_clos_incl.
+Qed.
+
+End Modules.
+
+Variable (F0 : fieldType) (E : fieldExtType F0) (I : pred E) (Ifr K : {subfield E}).
+
+Hypothesis Isubr : subring_closed I.
+Hypothesis Iint : int_closed I.
+Hypothesis Ipid : PID I.
+Hypothesis Ifrac : is_frac_field I Ifr.
+Hypothesis IsubK : {subset I <= K}.
+Hypothesis Knd : ndeg (trK Ifr K) K.
+
+Lemma basis_lemma : exists X : (\dim_Ifr K).-tuple E, basis_of_mod I (int_closure I K) X.
+Proof.
+suffices FisK (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (L : {subfield L0}) :
+ subring_closed A -> int_closed A -> PID A -> is_frac_field A 1 -> ndeg (tr L) L ->
+ exists2 X, size X == \dim L & basis_of_mod A (int_closure A L) X.
+ have [Isub [f /all_and2[fH0 fHk]]] := Ifrac; pose F := subvs_fieldType Ifr;
+ pose L0 := fieldOver_fieldExtType Ifr; pose L := aspaceOver Ifr K.
+ have Ifrsub : (Ifr <= K)%VS.
+ apply/subvP=> x /fHk-[fHx fHxx]; rewrite -(mulKf (fH0 x) x).
+ by apply/memvM; rewrite ?memvV; apply/IsubK.
+ have LK : L =i K := mem_aspaceOver Ifrsub; have Lnd : ndeg (tr L) L by rewrite -trK_ndeg.
+ have Ifrac1 : is_frac_field (I : pred L0) 1.
+ split; first by move => a; rewrite /= trivial_fieldOver; apply/Isub.
+ by exists f => k; split => //; rewrite trivial_fieldOver => /fHk.
+ have [X Xsize [Xf [Xs Xi]]] := FisK _ L0 _ _ Isubr Iint Ipid Ifrac1 Lnd.
+ rewrite -dim_aspaceOver => //; have /eqP <- := Xsize; exists (in_tuple X); split; last first.
+ split => m; last by move => /Xi; rewrite /int_closure LK.
+ by rewrite /int_closure -LK; move => /Xs.
+ move: Xf; rewrite -{1}(in_tupleE X); move => /freeP-XfL0; apply/freeP => k.
+ have [k' kk'] : exists k' : 'I_(size X) -> F, forall i, (k i)%:A = vsval (k' i).
+ by exists (fun i => vsproj Ifr (k i)%:A) => i; rewrite vsprojK ?rpredZ ?mem1v.
+ pose Ainj := fmorph_inj [rmorphism of in_alg E].
+ move => kS i; apply/Ainj => {Ainj} /=; rewrite scale0r kk'; apply/eqP.
+ rewrite raddf_eq0; last by apply/subvs_inj.
+ by apply/eqP/XfL0; rewrite -{3}kS => {i}; apply/eq_bigr => i _; rewrite -[RHS]mulr_algl kk'.
+move => Asubr Aint Apid Afrac1 Lnd; pose n := \dim L; have Amulr : mulr_closed A := Asubr.
+have [A0 _] : zmod_closed A := Asubr; have [Asub1 _] := Afrac1.
+have AsubL : {subset A <= L} by move => a /Asub1; exact (subvP (sub1v L) a).
+have [b1 [b1B b1H]] : exists (b1 : n.-tuple L0), [/\ basis_of L b1 &
+ forall i : 'I_n, integral A b1`_i].
+ pose b0 := vbasis L; have [f /all_and3-[fH0 fHa fHi]] := frac_field_alg_int Asubr Afrac1.
+ pose d := \prod_(i < n) f b0`_i; pose b1 := map_tuple (amulr d) b0.
+ exists b1; split; last first => [i|].
+ rewrite (nth_map 0) /d; last by rewrite size_tuple.
+ rewrite lfunE /= (bigD1 i) //= mulrA; apply/int_mulr_closed => //; first by rewrite mulrC.
+ by apply/int_clos_incl => //; rewrite rpred_prod.
+ have dun : d \is a GRing.unit by rewrite unitfE /d; apply/prodf_neq0 => i _.
+ have lim : (amulr d @: L = L)%VS.
+ have dinA : d \in A by rewrite rpred_prod.
