aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/attic/algnum_basic.v
diff options
context:
space:
mode:
authorEnrico Tassi2018-04-20 14:17:38 +0200
committerEnrico Tassi2018-04-20 14:17:38 +0200
commitdcc7917ac5d66472f751ebbd31b7b63db5465303 (patch)
tree22228fc984fdf119291e0e4601a6c3e028107408 /mathcomp/attic/algnum_basic.v
parente418a8b26b66ce88e22cff5978823e25aab03d94 (diff)
remove the attic/ directory
Diffstat (limited to 'mathcomp/attic/algnum_basic.v')
-rw-r--r--mathcomp/attic/algnum_basic.v541
1 files changed, 0 insertions, 541 deletions
diff --git a/mathcomp/attic/algnum_basic.v b/mathcomp/attic/algnum_basic.v
deleted file mode 100644
index d908b09..0000000
--- a/mathcomp/attic/algnum_basic.v
+++ /dev/null
@@ -1,541 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype tuple div.
-From mathcomp
-Require Import bigop prime finset fingroup ssralg finalg zmodp abelian.
-From mathcomp
-Require Import matrix vector falgebra finfield action poly ssrint cyclotomic.
-From mathcomp
-Require Import fieldext mxalgebra mxpoly.
-
-(************************************************************************************************)
-(* Basic algebraic number theory concepts from Milne, J.S.: Algebraic Number Theory. *)
-(* We work in the setting of an extension field L0 : fieldextType F. At this point, *)
-(* an integral domain is represented as a collective predicate on L0 closed under *)
-(* subring operations. A module over the integral domain A is represented as a *)
-(* Prop-valued predicate closed under the operations (0, x + y, x - y, x * y). It *)
-(* is not a-priori made a collective predicate since we first need to establish the *)
-(* Basis Lemma in order to show decidability. *)
-(* *)
-(* integral A l <-> l is integral over the domain A, i.e., it satisfies a polynomial *)
-(* over A. This is currently a Prop-valued predicate since we *)
-(* quantify over all polynomials over A. An alternative definition *)
-(* would be to say that the minimal polynomial of l over the field *)
-(* of fractions of A is itself a polynomial over A. The latter is *)
-(* a decidable property and the equivalence of the two definitions *)
-(* is provided by Prop. 2.11 in Milne. *)
-(* int_closed A <-> A is integrally closed. *)
-(* int_closure A L == The integral closure of A in L. This is currently a Prop-valued *)
-(* predicate. *)
-(* is_frac_field A K <-> K is the field of fractions of A. The condition of every k \in K *)
-(* arising as a quotient a / b for a,b \in K is skolemized. This is *)
-(* not strictly necessary since L0 has a canonical choiceType *)
-(* structure but it facilitates some of the later proofs. *)
-(* frac_field_alg_int A == Every element l arises as a quotient b / a, where a is in A and b *)
-(* is integral over A. The statement of the theorem is skolemized, *)
-(* which is not strictly necessary. *)
-(* int_clos_incl A == Every element of A is integral over A. *)
-(* int_subring_closed A == The integral closure of A is closed under the subring operations *)
-(* (a - b, a * b). The proof of this lemma uses an equivalent *)
-(* characterization of integrality, cf. Prop. 2.4 in Milne, which is *)
-(* captured by the Lemmas intPl and intPr. The former states that *)
-(* if there exists a nonzero finitely-generated A-module closed under *)
-(* multiplication by l, then l is integral over A. The latter states *)
-(* that if l is integral over A, then the A-algebra generated by l is *)
-(* closed under multiplication by l. Note: These lemmas probably need *)
-(* better names. *)
-(* int_zmod_closed A == The integral closure of A is closed under subtraction. *)
-(* int_mulr_closed A == The integral closure of A is closed under multiplication. *)
-(* tr L l k == The trace of l * k on L; the result is in the field of scalars F. *)
-(* The function tr is scalar in its first argument. *)
-(* tr_sym == The trace function is commutative. *)
-(* ndeg Q V <-> The binary function Q : vT -> vT -> rT is nondegenerate on the *)
-(* subspace V. *)
-(* dual_basis U X == The dual basis of U for X, with respect to the trace bilinear form. *)
-(* trK K L == The trace function on L viewed as a subfield over K. *)
-(* trK_int A K L == If k and l are integral over A then their trace is in A, provided *)
-(* A is an integrally closed domain, K is its field of fractions, and *)
-(* L extends K. *)
-(* module A M <-> M is an A-module. *)
-(* span_mod A X == The A-module generated by X. *)
-(* submod A M N <-> M is a submodule of N over A. *)
-(* basis_of_mod A M X <-> X is the basis of the A-module M. *)
-(* ideal A N <-> N is an A-ideal. *)
-(* PID A <-> Every ideal in A is principal. *)
-(* int_mod_closed A L == The integral closure of A in L is an A-module. *)
-(* basis_lemma I Ifr K == The integral closure of I in K is a free module, provided I is an *)
-(* integrally-closed principal ideal domain contained in K, Ifr is the *)
-(* field of fractions of I, and the trace function trK Ifr K is *)
-(* nondegenerate on K. *)
-(************************************************************************************************)
-
-Import GRing.Theory.
