diff options
| author | Laurent Théry | 2020-09-03 15:38:56 +0200 |
|---|---|---|
| committer | GitHub | 2020-09-03 15:38:56 +0200 |
| commit | 5618ef0dae970a40a2d44f06966560659450c6ae (patch) | |
| tree | 5f432107e717e54cab3c432331e40dcf3c37114d /mathcomp/algebra | |
| parent | c2e5f04d24c91f2f99aa31afb466a435d431465a (diff) | |
| parent | 3dd5febb100b7e72c0203640309d188c27801bc8 (diff) | |
Merge pull request #565 from CohenCyril/split_ordP
Expliciting relation between split and [lr]shift
Diffstat (limited to 'mathcomp/algebra')
| -rw-r--r-- | mathcomp/algebra/matrix.v | 28 |
1 files changed, 11 insertions, 17 deletions
diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v index 35ed265..f32db72 100644 --- a/mathcomp/algebra/matrix.v +++ b/mathcomp/algebra/matrix.v @@ -573,8 +573,7 @@ Proof. by apply/matrixP=> i j; rewrite mxE row_mxEr. Qed. Lemma hsubmxK A : row_mx (lsubmx A) (rsubmx A) = A. Proof. -apply/matrixP=> i j; rewrite !mxE. -by case: splitP => k Dk //=; rewrite !mxE //=; congr (A _ _); apply: val_inj. +by apply/matrixP=> i j; rewrite !mxE; case: split_ordP => k ->; rewrite !mxE. Qed. Lemma col_mxEu A1 A2 i j : col_mx A1 A2 (lshift m2 i) j = A1 i j. @@ -706,12 +705,10 @@ Proof. by apply/matrixP=> i j; rewrite !(col_mxEd, mxE). Qed. Lemma col'Kl m n1 n2 j1 (A1 : 'M_(m, n1.+1)) (A2 : 'M_(m, n2)) : col' (lshift n2 j1) (row_mx A1 A2) = row_mx (col' j1 A1) A2. Proof. -apply/matrixP=> i /= j; symmetry; rewrite 2!mxE. -case: splitP => j' def_j'. - rewrite mxE -(row_mxEl _ A2); congr (row_mx _ _ _); apply: ord_inj. - by rewrite /= def_j'. +apply/matrixP=> i /= j; symmetry; rewrite 2!mxE; case: split_ordP => j' ->. + by rewrite mxE -(row_mxEl _ A2); congr (row_mx _ _ _); apply: ord_inj. rewrite -(row_mxEr A1); congr (row_mx _ _ _); apply: ord_inj => /=. -by rewrite /bump def_j' -ltnS -addSn ltn_addr. +by rewrite /bump -ltnS -addSn ltn_addr. Qed. Lemma row'Ku m1 m2 n i1 (A1 : 'M_(m1.+1, n)) (A2 : 'M_(m2, n)) : @@ -1554,9 +1551,8 @@ Proof. by apply/rowP=> j; rewrite ord1 mxE. Qed. Lemma scalar_mx_block n1 n2 a : a%:M = block_mx a%:M 0 0 a%:M :> 'M_(n1 + n2). Proof. -apply/matrixP=> i j; rewrite !mxE -val_eqE /=. -by do 2![case: splitP => ? ->; rewrite !mxE]; - rewrite ?eqn_add2l // -?(eq_sym (n1 + _)%N) eqn_leq leqNgt lshift_subproof. +apply/matrixP=> i j; rewrite !mxE. +by do 2![case: split_ordP => ? ->; rewrite !mxE]; rewrite ?eq_shift. Qed. (* Matrix multiplication using bigops. *) @@ -1806,21 +1802,20 @@ Proof. by apply/matrixP=> i j; rewrite !mxE ltn_ord andbT. Qed. Lemma pid_mx_row n r : pid_mx r = row_mx 1%:M 0 :> 'M_(r, r + n). Proof. apply/matrixP=> i j; rewrite !mxE ltn_ord andbT. -case: splitP => j' ->; rewrite !mxE // . -by rewrite eqn_leq andbC leqNgt lshift_subproof. +by case: split_ordP => j' ->; rewrite !mxE// (val_eqE (lshift n i)) eq_shift. Qed. Lemma pid_mx_col m r : pid_mx r = col_mx 1%:M 0 :> 'M_(r + m, r). Proof. apply/matrixP=> i j; rewrite !mxE andbC. -by case: splitP => i' ->; rewrite !mxE // eq_sym. +by case: split_ordP => ? ->; rewrite !mxE//. Qed. Lemma pid_mx_block m n r : pid_mx r = block_mx 1%:M 0 0 0 :> 'M_(r + m, r + n). Proof. apply/matrixP=> i j; rewrite !mxE row_mx0 andbC. -case: splitP => i' ->; rewrite !mxE //; case: splitP => j' ->; rewrite !mxE //=. -by rewrite eqn_leq andbC leqNgt lshift_subproof. +do ![case: split_ordP => ? ->; rewrite !mxE//]. +by rewrite (val_eqE (lshift n _)) eq_shift. Qed. Lemma tr_pid_mx m n r : (pid_mx r)^T = pid_mx r :> 'M_(n, m). @@ -2841,8 +2836,7 @@ have [{detA0}A'0 | nzA'] := eqVneq (row 0 (\adj A)) 0; last first. pose A' := col' 0 A; pose vA := col 0 A. have defA: A = row_mx vA A'. apply/matrixP=> i j; rewrite !mxE. - case: splitP => j' def_j; rewrite mxE; congr (A i _); apply: val_inj => //=. - by rewrite def_j [j']ord1. + by case: split_ordP => j' ->; rewrite !mxE ?ord1; congr (A i _); apply: val_inj. have{IHn} w_ j : exists w : 'rV_n.+1, [/\ w != 0, w 0 j = 0 & w *m A' = 0]. have [|wj nzwj wjA'0] := IHn (row' j A'). by apply/eqP; move/rowP/(_ j)/eqP: A'0; rewrite !mxE mulf_eq0 signr_eq0. |