+ rewrite limg_amulr; apply/eqP; rewrite -dimv_leqif_eq; first by rewrite dim_cosetv_unit.
+ by apply/prodv_sub => //; apply/AsubL.
+ rewrite -lim limg_basis_of //; last by apply/vbasisP.
+ by have /eqP -> := lker0_amulr dun; rewrite capv0.
+have [b2 [/andP[/eqP-b2s b2f] b2H]] : exists (b2 : n.-tuple L0), [/\ basis_of L b2 &
+ forall b, b \in L -> integral A b -> forall i, (coord b2 i b)%:A \in A].
+ pose b2 := dual_basis L b1; have b2B := dualb_basis Lnd b1B; exists b2; rewrite b2B.
+ split => // b biL bint i; suffices <-: tr L b1`_i b = coord b2 i b by rewrite tr_int.
+ have -> : tr L b1`_i b = \sum_(j < n) coord b2 j b * tr L b1`_i b2`_j.
+ by rewrite {1}(coord_basis b2B biL) linear_sum; apply/eq_bigr => j _; rewrite linearZ.
+ rewrite (bigD1 i); have [oi oj //] := dualb_orth Lnd b1B i; rewrite /= oi mulr1 -[RHS]addr0.
+ by congr (_ + _); apply/big1 => j jneqi; rewrite (oj j jneqi) mulr0.
+have Mbasis k (X : k.-tuple L0) M : free X -> module A M -> submod M (span_mod A X) ->
+ exists B, basis_of_mod A M B.
+ move: k X M; elim => [X M _ _ Ms | k IH X M Xf [M0 Mm] Ms].
+ by exists [::]; rewrite /basis_of_mod nil_free; move: Ms; rewrite tuple0.
+ pose X1 := [tuple of behead X]; pose v := thead X.
+ pose M1 := fun m => M m /\ coord X ord0 m = 0.
+ pose M2 := fun (a : L0) => exists2 m, M m & (coord X ord0 m)%:A = a.
+ have scr r m : r \in A -> exists c, r * m = c *: m.
+ by move => /Asub1/vlineP[c ->]; exists c; rewrite mulr_algl.
+ have span_coord m : M m -> exists r : (k.+1).-tuple L0,
+ [/\ all A r, m = \sum_(i < k.+1) r`_i * X`_i & forall i, (coord X i m)%:A = r`_i].
+ have seqF (s : seq L0) : all A s -> exists s', s = [seq c%:A | c <- s'].
+ elim: s => [_| a l IHl /= /andP[/Asub1/vlineP[c ->]]]; first by exists [::].
+ by move => /IHl[s' ->]; exists (c :: s').
+ move => mM; have := Ms m mM; rewrite /span_mod !size_tuple; move => [r rA rS].
+ exists r; split => //; have [rF rFr] := seqF r rA => {seqF}; rewrite rFr in rA.
+ have rFs : size rF = k.+1 by rewrite -(size_tuple r) rFr size_map.
+ have -> : m = \sum_(i < k.+1) rF`_i *: X`_i.
+ by rewrite rS; apply/eq_bigr => i _; rewrite rFr (nth_map 0) ?rFs // mulr_algl.
+ by move => i; rewrite coord_sum_free // rFr (nth_map 0) ?rFs.
+ have [B1 [B1f [B1s B1A]]] : exists B1, basis_of_mod A M1 B1.
+ have X1f : free X1 by move: Xf; rewrite (tuple_eta X) free_cons => /andP[_].
+ apply/(IH X1) => //.
+ rewrite /module /M1 linear0; split => // a x y aA [xM xfc0] [yM yfc0].
+ have := Mm a x y aA xM yM; move: aA => /Asub1/vlineP[r] ->; rewrite mulr_algl => msc.
+ by rewrite /M1 linearB linearZ /= xfc0 yfc0 subr0 mulr0.
+ move => m [mM mfc0]; have := span_coord m mM; move => [r [rA rS rC]].
+ move: mfc0 (rC 0) ->; rewrite scale0r; move => r0; rewrite /span_mod size_tuple.
+ exists [tuple of behead r]; first by apply/allP => a /mem_behead/(allP rA).
+ by rewrite rS big_ord_recl -r0 mul0r add0r; apply/eq_bigr => i _; rewrite !nth_behead.
