diff options
| author | Anton Trunov | 2018-11-26 14:48:50 +0100 |
|---|---|---|
| committer | Anton Trunov | 2018-12-11 12:13:06 +0100 |
| commit | 2e6e0001f8215e3c42f2557df42e0d6486035c07 (patch) | |
| tree | 10e3129f0584233d7fb825973794b517371c6024 /mathcomp/algebra | |
| parent | 316cca94aef28c2023cd823c588b140e13d0aded (diff) | |
Fix some new warnings emitted by Coq 8.10:
```
Warning: Adding and removing hints in the core database implicitly is
deprecated. Please specify a hint database.
[implicit-core-hint-db,deprecated]
```
Diffstat (limited to 'mathcomp/algebra')
| -rw-r--r-- | mathcomp/algebra/fraction.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/intdiv.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/interval.v | 6 | ||||
| -rw-r--r-- | mathcomp/algebra/mxalgebra.v | 8 | ||||
| -rw-r--r-- | mathcomp/algebra/mxpoly.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/polydiv.v | 18 | ||||
| -rw-r--r-- | mathcomp/algebra/rat.v | 6 | ||||
| -rw-r--r-- | mathcomp/algebra/ssralg.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrint.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 36 | ||||
| -rw-r--r-- | mathcomp/algebra/vector.v | 4 |
11 files changed, 44 insertions, 44 deletions
diff --git a/mathcomp/algebra/fraction.v b/mathcomp/algebra/fraction.v index 28dd82b..dd3ce30 100644 --- a/mathcomp/algebra/fraction.v +++ b/mathcomp/algebra/fraction.v @@ -305,7 +305,7 @@ End FracField. Notation "{ 'fraction' T }" := (FracField.type_of (Phant T)). Notation equivf := (@FracField.equivf _). -Hint Resolve denom_ratioP. +Hint Resolve denom_ratioP : core. Section Canonicals. diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v index 933bfcb..2f5e844 100644 --- a/mathcomp/algebra/intdiv.v +++ b/mathcomp/algebra/intdiv.v @@ -326,7 +326,7 @@ Proof. by rewrite !dvdzE abszM; apply: dvdn_mull. Qed. Lemma dvdz_mulr d m n : (d %| m)%Z -> (d %| m * n)%Z. Proof. by move=> d_m; rewrite mulrC dvdz_mull. Qed. -Hint Resolve dvdz0 dvd1z dvdzz dvdz_mull dvdz_mulr. +Hint Resolve dvdz0 dvd1z dvdzz dvdz_mull dvdz_mulr : core. Lemma dvdz_mul d1 d2 m1 m2 : (d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2)%Z. Proof. by rewrite !dvdzE !abszM; apply: dvdn_mul. Qed. diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v index 1ca3414..b5d58cb 100644 --- a/mathcomp/algebra/interval.v +++ b/mathcomp/algebra/interval.v @@ -187,12 +187,12 @@ Proof. by move: bl br => [[] a|] [[] b|]. Qed. Lemma le_boundr_refl : reflexive le_boundr. Proof. by move=> [[] b|]; rewrite /le_boundr /= ?lerr. Qed. -Hint Resolve le_boundr_refl. +Hint Resolve le_boundr_refl : core. Lemma le_boundl_refl : reflexive le_boundl. Proof. by move=> [[] b|]; rewrite /le_boundl /= ?lerr. Qed. -Hint Resolve le_boundl_refl. +Hint Resolve le_boundl_refl : core. Lemma le_boundl_bb x b1 b2 : le_boundl (BOpen_if b1 x) (BOpen_if b2 x) = (b1 ==> b2). @@ -242,7 +242,7 @@ move=> x [[[] a|] [[] b|]]; move/itv_dec=> //= [hl hu]; do ?