aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra
diff options
context:
space:
mode:
authorReynald Affeldt2020-06-05 00:49:15 +0900
committerReynald Affeldt2020-06-05 00:49:15 +0900
commit847cc0eab00c004b52195f8d63a763725524fe2f (patch)
tree71f8e94a1cc3f6809586c1f7a629f855139fb9df /mathcomp/algebra
parent33c29d4653ac5be781823ae5ede47c361f13d80f (diff)
fix naming
Diffstat (limited to 'mathcomp/algebra')
-rw-r--r--mathcomp/algebra/ssrnum.v24
1 files changed, 12 insertions, 12 deletions
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index 8184577..95c40cd 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -2924,10 +2924,10 @@ Proof. by move=> ?; rewrite real_ltr_distl // => /andP[]. Qed.
Lemma real_ler_distl_addr x y e : x - y \is real -> `|x - y| <= e -> x <= y + e.
Proof. by move=> ?; rewrite real_ler_distl // => /andP[]. Qed.
-Lemma real_ltr_distl_addrC x y e : x - y \is real -> `|x - y| < e -> y < x + e.
+Lemma real_ltr_distlC_addr x y e : x - y \is real -> `|x - y| < e -> y < x + e.
Proof. by rewrite realBC (distrC x) => ? /real_ltr_distl_addr; apply. Qed.
-Lemma real_ler_distl_addrC x y e : x - y \is real -> `|x - y| <= e -> y <= x + e.
+Lemma real_ler_distlC_addr x y e : x - y \is real -> `|x - y| <= e -> y <= x + e.
Proof. by rewrite realBC distrC => ? /real_ler_distl_addr; apply. Qed.
Lemma real_ltr_distl_subl x y e : x - y \is real -> `|x - y| < e -> x - e < y.
@@ -2936,10 +2936,10 @@ Proof. by move/real_ltr_distl_addr; rewrite ltr_sub_addr; apply. Qed.
Lemma real_ler_distl_subl x y e : x - y \is real -> `|x - y| <= e -> x - e <= y.
Proof. by move/real_ler_distl_addr; rewrite ler_sub_addr; apply. Qed.
-Lemma real_ltr_distl_sublC x y e : x - y \is real -> `|x - y| < e -> y - e < x.
+Lemma real_ltr_distlC_subl x y e : x - y \is real -> `|x - y| < e -> y - e < x.
Proof. by rewrite realBC distrC => ? /real_ltr_distl_subl; apply. Qed.
-Lemma real_ler_distl_sublC x y e : x - y \is real -> `|x - y| <= e -> y - e <= x.
+Lemma real_ler_distlC_subl x y e : x - y \is real -> `|x - y| <= e -> y - e <= x.
Proof. by rewrite realBC distrC => ? /real_ler_distl_subl; apply. Qed.
(* GG: pointless duplication }-( *)
@@ -3804,11 +3804,11 @@ Proof. exact: real_ltr_distl_addr. Qed.
Lemma ler_distl_addr x y e : `|x - y| <= e -> x <= y + e.
Proof. exact: real_ler_distl_addr. Qed.
-Lemma ltr_distl_addrC x y e : `|x - y| < e -> y < x + e.
-Proof. exact: real_ltr_distl_addrC. Qed.
+Lemma ltr_distlC_addr x y e : `|x - y| < e -> y < x + e.
+Proof. exact: real_ltr_distlC_addr. Qed.
-Lemma ler_distl_addrC x y e : `|x - y| <= e -> y <= x + e.
-Proof. exact: real_ler_distl_addrC. Qed.
+Lemma ler_distlC_addr x y e : `|x - y| <= e -> y <= x + e.
+Proof. exact: real_ler_distlC_addr. Qed.
Lemma ltr_distl_subl x y e : `|x - y| < e -> x - e < y.
Proof. exact: real_ltr_distl_subl. Qed.
@@ -3816,11 +3816,11 @@ Proof. exact: real_ltr_distl_subl. Qed.
Lemma ler_distl_subl x y e : `|x - y| <= e -> x - e <= y.
Proof. exact: real_ler_distl_subl. Qed.
-Lemma ltr_distl_sublC x y e : `|x - y| < e -> y - e < x.
-Proof. exact: real_ltr_distl_sublC. Qed.
+Lemma ltr_distlC_subl x y e : `|x - y| < e -> y - e < x.
+Proof. exact: real_ltr_distlC_subl. Qed.
-Lemma ler_distl_subrC x y e : `|x - y| <= e -> y - e <= x.
-Proof. exact: real_ler_distl_sublC. Qed.
+Lemma ler_distlC_subr x y e : `|x - y| <= e -> y - e <= x.
+Proof. exact: real_ler_distlC_subl. Qed.
Lemma exprn_even_ge0 n x : ~~ odd n -> 0 <= x ^+ n.
Proof. by move=> even_n; rewrite real_exprn_even_ge0 ?num_real. Qed.