-Import DefaultKeying GRing.DefaultPred.
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Unset Printing Implicit Defensive.
-
-Local Open Scope ring_scope.
-
-Section Integral.
-
-Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (K L : {subfield L0}).
-
-Hypothesis Asubr : subring_closed A.
-
-Definition integral l := exists p, [/\ p \is monic, p \is a polyOver A & root p l].
-Definition int_closed := {in A, forall a b, integral (a / b) -> (a / b) \in A}.
-Definition int_closure l := l \in L /\ integral l.
-Definition is_frac_field := {subset A <= K} /\ exists f, forall k, f k != 0 /\
- (k \in K -> f k \in A /\ f k * k \in A).
-
-Hypothesis AfracK : is_frac_field.
-
-Lemma frac_field_alg_int : exists f, forall l, [/\ f l != 0, f l \in A & integral (f l * l)].
-Proof.
-have [Aid _ Amcl] := Asubr; have Amulr : mulr_closed A := Asubr.
-have [AsubK [f /all_and2-[fH0 /(_ _)/all_and2-/all_and2-[fHa fHk]]]] := AfracK.
-pose g := fun l => let p := minPoly K l in \prod_(i < size p) f p`_i; exists g => l.
-pose p := minPoly K l; pose n := (size p).-1.
-pose s := mkseq (fun i => p`_i * (g l) ^+ (n - i)%N) (size p).
-have kI (i : 'I_(size p)) : p`_i \in K by apply/all_nthP => //; apply/minPolyOver.
-have glA : g l \in A by rewrite /g; elim/big_ind: _ => // i _; apply/fHa.
-have pmon: p`_n = 1 by have /monicP := monic_minPoly K l.
-have an1: nth 0 s n = 1 by rewrite /n nth_mkseq ?pmon ?mul1r ?subnn ?size_minPoly.
-have eqPs: (Poly s) = s :> seq L0.
- by rewrite (PolyK (c := 0)) // -nth_last size_mkseq an1 oner_neq0.
-have ilen i : i < size p -> i <= n by move=> iB; rewrite /n -ltnS prednK // size_minPoly.
-split => //; first by apply/prodf_neq0 => i _.
-exists (Poly s); split; last first; last by rewrite monicE lead_coefE eqPs // size_mkseq an1.
- rewrite /root -(mulr0 ((g l) ^+ n)); have <- := minPolyxx K l.
- rewrite !horner_coef eqPs size_mkseq big_distrr; apply/eqP/eq_bigr => i _.
- rewrite nth_mkseq // exprMn //=; rewrite !mulrA; congr (_ * _); rewrite -mulrA mulrC.
- by congr (_ * _); rewrite -exprD subnK ?ilen.
-apply/(all_nthP 0) => i; rewrite eqPs size_mkseq => iB; rewrite nth_mkseq //.
- have := ilen _ iB; rewrite leq_eqVlt => /orP.
- case; first by move/eqP ->; rewrite subnn pmon mulr1.
- rewrite -subn_gt0 => {pmon ilen eqPs an1} /prednK <-; rewrite exprS mulrA /= Amcl ?rpredX //.
- rewrite /g (bigD1 (Ordinal iB)) //= mulrA; apply/Amcl.
- by rewrite mulrC; apply/fHk/(kI (Ordinal iB)).
- by rewrite rpred_prod => // j _; apply/fHa.
-Qed.
-
-Lemma int_clos_incl a : a \in A -> integral a.
-Proof.
-move=> ainA; exists ('X - a%:P); rewrite monicXsubC root_XsubC.
-rewrite polyOverXsubC => //; by apply: Asubr.
-Qed.
-
-Lemma intPl (I : eqType) G (r : seq I) l : has (fun x => G x != 0) r ->
- (forall e, e \in r -> {f | \sum_(e' <- r) f e' * G e' = l * G e & forall e', f e' \in A}) ->
- integral l.
-Proof.
-have Aaddr : addr_closed A := Asubr; have Amulr : mulr_closed A := Asubr.
-have Aoppr : oppr_closed A := Asubr; have [Aid _ _] := Asubr.
-move=> rn gen; pose s := in_tuple r; pose g j := gen (tnth s j) (mem_tnth j s).
-pose f j := sval (g j); pose fH j := svalP (g j).
-pose M := \matrix_(i, j < size r) f j (tnth s i).
-exists (char_poly M); rewrite char_poly_monic; split => //.
- apply/rpred_sum => p _; apply/rpredM; first by apply/rpredX; rewrite rpredN polyOverC.
- apply/rpred_prod => i _; rewrite !mxE /= rpredB ?rpredMn ?polyOverX ?polyOverC ?/f //.
- by have [_ fH2] := fH (perm.PermDef.fun_of_perm p i).
