aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2019-08-30 11:30:21 +0200
committerKazuhiko Sakaguchi2019-10-30 23:19:33 +0100
commitd60c67b8f33f55e11ca159246d2a447102f10f20 (patch)
tree74fecfdcc5b2429e5cf199f9daa48a56540e2359 /mathcomp/algebra
parentc5bd1d4d29021688db59495a8b60c84f5dea6b77 (diff)
Change the order of arguments in `ltngtP`
from `ltngtP m n : compare_nat m n (m <= n) (n <= m) (m < n) (n < m) (n == m) (m == n)` to `ltngtP m n : compare_nat m n (n == m) (m == n) (n <= m) (m <= n) (n < m) (m < n)`, to make it tries to match subterms with `m < n` first, `m <= n`, then `m == n`.
Diffstat (limited to 'mathcomp/algebra')
-rw-r--r--mathcomp/algebra/polydiv.v2
-rw-r--r--mathcomp/algebra/ssrint.v10
2 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v
index b65742d..aa076a2 100644
--- a/mathcomp/algebra/polydiv.v
+++ b/mathcomp/algebra/polydiv.v
@@ -3243,7 +3243,7 @@ move=> hsp /=; have [->|p_neq0] := altP (p =P 0).
by rewrite size_poly0 expr0 mulr1 dvd0p=> /(_ isT).
have [|ncop_pq] := boolP (coprimep _ _); first by rewrite dvdp_mulr ?dvdpp.
have g_gt1: (1 < size (gcdp p q))%N.
- have [|//|/eqP] := ltngtP; last by rewrite -coprimep_def (negPf ncop_pq).
+ have [//||/esym/eqP] := ltngtP; last by rewrite -coprimep_def (negPf ncop_pq).
by rewrite ltnS leqn0 size_poly_eq0 gcdp_eq0 (negPf p_neq0).
have sd : (size (p %/ gcdp p q) < size p)%N.
rewrite size_divp -?size_poly_eq0 -(subnKC g_gt1) // add2n /=.
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v
index 3c4c002..2a17a4a 100644
--- a/mathcomp/algebra/ssrint.v
+++ b/mathcomp/algebra/ssrint.v
@@ -138,9 +138,9 @@ Lemma oppzK : involutive oppz. Proof. by do 2?case. Qed.
Lemma oppz_add : {morph oppz : m n / m + n}.
Proof.
-move=> [[|n]|n] [[|m]|m] /=; rewrite ?NegzE ?oppzK ?addnS ?addn0 ?subn0 //;
- rewrite ?ltnS[m <= n]leqNgt [n <= m]leqNgt; case: ltngtP=> hmn /=;
- by rewrite ?hmn ?subnn // ?oppzK ?subSS ?subnS ?prednK // ?subn_gt0.
+by move=> [[|n]|n] [[|m]|m] /=; rewrite ?addn0 ?subn0 ?addnS //;
+ rewrite !NegzE !ltnS !subSS; case: ltngtP => [?|?|->];
+ rewrite ?subnn // ?oppzK ?subnS ?prednK // subn_gt0.
Qed.
Lemma add1Pz (n : int) : 1 + (n - 1) = n.
@@ -154,9 +154,9 @@ Qed.
Lemma addSnz (m : nat) (n : int) : (m.+1%N) + n = 1 + (m + n).
Proof.
move: m n=> [|m] [] [|n] //=; rewrite ?add1n ?subn1 // !(ltnS, subSS).
-rewrite [n <= m]leqNgt; case: ltngtP=> hmn /=; rewrite ?hmn ?subnn //.
+case: ltngtP=> hnm /=; rewrite ?hnm ?subnn //.
by rewrite subnS add1n prednK ?subn_gt0.
-by rewrite ltnS leqn0 subn_eq0 leqNgt hmn /= subnS subn1.
+by rewrite ltnS leqn0 subn_eq0 leqNgt hnm /= subnS subn1.
Qed.
Lemma addSz (m n : int) : (1 + m) + n = 1 + (m + n).