diff options
| author | Kazuhiko Sakaguchi | 2019-11-15 19:46:20 +0900 |
|---|---|---|
| committer | Kazuhiko Sakaguchi | 2020-03-15 14:11:47 +0900 |
| commit | 85039b4c536a67ce936c079f519a9a8b6c33f1d6 (patch) | |
| tree | 8c9e74b01ef801758686d0ca5dfd36c2bc0ae405 /mathcomp/algebra | |
| parent | d2443948206ddf78706add540c27341da4abc906 (diff) | |
Extend comparison predicates for nat with minn and maxn
Diffstat (limited to 'mathcomp/algebra')
| -rw-r--r-- | mathcomp/algebra/polydiv.v | 105 |
1 files changed, 36 insertions, 69 deletions
diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v index afd0c6c..a7d3b1e 100644 --- a/mathcomp/algebra/polydiv.v +++ b/mathcomp/algebra/polydiv.v @@ -241,7 +241,7 @@ Qed. Lemma leq_rmodp m d : size (rmodp m d) <= size m. Proof. -case: (ltnP (size m) (size d)) => [|h]; first by move/rmodp_small->. +have [/rmodp_small -> //|h] := ltnP (size m) (size d). have [->|d0] := eqVneq d 0; first by rewrite rmodp0. by apply: leq_trans h; apply: ltnW; rewrite ltn_rmodp. Qed. @@ -1106,7 +1106,7 @@ Qed. Lemma dvdp_leq p q : q != 0 -> p %| q -> size p <= size q. Proof. move=> nq0 /modp_eq0P. -by case: ltngtP => // /modp_small -> /eqP; rewrite (negPf nq0). +by case: leqP => // /modp_small -> /eqP; rewrite (negPf nq0). Qed. Lemma eq_dvdp c quo q p : c != 0 -> c *: p = quo * q -> q %| p. @@ -1359,24 +1359,16 @@ by rewrite /eqp (dvdp_trans Dp) // (dvdp_trans qD). Qed. Lemma eqp_ltrans : left_transitive (@eqp R). -Proof. -by move=> p q r pq; apply/idP/idP; apply: eqp_trans; rewrite // eqp_sym. -Qed. +Proof. exact: sym_left_transitive eqp_sym eqp_trans. Qed. Lemma eqp_rtrans : right_transitive (@eqp R). -Proof. by move=> x y xy z; rewrite eqp_sym (eqp_ltrans xy) eqp_sym. Qed. +Proof. exact: sym_right_transitive eqp_sym eqp_trans. Qed. Lemma eqp0 p : (p %= 0) = (p == 0). -Proof. -have [->|Ep] := eqVneq; first by rewrite ?eqpxx. -by apply/negP => /andP [_]; rewrite /dvdp modp0 (negPf Ep). -Qed. +Proof. by apply/idP/eqP => [/andP [_ /dvd0pP] | -> //]. Qed. Lemma eqp01 : 0 %= (1 : {poly R}) = false. -Proof. -case: eqpP => // -[[c1 c2]] /andP [c1n0 c2n0] /= /esym /eqP. -by rewrite scaler0 alg_polyC polyC_eq0 (negPf c2n0). -Qed. +Proof. by rewrite eqp_sym eqp0 oner_eq0. Qed. Lemma eqp_scale p c : c != 0 -> c *: p %= p. Proof. @@ -1597,12 +1589,12 @@ Proof. have [r] := ubnP (minn (size q) (size p)); elim: r => // r IHr in p q *. have [-> | nz_p] := eqVneq p 0; first by rewrite gcd0p dvdpp andbT. have [-> | nz_q] := eqVneq q 0; first by rewrite gcdp0 dvdpp /=. -rewrite ltnS gcdpE minnC /minn; case: ltnP => [lt_pq | le_pq] le_qr. - suffices /IHr/andP[E1 E2]: minn (size p) (size (q %% p)) < r. - by rewrite E2 (dvdp_mod _ E2). +rewrite ltnS gcdpE; case: leqP => [le_pq | lt_pq] le_qr. + suffices /IHr/andP[E1 E2]: minn (size q) (size (p %% q)) < r. + by rewrite E2 andbT (dvdp_mod _ E2). by rewrite gtn_min orbC (leq_trans _ le_qr) ?ltn_modp. -suffices /IHr/andP[E1 E2]: minn (size q) (size (p %% q)) < r. - by rewrite E2 andbT (dvdp_mod _ E2). +suffices /IHr/andP[E1 E2]: minn (size p) (size (q %% p)) < r. + by rewrite E2 (dvdp_mod _ E2). by rewrite gtn_min orbC (leq_trans _ le_qr) ?ltn_modp. Qed. @@ -1623,10 +1615,10 @@ apply/idP/andP=> [dv_pmn | []]. have [r] := ubnP (minn (size n) (size m)); elim: r => // r IHr in m n *. have [-> | nz_m] := eqVneq m 0; first by rewrite gcd0p. have [-> | nz_n] := eqVneq n 0; first by rewrite gcdp0. -rewrite gcdpE minnC ltnS /minn; case: ltnP => [lt_mn | le_nm] le_r dv_m dv_n. - apply: IHr => //; last by rewrite -(dvdp_mod _ dv_m). +rewrite gcdpE ltnS; case: leqP => [le_nm | lt_mn] le_r dv_m dv_n. + apply: IHr => //; last by rewrite -(dvdp_mod _ dv_n). by rewrite gtn_min orbC (leq_trans _ le_r) ?ltn_modp. -apply: IHr => //; last by rewrite -(dvdp_mod _ dv_n). +apply: IHr => //; last by rewrite -(dvdp_mod _ dv_m). by rewrite gtn_min orbC (leq_trans _ le_r) ?ltn_modp. Qed. @@ -1702,11 +1694,8 @@ Proof. by move/dvdp_gcd_idl; exact/eqp_trans/gcdpC. Qed. Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l. Proof. -wlog leqmn: k l / k <= l. - move=> hwlog; case: (leqP k l); first exact: hwlog. - by move/ltnW; rewrite minnC; move/hwlog; apply/eqp_trans/gcdpC. -rewrite (minn_idPl leqmn); move/subnK: leqmn<-; rewrite exprD. -by apply: eqp_trans (gcdp_mull _ _) _; apply: eqpxx. +case: leqP => [|/ltnW] /subnK <-; rewrite exprD; first exact: gcdp_mull. +exact/(eqp_trans (gcdpC _ _))/gcdp_mull. Qed. Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0). @@ -1730,40 +1719,33 @@ by rewrite -(eqp_dvdr _ eqr) dvdp_gcdl (eqp_dvdr _ eqr) dvdp_gcdl. Qed. Lemma eqp_gcd p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> gcdp p1 q1 %= gcdp p2 q2. -Proof. -move=> e1 e2. -by apply: eqp_trans (eqp_gcdr _ e2); apply: eqp_trans (eqp_gcdl _ e1). -Qed. +Proof. move=> e1 e2; exact: eqp_trans (eqp_gcdr _ e2) (eqp_gcdl _ e1). Qed. Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q. Proof. move: {2}(minn (size p) (size q)) (leqnn (minn (size p) (size q))) => n. elim: n p q => [p q|n ihn p q hs]. - rewrite leqn0 /minn; case: ltnP => _; rewrite size_poly_eq0; move/eqP->. + rewrite leqn0; case: ltnP => _; rewrite size_poly_eq0; move/eqP->. by rewrite gcd0p rgcd0p eqpxx. by rewrite gcdp0 rgcdp0 eqpxx. have [-> | pn0] := eqVneq p 0; first by rewrite gcd0p rgcd0p eqpxx. have [-> | qn0] := eqVneq q 0; first by rewrite gcdp0 rgcdp0 eqpxx. -rewrite gcdpE rgcdpE; case: ltnP => sp. +rewrite gcdpE rgcdpE; case: ltnP hs => sp hs. have e := eqp_rmod_mod q p; apply/eqp_trans/ihn: (eqp_gcdl p e). - rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) //. - by rewrite (minn_idPl (ltnW _)) ?ltn_modp. + by rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) ?ltn_modp. have e := eqp_rmod_mod p q; apply/eqp_trans/ihn: (eqp_gcdl q e). -rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) //. -by rewrite (minn_idPr _) ?ltn_modp. +by rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) ?ltn_modp. Qed. -Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n. +Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n. Proof. -have [-> | mn0] := eqVneq m 0; first by rewrite modp0 eqpxx. -have : (lead_coef m) ^+ (scalp n m) != 0 by rewrite expf_neq0 // lead_coef_eq0. -move/(gcdp_scaler m n); apply/eqp_trans. -by rewrite divp_eq eqp_sym gcdp_addl_mul. +have [/modp_small -> // | lenm] := ltnP (size m) (size n). +by rewrite (gcdpE m n) ltnNge lenm. Qed. -Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n. +Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n. Proof. -apply: eqp_trans (gcdpC _ _); apply: eqp_trans (gcdp_modr _ _); exact: gcdpC. +apply: eqp_trans (gcdpC _ _); apply: eqp_trans (gcdp_modl _ _); exact: gcdpC. Qed. Lemma gcdp_def d m n : @@ -2798,10 +2780,7 @@ by rewrite modp_scaler ?eqpxx // mulf_eq0 negb_or invr_eq0 c1n0. Qed. Lemma eqp_mod p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %% q1 %= p2 %% q2. -Proof. -move=> e1 e2; apply: eqp_trans (eqp_modpr _ e2). -by apply: eqp_trans (eqp_modpl _ e1); apply: eqpxx. -Qed. +Proof. move=> e1 e2; exact: eqp_trans (eqp_modpl _ e1) (eqp_modpr _ e2). Qed. Lemma eqp_divr (d m n : {poly F}) : m %= n -> (d %/ m) %= (d %/ n). Proof. @@ -2811,10 +2790,7 @@ by rewrite divp_scaler ?eqp_scale // ?invr_eq0 mulf_eq0 negb_or invr_eq0 c1n0. Qed. Lemma eqp_div p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %/ q1 %= p2 %/ q2. -Proof. -move=> e1 e2; apply: eqp_trans (eqp_divr _ e2). -by apply: eqp_trans (eqp_divl _ e1); apply: eqpxx. -Qed. +Proof. move=> e1 e2; exact: eqp_trans (eqp_divl _ e1) (eqp_divr _ e2). Qed. Lemma eqp_gdcor p q r : q %= r -> gdcop p q %= gdcop p r. Proof. @@ -2847,42 +2823,33 @@ case: ifP=> // _; apply: ihn => //; apply: eqp_trans (eqp_rdiv_div _ _) _. by apply: eqp_div => //; apply: eqp_trans (eqp_rgcd_gcd _ _) _; apply: eqp_gcd. Qed. -Lemma modp_opp p q : (- p) %% q = - (p %% q). -Proof. -have [-> | qn0] := eqVneq q 0; first by rewrite !modp0. -by apply: IdomainUnit.modp_opp; rewrite unitfE lead_coef_eq0. -Qed. - -Lemma divp_opp p q : (- p) %/ q = - (p %/ q). -Proof. -have [-> | qn0] := eqVneq q 0; first by rewrite !divp0 oppr0. -by apply: IdomainUnit.divp_opp; rewrite unitfE lead_coef_eq0. -Qed. - Lemma modp_add d p q : (p + q) %% d = p %% d + q %% d. Proof. have [-> | dn0] := eqVneq d 0; first by rewrite !modp0. by apply: IdomainUnit.modp_add; rewrite unitfE lead_coef_eq0. Qed. -Lemma modNp p q : (- p) %% q = - (p %% q). +Lemma modp_opp p q : (- p) %% q = - (p %% q). Proof. by apply/eqP; rewrite -addr_eq0 -modp_add addNr mod0p. Qed. +Lemma modNp p q : (- p) %% q = - (p %% q). Proof. exact: modp_opp. Qed. + Lemma divp_add d p q : (p + q) %/ d = p %/ d + q %/ d. Proof. have [-> | dn0] := eqVneq d 0; first by rewrite !divp0 addr0. by apply: IdomainUnit.divp_add; rewrite unitfE lead_coef_eq0. Qed. -Lemma divp_addl_mul_small d q r : - size r < size d -> (q * d + r) %/ d = q. +Lemma divp_opp p q : (- p) %/ q = - (p %/ q). +Proof. by apply/eqP; rewrite -addr_eq0 -divp_add addNr div0p. Qed. + +Lemma divp_addl_mul_small d q r : size r < size d -> (q * d + r) %/ d = q. Proof. move=> srd; rewrite divp_add (divp_small srd) addr0 mulpK //. by rewrite -size_poly_gt0; apply: leq_trans srd. Qed. -Lemma modp_addl_mul_small d q r : - size r < size d -> (q * d + r) %% d = r. +Lemma modp_addl_mul_small d q r : size r < size d -> (q * d + r) %% d = r. Proof. by move=> srd; rewrite modp_add modp_mull add0r modp_small. Qed. Lemma divp_addl_mul d q r : d != 0 -> (q * d + r) %/ d = q + r %/ d. |