-rewrite -eigenvalue_root_char; apply/eigenvalueP; move: rn => /hasP[x] /(nthP x)[k kB <- xn].
-exists (\row_(i < size r) G (tnth s i)); last first.
- move: xn; apply/contra => /eqP/matrixP-v0; have := v0 0 (Ordinal kB).
- by rewrite !mxE (tnth_nth x) => <-.
-rewrite -rowP => j; rewrite !mxE; have [fH1 _] := fH j; rewrite -fH1 (big_nth x) big_mkord.
-by apply/eq_bigr => /= i _; rewrite /M !mxE (tnth_nth x) mulrC.
-Qed.
-
-Lemma intPr l : integral l -> exists r : seq L0,
- [/\ r != nil, all A r & \sum_(i < size r) r`_i * l ^+ i = l ^+ (size r)].
-Proof.
-move=> [p [pm pA pr]]; pose n := size p; pose r := take n.-1 (- p).
-have ps : n > 1.
- rewrite ltnNge; apply/negP => /size1_polyC pc; rewrite pc in pr pm => {pc}.
- move: pr => /rootP; rewrite hornerC => pc0.
- by move: pm; rewrite monicE lead_coefC pc0 eq_sym oner_eq0.
-have rs : size r = n.-1 by rewrite /r size_takel // size_opp leq_pred.
-exists r; split.
- apply/eqP => /nilP; rewrite /nilp /r size_takel; last by rewrite size_opp leq_pred.
- by rewrite -subn1 subn_eq0 leqNgt ps.
- have : - p \is a polyOver A by rewrite rpredN //; apply: Asubr.
- by move=> /allP-popA; apply/allP => x /mem_take /popA.
-move: pr => /rootP; rewrite horner_coef -(prednK (n := size p)); last by rewrite ltnW.
-rewrite big_ord_recr /= rs; have := monicP pm; rewrite /lead_coef => ->; rewrite mul1r => /eqP.
-rewrite addrC addr_eq0 -sumrN => /eqP => ->; apply/eq_bigr => i _; rewrite /r nth_take //.
-by rewrite coefN mulNr.
-Qed.
-
-Lemma int_subring_closed a b : integral a -> integral b ->
- integral (a - b) /\ integral (a * b).
-Proof.
-have [A0 _ ] := (Asubr : zmod_closed A); have [A1 Asubr2 Amulr2] := Asubr.
-move=> /intPr[ra [/negbTE-ran raA raS]] /intPr[rb [/negbTE-rbn rbA rbS]].
-pose n := size ra; pose m := size rb; pose r := Finite.enum [finType of 'I_n * 'I_m].
-pose G (z : 'I_n * 'I_m) := let (k, l) := z in a ^ k * b ^l.
-have [nz mz] : 0 < n /\ 0 < m.
- by rewrite !lt0n; split; apply/negP => /nilP/eqP; rewrite ?ran ?rbn.
-have rnn : has (fun x => G x != 0) r.
- apply/hasP; exists (Ordinal nz, Ordinal mz); first by rewrite /r -enumT mem_enum.
- by rewrite /G mulr1 oner_neq0.
-pose h s i : 'I_(size s) -> L0 := fun k => if (i != size s) then (i == k)%:R else s`_k.
-pose f i j (z : 'I_n * 'I_m) : L0 := let (k, l) := z in h ra i k * h rb j l.
-have fA i j : forall z, f i j z \in A.
- have hA s k l : all A s -> h s k l \in A.
- move=> /allP-sa; rewrite /h; case (eqVneq k (size s)) => [/eqP ->|->].
- by apply/sa/mem_nth.
- by case (eqVneq k l) => [/eqP ->|/negbTE ->].
- by move=> [k l]; rewrite /f; apply/Amulr2; apply/hA.
-have fS i j : (i <= n) -> (j <= m) -> \sum_(z <- r) f i j z * G z = a ^ i * b ^ j.
- have hS s k c : (k <= size s) -> \sum_(l < size s) s`_l * c ^ l = c ^ (size s) ->
- \sum_(l < size s) h s k l * c ^ l = c ^ k.
- move=> kB sS; rewrite /h; case (eqVneq k (size s)) => [->|kn {sS}]; first by rewrite eqxx.
- rewrite kn; rewrite leq_eqVlt (negbTE kn) /= in kB => {kn}.
- rewrite (bigD1 (Ordinal kB)) //= eqxx mul1r /= -[RHS]addr0; congr (_ + _).
- by apply/big1 => l; rewrite eq_sym => kl; have : k != l := kl => /negbTE ->; rewrite mul0r.
- move=> iB jB; rewrite -(hS ra i a) // -(hS rb j b) // mulr_suml.
- rewrite (eq_bigr (fun k => \sum_(l < m) (h ra i k * a ^ k) * (h rb j l * b ^ l))).
- rewrite pair_bigA; apply eq_bigr => [[k l] _]; rewrite !mulrA; congr (_ * _).
- by rewrite -!mulrA [in h rb j l * a ^ k] mulrC.