+ have [a [w wM wC] aG] : exists2 a, M2 a & forall v, M2 v -> exists2 d, d \in A & d * a = v.
+ apply/Apid; split.
+ move => c [m mM <-]; have := span_coord m mM; move => [r [/all_nthP-rA _ rC]].
+ by move: rC ->; apply/rA; rewrite size_tuple.
+ split; first by exists 0 => //; rewrite linear0 scale0r.
+ move => c x y cA [mx mxM mxC] [my myM myC]; have := Mm c mx my cA mxM myM.
+ move: cA => /Asub1/vlineP[r] ->; rewrite !mulr_algl => mC.
+ by exists (r *: mx - my) => //; rewrite linearB linearZ /= scalerBl -scalerA mxC myC.
+ pose Ainj := fmorph_inj [rmorphism of in_alg L0].
+ have mcM1 m : M m -> exists2 d, d \in A & d * a = (coord X 0 m)%:A.
+ by move => mM; apply/aG; exists m.
+ case: (eqVneq a 0) => [| an0].
+ exists B1; split => //; split => [m mM |]; last by move => m /B1A[mM].
+ apply/B1s; split => //; apply/Ainj => /=; have [d _ <-] := mcM1 m mM.
+ by rewrite a0 mulr0 scale0r.
+ exists (w :: B1); split.
+ rewrite free_cons B1f andbT; move: an0; apply/contra; move: wC <-.
+ rewrite -(in_tupleE B1); move => /coord_span ->; apply/eqP.
+ rewrite linear_sum big1 ?scale0r => //= i _; rewrite linearZ /=.
+ by have [_] := B1A B1`_i (mem_nth 0 (ltn_ord _)) => ->; rewrite mulr0.
+ split => [m mM | m]; last by rewrite in_cons; move => /orP; case => [/eqP ->|/B1A[mM]].
+ have [d dA dam] := mcM1 m mM; have mdwM1 : M1 (m - d * w).
+ split; [have Mdwm := Mm d w m dA wM mM; have := Mm _ _ _ A0 Mdwm Mdwm |].
+ by rewrite mul0r sub0r opprB.
+ move: dA dam => /Asub1/vlineP[r] -> {d}; rewrite !mulr_algl linearB linearZ /= => rac.
+ by apply/Ainj => /=; rewrite scalerBl -scalerA wC rac subrr scale0r.
+ have [r rA rS] := B1s _ mdwM1; exists [tuple of d :: r]; first by rewrite /= rA andbT.
+ by move: rS => /eqP; rewrite subr_eq addrC => /eqP ->; rewrite /= big_ord_recl.
+have [X Xb] : exists X, basis_of_mod A (int_closure A L) X.
+ apply/(Mbasis _ b2 _ b2f) => [| m [mL mI]]; first by apply/int_mod_closed.
+ pose r : n.-tuple L0 := [tuple (coord b2 i m)%:A | i < n]; rewrite /span_mod size_tuple.
+ exists r; have rci (i : 'I_n) : r`_i = (coord b2 i m)%:A by rewrite -tnth_nth tnth_mktuple.
+ apply/(all_nthP 0) => i; rewrite size_tuple; move => iB.
+ by have -> := rci (Ordinal iB); apply/b2H.
+ move: mL; rewrite -b2s; move => /coord_span ->; apply/eq_bigr => i _.
+ by rewrite rci mulr_algl.
+exists X => //; move: Xb => [/eqP-Xf [Xs Xg]]; rewrite -Xf eqn_leq; apply/andP; split.
+ by apply/dimvS/span_subvP => m /Xg[mL _].
+have /andP[/eqP-b1s _] := b1B; rewrite -b1s; apply/dimvS/span_subvP => b /tnthP-[i ->] {b}.
+rewrite (tnth_nth 0); have [r /all_tnthP-rA ->] : span_mod A X b1`_i.
+ by apply/Xs; rewrite /int_closure (basis_mem b1B) ?mem_nth ?size_tuple => //.
+apply/rpred_sum => j _; have := rA j; rewrite (tnth_nth 0); move => /Asub1/vlineP[c ->].
+by rewrite mulr_algl; apply/rpredZ/memv_span/mem_nth.
+Qed.
+
+End BasisLemma. \ No newline at end of file