diff options
| author | Kazuhiko Sakaguchi | 2019-09-03 17:07:44 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2019-12-11 14:26:52 +0100 |
| commit | b0a01acd904cbfcaf47d821b3b5e72098b9efb07 (patch) | |
| tree | 7a545a78cd553d6928d277260af3ddaa22979a86 /mathcomp/algebra | |
| parent | 581c08d1b045dbf51418df17350c84fda4eada93 (diff) | |
Add (meet|join)_(l|r), some renamings, and small cleanups
New lemmas:
- meet_l, meet_r, join_l, join_r.
Renamings:
- Order.BLatticeTheory.lexUl -> disjoint_lexUl,
- Order.BLatticeTheory.lexUr -> disjoint_lexUr,
- Order.TBLatticeTheory.lexIl -> cover_leIxl,
- Order.TBLatticeTheory.lexIr -> cover_leIxr.
Use `Order.TTheory` instead of `Order.Theory` if applicable
Diffstat (limited to 'mathcomp/algebra')
| -rw-r--r-- | mathcomp/algebra/intdiv.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/interval.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/rat.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrint.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 12 |
5 files changed, 9 insertions, 11 deletions
diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v index eaa256c..2a485fd 100644 --- a/mathcomp/algebra/intdiv.v +++ b/mathcomp/algebra/intdiv.v @@ -46,7 +46,7 @@ Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. -Import Order.Theory GRing.Theory Num.Theory. +Import Order.TTheory GRing.Theory Num.Theory. Local Open Scope ring_scope. Definition divz (m d : int) := diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v index 48d5254..b34c1ad 100644 --- a/mathcomp/algebra/interval.v +++ b/mathcomp/algebra/interval.v @@ -40,7 +40,7 @@ Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. -Import Order.Theory Order.Syntax GRing.Theory Num.Theory. +Import Order.TTheory Order.Syntax GRing.Theory Num.Theory. Local Notation mid x y := ((x + y) / 2%:R). diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v index 4ef050f..8478d93 100644 --- a/mathcomp/algebra/rat.v +++ b/mathcomp/algebra/rat.v @@ -19,7 +19,7 @@ From mathcomp Require Import ssrint. (* ratr x == generic embedding of (r : R) into an arbitrary unitring. *) (******************************************************************************) -Import Order.Theory GRing.Theory Num.Theory. +Import Order.TTheory GRing.Theory Num.Theory. Set Implicit Arguments. Unset Strict Implicit. diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v index cbd6fa1..b408f9d 100644 --- a/mathcomp/algebra/ssrint.v +++ b/mathcomp/algebra/ssrint.v @@ -40,7 +40,7 @@ Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. -Import Order.Theory GRing.Theory Num.Theory. +Import Order.TTheory GRing.Theory Num.Theory. Delimit Scope int_scope with Z. Local Open Scope int_scope. diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index d068135..2906412 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -125,7 +125,7 @@ Unset Printing Implicit Defensive. Local Open Scope order_scope. Local Open Scope ring_scope. -Import Order.Theory Order.Def Order.Syntax GRing.Theory. +Import Order.TTheory Order.Def Order.Syntax GRing.Theory. Reserved Notation "<= y" (at level 35). Reserved Notation ">= y" (at level 35). @@ -5478,12 +5478,12 @@ Implicit Types x y z : R. Section MinMax. Definition minrC : @commutative R R min := @meetC _ R. Definition minrr : @idempotent R min := @meetxx _ R. -Definition minr_l x y : x <= y -> min x y = x := elimT meet_idPl. -Definition minr_r x y : y <= x -> min x y = y := elimT meet_idPr. +Definition minr_l x y : x <= y -> min x y = x := @meet_l _ _ x y. +Definition minr_r x y : y <= x -> min x y = y := @meet_r _ _ x y. Definition maxrC : @commutative R R max := @joinC _ R. Definition maxrr : @idempotent R max := @joinxx _ R. -Definition maxr_l x y : y <= x -> max x y = x := elimT join_idPr. -Definition maxr_r x y : x <= y -> max x y = y := elimT join_idPl. +Definition maxr_l x y : y <= x -> max x y = x := @join_l _ _ x y. +Definition maxr_r x y : x <= y -> max x y = y := @join_r _ _ x y. Definition minrA x y z : min x (min y z) = min (min x y) z := meetA x y z. Definition minrCA : @left_commutative R R min := meetCA. Definition minrAC : @right_commutative R R min := meetAC. @@ -5674,5 +5674,3 @@ Notation "[ 'arg' 'maxr_' ( i > i0 ) F ]" := [arg maxr_(i > i0 | true) F] End Num. End mc_1_9. - -Export mc_1_9 mc_1_9.Num.Syntax. |