- by move=> k _; rewrite mulr_sumr.
-pose fB i j z := f i.+1 j z - f i j.+1 z; pose fM i j z := f i.+1 j.+1 z.
-have fBA i j z : fB i j z \in A by rewrite /fB Asubr2.
-have fBM i j z : fM i j z \in A by rewrite /fM.
-split; apply/(@intPl _ G r) => //= [[i j] _]; [exists (fB i j) | exists (fM i j)] => //.
- rewrite /fB [in RHS]/G mulrBl mulrA -exprS [in b * (a ^ i * b ^ j)] mulrC -mulrA -exprSr.
- rewrite -(fS _ _ (ltnW (ltn_ord i))) // -(fS _ _ _ (ltnW (ltn_ord j))) //.
- by rewrite -sumrB; apply/eq_bigr => [[k l] _]; apply/mulrBl.
-by rewrite /fM [in RHS]/G mulrA [in (a * b) * a ^ i] mulrC mulrA -exprSr -mulrA -exprS -!fS.
-Qed.
-
-Lemma int_zmod_closed a b : integral a -> integral b -> integral (a - b).
-Proof. by move=> aI bI; have [Azmod] := int_subring_closed aI bI. Qed.
-
-Lemma int_mulr_closed a b : integral a -> integral b -> integral (a * b).
-Proof. by move=> aI bI; have [_] := int_subring_closed aI bI. Qed.
-
-End Integral.
-
-Section Trace.
-
-Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (L : {subfield L0}).
-
-Implicit Types k l : L0.
-
-Definition tr : L0 -> L0 -> F := fun l k =>
- let X := vbasis L in
- let M := \matrix_(i, j) coord X i (l * k * X`_j)
- in \tr M.
-
-Fact tr_is_scalar l : scalar (tr l).
-Proof.
-move=> c a b; rewrite /tr -!linearP /=; congr (\tr _); apply/matrixP => i j; rewrite !mxE.
-by rewrite mulrDr mulrDl linearD /= -scalerAr -scalerAl linearZ.
-Qed.
-
-Canonical tr_additive l := Additive (@tr_is_scalar l).
-Canonical tr_linear l := AddLinear (@tr_is_scalar l).
-
-Lemma tr_sym : commutative tr.
-Proof. by move=> a b; rewrite /tr mulrC. Qed.
-
-Hypothesis Asubr : subring_closed A.
-Hypothesis Aint : int_closed A.
-Hypothesis Afrac : is_frac_field A 1%AS.
-
-Lemma tr_int k l : integral A k -> integral A l -> (tr k l)%:A \in A.
-Proof. admit. Admitted.
-
-Section NDeg.
-
-Variable (vT : vectType F) (rT : ringType) (Q : vT -> vT -> rT) (V : {vspace vT}).
-
-Definition ndeg := forall (l : vT), l != 0 -> l \in V -> exists (k : vT), k \in V /\ Q l k != 0.
-
-End NDeg.
-
-Variable (U : {vspace L0}).
-Let m := \dim U.
-Variable (X : m.-tuple L0).
-
-Lemma dual_basis_def :
- {Y : m.-tuple L0 | ndeg tr U -> basis_of U X -> basis_of U Y /\
- forall (i : 'I_m), tr X`_i Y`_i = 1 /\
- forall (j : 'I_m), j != i -> tr X`_i Y`_j = 0}.
-Proof.
-pose Uv := subvs_vectType U; pose Fv := subvs_FalgType (1%AS : {aspace L0});
-pose HomV := [vectType _ of 'Hom(Uv, Fv)].
-pose tr_sub : Uv -> Uv -> Fv := fun u v => (tr (vsval u) (vsval v))%:A.
-have HomVdim : \dim {:HomV} = m by rewrite dimvf /Vector.dim /= /Vector.dim /= dimv1 muln1.
-have [f fH] : {f : 'Hom(Uv, HomV) | forall u, f u =1 tr_sub u}.
- have lf1 u : linear (tr_sub u) by move=> c x y; rewrite /tr_sub linearP scalerDl scalerA.
- have lf2 : linear (fun u => linfun (Linear (lf1 u))).
- move=> c x y; rewrite -lfunP => v; rewrite add_lfunE scale_lfunE !lfunE /= /tr_sub.
- by rewrite tr_sym linearP scalerDl scalerA /=; congr (_ + _); rewrite tr_sym.
- by exists (linfun (Linear lf2)) => u v; rewrite !lfunE.
-have [Xdual XdualH] : {Xdual : m.-tuple HomV |
- forall (i : 'I_m) u, Xdual`_i u = (coord X i (vsval u))%:A}.
- have lg (i : 'I_m) : linear (fun u : Uv => (coord X i (vsval u))%:A : Fv).
- by move=> c x y; rewrite linearP /= scalerDl scalerA.
- exists (mktuple (fun i => linfun (Linear (lg i)))) => i u.
- by rewrite -tnth_nth tnth_mktuple !lfunE.
-have [finv finvH] : {finv : 'Hom(HomV, L0) | finv =1 vsval \o (f^-1)%VF}.
- by exists (linfun vsval \o f^-1)%VF => u; rewrite comp_lfunE lfunE.
-pose Y := map_tuple finv Xdual; exists Y => Und Xb.
-have Ydef (i : 'I_m) : Y`_i = finv Xdual`_i by rewrite -!tnth_nth tnth_map.
-have XiU (i : 'I_m) : X`_i \in U by apply/(basis_mem Xb)/mem_nth; rewrite size_tuple.
-have Xii (i : 'I_m) : coord X i X`_i = 1%:R.
- by rewrite coord_free ?eqxx //; apply (basis_free Xb).
-have Xij (i j : 'I_m) : j != i -> coord X i X`_j = 0%:R.
- by rewrite coord_free; [move=> /negbTE -> | apply (basis_free Xb)].
-have Xdualb : basis_of fullv Xdual.
- suffices Xdualf : free Xdual.
- rewrite /basis_of Xdualf andbC /= -dimv_leqif_eq ?subvf // eq_sym HomVdim.
- by move: Xdualf; rewrite /free => /eqP => ->; rewrite size_tuple.
- apply/freeP => k sX i.
- suffices: (\sum_(i < m) k i *: Xdual`_i) (vsproj U X`_i) = (k i)%:A.
- by rewrite sX zero_lfunE => /esym /eqP; rewrite scaler_eq0 oner_eq0 orbF => /eqP.
- rewrite sum_lfunE (bigD1 i) //= scale_lfunE XdualH vsprojK // Xii.
- rewrite scaler_nat -[RHS]addr0; congr (_ + _); apply/big1 => j; rewrite eq_sym => ineqj.
- by rewrite scale_lfunE XdualH vsprojK ?Xij // scaler_nat scaler0.
-have finj : (lker f = 0)%VS.
- apply/eqP; rewrite -subv0; apply/subvP=> u; rewrite memv_ker memv0 => /eqP-f0.
- apply/contraT => un0; have {un0} [k [kiU /negP[]]] := Und (vsval u) un0 (subvsP u).
- have /eqP := fH u (vsproj U k).
- by rewrite /tr_sub vsprojK // f0 zero_lfunE eq_sym scaler_eq0 oner_eq0 orbF.
-have flimg : limg f = fullv.
- apply/eqP; rewrite -dimv_leqif_eq ?subvf // limg_dim_eq; last by rewrite finj capv0.
- by rewrite HomVdim dimvf /Vector.dim.
-have finvK : cancel finv (f \o vsproj U).
- by move=> u; rewrite finvH /= vsvalK; apply/limg_lfunVK; rewrite flimg memvf.
-have finv_inj : (lker finv = 0)%VS by apply/eqP/lker0P/(can_inj finvK).
-have finv_limg : limg finv = U.
- apply/eqP; rewrite -dimv_leqif_eq; first by rewrite limg_dim_eq ?HomVdim ?finv_inj ?capv0.
- by apply/subvP => u /memv_imgP [h _] ->; rewrite finvH subvsP.
-have Xt (i j : 'I_m) : (f \o vsproj U) Y`_j (vsproj U X`_i) = (tr Y`_j X`_i)%:A.
- by rewrite fH /tr_sub !vsprojK // Ydef finvH subvsP.
-have Xd (i j : 'I_m) : (f \o vsproj U) Y`_j (vsproj U X`_i) = Xdual`_j (vsproj U X`_i).
- by rewrite Ydef finvK.
-have Ainj := fmorph_inj [rmorphism of in_alg Fv].
-split => [| i]; first by rewrite -{1}finv_limg limg_basis_of // capfv finv_inj.
-split => [| j]; first by have := Xt i i; rewrite tr_sym Xd XdualH vsprojK // Xii => /Ainj.
-by rewrite eq_sym => inj; have := Xt i j; rewrite tr_sym Xd XdualH vsprojK // Xij // => /Ainj.
-Qed.
-
-Definition dual_basis : m.-tuple L0 := sval dual_basis_def.
-
-Hypothesis Und : ndeg tr U.
-Hypothesis Xb : basis_of U X.
-
-Lemma dualb_basis : basis_of U dual_basis.
-Proof. by have [Yb _] := svalP dual_basis_def Und Xb; apply Yb. Qed.
-
-Lemma dualb_orth :
- forall (i : 'I_m), tr X`_i dual_basis`_i = 1 /\
- forall (j : 'I_m), j != i -> tr X`_i dual_basis`_j = 0.
-Proof. by have [_] := svalP dual_basis_def Und Xb. Qed.
-
-End Trace.
-
-Section TraceFieldOver.
-
-Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (K L : {subfield L0}).
-
-Implicit Types k l : L0.
-
-Let K' := subvs_fieldType K.
-Let L0' := fieldOver_fieldExtType K.
-
-Definition trK : L0 -> L0 -> K' := tr (aspaceOver K L).
-
-Lemma trK_ndeg (U : {aspace L0}) : (K <= U)%VS ->
- (ndeg trK U <-> ndeg (tr (aspaceOver K L)) (aspaceOver K U)).
-Proof.
-move=> UsubL; have UU' : aspaceOver K U =i U := mem_aspaceOver UsubL.
-split => [ndK l lnz | nd l lnz].
- by rewrite UU' => liU; have [k] := ndK l lnz liU; exists k; rewrite UU'.
-by rewrite -UU' => liU'; have [k] := nd l lnz liU'; exists k; rewrite -UU'.
-Qed.
-
-Hypothesis Asubr : subring_closed A.
-Hypothesis Aint : int_closed A.
-Hypothesis Afrac : is_frac_field A K.
-Hypothesis AsubL : {subset A <= L}.
-
-Lemma trK_int k l : integral A k -> integral A l -> ((trK k l)%:A : L0') \in A.
-Proof. admit. Admitted.
-
-End TraceFieldOver.
-
-Section BasisLemma.
-
-Section Modules.
-
-Variable (F : fieldType) (L0 : fieldExtType F) (A : pred L0).
-
-Implicit Types M N : L0 -> Prop.
-
-Definition module M := M 0 /\ forall a k l, a \in A -> M k -> M l -> M (a * k - l).
-Definition span_mod X m := exists2 r : (size X).-tuple L0,
- all A r & m = \sum_(i < size X) r`_i * X`_i.
-Definition submod M N := forall m, M m -> N m.
-Definition basis_of_mod M X := free X /\ submod M (span_mod X) /\ forall m, m \in X -> M m.
-Definition ideal N := submod N A /\ module N.
-Definition PID := forall (N : L0 -> Prop), ideal N ->
- exists2 a, N a & forall v, N v -> exists2 d, d \in A & d * a = v.
-
-Variable L : {subfield L0}.
-
-Hypothesis Asubr : subring_closed A.
-Hypothesis AsubL : {subset A <= L}.
-
-Lemma int_mod_closed : module (int_closure A L).
-Proof.
-have [A0 _] : zmod_closed A := Asubr; split.
- by rewrite /int_closure mem0v; split => //; apply/int_clos_incl.
-move=> a k l aA [kI kL] [lI lL]; split; first by rewrite rpredB ?rpredM //; apply/AsubL.
-by apply/int_zmod_closed => //; apply/int_mulr_closed => //; apply/int_clos_incl.
-Qed.
-
-End Modules.
-
-Variable (F0 : fieldType) (E : fieldExtType F0) (I : pred E) (Ifr K : {subfield E}).
-
-Hypothesis Isubr : subring_closed I.
-Hypothesis Iint : int_closed I.
-Hypothesis Ipid : PID I.
-Hypothesis Ifrac : is_frac_field I Ifr.
-Hypothesis IsubK : {subset I <= K}.
-Hypothesis Knd : ndeg (trK Ifr K) K.
-
-Lemma basis_lemma : exists X : (\dim_Ifr K).-tuple E, basis_of_mod I (int_closure I K) X.
-Proof.
-suffices FisK (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (L : {subfield L0}) :
- subring_closed A -> int_closed A -> PID A -> is_frac_field A 1 -> ndeg (tr L) L ->
- exists2 X, size X == \dim L & basis_of_mod A (int_closure A L) X.
- have [Isub [f /all_and2[fH0 fHk]]] := Ifrac; pose F := subvs_fieldType Ifr;
- pose L0 := fieldOver_fieldExtType Ifr; pose L := aspaceOver Ifr K.
- have Ifrsub : (Ifr <= K)%VS.
- apply/subvP=> x /fHk-[fHx fHxx]; rewrite -(mulKf (fH0 x) x).
- by apply/memvM; rewrite ?memvV; apply/IsubK.
- have LK : L =i K := mem_aspaceOver Ifrsub; have Lnd : ndeg (tr L) L by rewrite -trK_ndeg.
- have Ifrac1 : is_frac_field (I : pred L0) 1.
- split; first by move=> a; rewrite /= trivial_fieldOver; apply/Isub.
- by exists f => k; split => //; rewrite trivial_fieldOver => /fHk.
- have [X Xsize [Xf [Xs Xi]]] := FisK _ L0 _ _ Isubr Iint Ipid Ifrac1 Lnd.
- rewrite -dim_aspaceOver => //; have /eqP <- := Xsize; exists (in_tuple X); split; last first.
- split => m; last by move=> /Xi; rewrite /int_closure LK.
- by rewrite /int_closure -LK => /Xs.
- move: Xf; rewrite -{1}(in_tupleE X) => /freeP-XfL0; apply/freeP => k.
- have [k' kk'] : exists k' : 'I_(size X) -> F, forall i, (k i)%:A = vsval (k' i).
- by exists (fun i => vsproj Ifr (k i)%:A) => i; rewrite vsprojK ?rpredZ ?mem1v.
- pose Ainj := fmorph_inj [rmorphism of in_alg E].
- move=> kS i; apply/Ainj => {Ainj} /=; rewrite scale0r kk'; apply/eqP.
- rewrite raddf_eq0; last by apply/subvs_inj.
- by apply/eqP/XfL0; rewrite -{3}kS => {i}; apply/eq_bigr => i _; rewrite -[RHS]mulr_algl kk'.
-move=> Asubr Aint Apid Afrac1 Lnd; pose n := \dim L; have Amulr : mulr_closed A := Asubr.
-have [A0 _] : zmod_closed A := Asubr; have [Asub1 _] := Afrac1.
-have AsubL : {subset A <= L} by move=> a /Asub1; apply (subvP (sub1v L) a).
-have [b1 [b1B b1H]] : exists (b1 : n.-tuple L0), [/\ basis_of L b1 &
- forall i : 'I_n, integral A b1`_i].
- pose b0 := vbasis L; have [f /all_and3-[fH0 fHa fHi]] := frac_field_alg_int Asubr Afrac1.
- pose d := \prod_(i < n) f b0`_i; pose b1 := map_tuple (amulr d) b0.
- exists b1; split; last first => [i|].
- rewrite (nth_map 0) /d; last by rewrite size_tuple.
- rewrite lfunE /= (bigD1 i) //= mulrA; apply/int_mulr_closed => //; first by rewrite mulrC.
- by apply/int_clos_incl => //; rewrite rpred_prod.
- have dun : d \is a GRing.unit by rewrite unitfE /d; apply/prodf_neq0 => i _.
- have lim : (amulr d @: L = L)%VS.
- have dinA : d \in A by rewrite rpred_prod.
- rewrite limg_amulr; apply/eqP; rewrite -dimv_leqif_eq; first by rewrite dim_cosetv_unit.
- by apply/prodv_sub => //; apply/AsubL.
- rewrite -lim limg_basis_of //; last by apply/vbasisP.
- by have /eqP -> := lker0_amulr dun; rewrite capv0.
-have [b2 [/andP[/eqP-b2s b2f] b2H]] : exists (b2 : n.-tuple L0), [/\ basis_of L b2 &
- forall b, b \in L -> integral A b -> forall i, (coord b2 i b)%:A \in A].
- pose b2 := dual_basis L b1; have b2B := dualb_basis Lnd b1B; exists b2; rewrite b2B.
- split => // b biL bint i; suffices <-: tr L b1`_i b = coord b2 i b by rewrite tr_int.
- have -> : tr L b1`_i b = \sum_(j < n) coord b2 j b * tr L b1`_i b2`_j.
- by rewrite {1}(coord_basis b2B biL) linear_sum; apply/eq_bigr => j _; rewrite linearZ.
- rewrite (bigD1 i); have [oi oj //] := dualb_orth Lnd b1B i; rewrite /= oi mulr1 -[RHS]addr0.
- by congr (_ + _); apply/big1 => j jneqi; rewrite (oj j jneqi) mulr0.
-have Mbasis k (X : k.-tuple L0) M : free X -> module A M -> submod M (span_mod A X) ->
- exists B, basis_of_mod A M B.
- move: k X M; elim=> [X M _ _ Ms | k IH X M Xf [M0 Mm] Ms].
- by exists [::]; rewrite /basis_of_mod nil_free; move: Ms; rewrite tuple0.
- pose X1 := [tuple of behead X]; pose v := thead X.
- pose M1 := fun m => M m /\ coord X ord0 m = 0.
- pose M2 := fun (a : L0) => exists2 m, M m & (coord X ord0 m)%:A = a.
- have scr r m : r \in A -> exists c, r * m = c *: m.
- by move=> /Asub1/vlineP[c ->]; exists c; rewrite mulr_algl.
- have span_coord m : M m -> exists r : (k.+1).-tuple L0,
- [/\ all A r, m = \sum_(i < k.+1) r`_i * X`_i & forall i, (coord X i m)%:A = r`_i].
- have seqF (s : seq L0) : all A s -> exists s', s = [seq c%:A | c <- s'].
- elim: s => [_| a l IHl /= /andP[/Asub1/vlineP[c ->]]]; first by exists [::].
- by move=> /IHl[s' ->]; exists (c :: s').
- move=> mM; have := Ms m mM; rewrite /span_mod !size_tuple => -[r rA rS].
- exists r; split => //; have [rF rFr] := seqF r rA => {seqF}; rewrite rFr in rA.
- have rFs : size rF = k.+1 by rewrite -(size_tuple r) rFr size_map.
- have -> : m = \sum_(i < k.+1) rF`_i *: X`_i.
- by rewrite rS; apply/eq_bigr => i _; rewrite rFr (nth_map 0) ?rFs // mulr_algl.
- by move=> i; rewrite coord_sum_free // rFr (nth_map 0) ?rFs.
- have [B1 [B1f [B1s B1A]]] : exists B1, basis_of_mod A M1 B1.
- have X1f : free X1 by move: Xf; rewrite (tuple_eta X) free_cons => /andP[_].
- apply/(IH X1) => //.
- rewrite /module /M1 linear0; split => // a x y aA [xM xfc0] [yM yfc0].
- have := Mm a x y aA xM yM; move: aA => /Asub1/vlineP[r] ->; rewrite mulr_algl => msc.
- by rewrite /M1 linearB linearZ /= xfc0 yfc0 subr0 mulr0.
- move=> m [mM mfc0]; have := span_coord m mM => -[r [rA rS rC]].
- move: mfc0 (rC 0) ->; rewrite scale0r => r0; rewrite /span_mod size_tuple.
- exists [tuple of behead r]; first by apply/allP => a /mem_behead/(allP rA).
- by rewrite rS big_ord_recl -r0 mul0r add0r; apply/eq_bigr => i _; rewrite !nth_behead.
- have [a [w wM wC] aG] : exists2 a, M2 a & forall v, M2 v -> exists2 d, d \in A & d * a = v.
- apply/Apid; split.
- move=> c [m mM <-]; have := span_coord m mM => -[r [/all_nthP-rA _ rC]].
- by move: rC ->; apply/rA; rewrite size_tuple.
- split; first by exists 0 => //; rewrite linear0 scale0r.
- move=> c x y cA [mx mxM mxC] [my myM myC]; have := Mm c mx my cA mxM myM.
- move: cA => /Asub1/vlineP[r] ->; rewrite !mulr_algl => mC.
- by exists (r *: mx - my) => //; rewrite linearB linearZ /= scalerBl -scalerA mxC myC.
- pose Ainj := fmorph_inj [rmorphism of in_alg L0].
- have mcM1 m : M m -> exists2 d, d \in A & d * a = (coord X 0 m)%:A.
- by move=> mM; apply/aG; exists m.
- case: (eqVneq a 0) => [| an0].
- exists B1; split => //; split => [m mM |]; last by move=> m /B1A[mM].
- apply/B1s; split => //; apply/Ainj => /=; have [d _ <-] := mcM1 m mM.
- by rewrite a0 mulr0 scale0r.
- exists (w :: B1); split.
- rewrite free_cons B1f andbT; move: an0; apply/contra; move: wC <-.
- rewrite -(in_tupleE B1) => /coord_span ->; apply/eqP.
- rewrite linear_sum big1 ?scale0r => //= i _; rewrite linearZ /=.
- by have [_] := B1A B1`_i (mem_nth 0 (ltn_ord _)) => ->; rewrite mulr0.
- split => [m mM | m]; last by rewrite in_cons => /orP; case=> [/eqP ->|/B1A[mM]].
- have [d dA dam] := mcM1 m mM; have mdwM1 : M1 (m - d * w).
- split; [have Mdwm := Mm d w m dA wM mM; have := Mm _ _ _ A0 Mdwm Mdwm |].
- by rewrite mul0r sub0r opprB.
- move: dA dam => /Asub1/vlineP[r] -> {d}; rewrite !mulr_algl linearB linearZ /= => rac.
- by apply/Ainj => /=; rewrite scalerBl -scalerA wC rac subrr scale0r.
- have [r rA rS] := B1s _ mdwM1; exists [tuple of d :: r]; first by rewrite /= rA andbT.
- by move: rS => /eqP; rewrite subr_eq addrC => /eqP ->; rewrite /= big_ord_recl.
-have [X Xb] : exists X, basis_of_mod A (int_closure A L) X.
- apply/(Mbasis _ b2 _ b2f) => [| m [mL mI]]; first by apply/int_mod_closed.
- pose r : n.-tuple L0 := [tuple (coord b2 i m)%:A | i < n]; rewrite /span_mod size_tuple.
- exists r; have rci (i : 'I_n) : r`_i = (coord b2 i m)%:A by rewrite -tnth_nth tnth_mktuple.
- apply/(all_nthP 0) => i; rewrite size_tuple => iB.
- by have -> := rci (Ordinal iB); apply/b2H.
- move: mL; rewrite -b2s => /coord_span ->; apply/eq_bigr => i _.
- by rewrite rci mulr_algl.
-exists X => //; move: Xb => [/eqP-Xf [Xs Xg]]; rewrite -Xf eqn_leq; apply/andP; split.
- by apply/dimvS/span_subvP => m /Xg[mL _].
-have /andP[/eqP-b1s _] := b1B; rewrite -b1s; apply/dimvS/span_subvP => b /tnthP-[i ->] {b}.
-rewrite (tnth_nth 0); have [r /all_tnthP-rA ->] : span_mod A X b1`_i.
- by apply/Xs; rewrite /int_closure (basis_mem b1B) ?mem_nth ?size_tuple => //.
-apply/rpred_sum => j _; have := rA j; rewrite (tnth_nth 0) => /Asub1/vlineP[c ->].
-by rewrite mulr_algl; apply/rpredZ/memv_span/mem_nth.
-Qed.
-
-End BasisLemma. \ No newline at end of file