[split=> //; | by apply: negbTE; rewrite ltr_geF // (@ler_lt_trans _ x)]. Qed. -Hint Rewrite intP. +Hint Rewrite intP : core. Arguments itvP [x i]. Definition subitv (i1 i2 : interval R) := diff --git a/mathcomp/algebra/mxalgebra.v b/mathcomp/algebra/mxalgebra.v index a8a91d3..7875b83 100644 --- a/mathcomp/algebra/mxalgebra.v +++ b/mathcomp/algebra/mxalgebra.v @@ -388,7 +388,7 @@ case: GaussE (IHm _ B) => [[L U] r] /= uL. rewrite unitmxE xrowE det_mulmx (@det_lblock _ 1) det1 mul1r unitrM. by rewrite -unitmxE unitmx_perm. Qed. -Hint Resolve rank_leq_row rank_leq_col row_ebase_unit col_ebase_unit. +Hint Resolve rank_leq_row rank_leq_col row_ebase_unit col_ebase_unit : core. Lemma mulmx_ebase m n (A : 'M_(m, n)) : col_ebase A *m pid_mx (\rank A) *m row_ebase A = A. @@ -504,7 +504,7 @@ Arguments submxP {m1 m2 n A B}. Lemma submx_refl m n (A : 'M_(m, n)) : (A <= A)%MS. Proof. by rewrite submxE mulmx_coker. Qed. -Hint Resolve submx_refl. +Hint Resolve submx_refl : core. Lemma submxMl m n p (D : 'M_(m, n)) (A : 'M_(n, p)) : (D *m A <= A)%MS. Proof. by rewrite submxE -mulmxA mulmx_coker mulmx0. Qed. @@ -874,7 +874,7 @@ Proof. apply/row_fullP; exists (pid_mx (\rank A) *m invmx (col_ebase A)). by rewrite !mulmxA mulmxKV // pid_mx_id // pid_mx_1. Qed. -Hint Resolve row_base_free col_base_full. +Hint Resolve row_base_free col_base_full : core. Lemma mxrank_leqif_sup m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A <= B)%MS -> \rank A <= \rank B ?= iff (B <= A)%MS. @@ -1974,7 +1974,7 @@ End Eigenspace. End RowSpaceTheory. -Hint Resolve submx_refl. +Hint Resolve submx_refl : core. Arguments submxP {F m1 m2 n A B}. Arguments eq_row_sub [F m n v A]. Arguments row_subP {F m1 m2 n A B}. diff --git a/mathcomp/algebra/mxpoly.v b/mathcomp/algebra/mxpoly.v index fe5de6d..f679828 100644 --- a/mathcomp/algebra/mxpoly.v +++ b/mathcomp/algebra/mxpoly.v @@ -899,7 +899,7 @@ apply: integral_horner_root mon_p pu0 intRp _. by apply/integral_poly => i; rewrite coefX; apply: integral_nat. Qed. -Hint Resolve (integral0 RtoK) (integral1 RtoK) (@monicXsubC K). +Hint Resolve (integral0 RtoK) (integral1 RtoK) (@monicXsubC K) : core. Let XsubC0 (u : K) : root ('X - u%:P) u. Proof. by rewrite root_XsubC. Qed. Let intR_XsubC u : diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v index 34b6e7b..026af3d 100644 --- a/mathcomp/algebra/polydiv.v +++ b/mathcomp/algebra/polydiv.v @@ -868,7 +868,7 @@ case: (eqVneq q 0) => [->|nzq]; last by rewrite expf_neq0 ?lead_coef_eq0. by rewrite /scalp 2!unlock /= eqxx lead_coef0 unitr0 /= oner_neq0. Qed. -Hint Resolve lc_expn_scalp_neq0. +Hint Resolve lc_expn_scalp_neq0 : core. Variant edivp_spec (m d : {poly R}) : nat * {poly R} * {poly R} -> bool -> Type := @@ -988,7 +988,7 @@ Qed. End WeakTheoryForIDomainPseudoDivision. -Hint Resolve lc_expn_scalp_neq0. +Hint Resolve lc_expn_scalp_neq0 : core. End WeakIdomain. @@ -1049,7 +1049,7 @@ Proof. by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmodp1 // scaler0. Qed. -Hint Resolve divp0 divp1 mod0p modp0 modp1. +Hint Resolve divp0 divp1 mod0p modp0 modp1 : core. Lemma modp_small p q : size p < size q -> p %% q = p. Proof. @@ -1156,7 +1156,7 @@ Qed. Lemma dvdp0 d : d %| 0. Proof. by rewrite /dvdp mod0p. Qed. -Hint Resolve dvdp0. +Hint Resolve dvdp0 : core. Lemma dvd0p p : (0 %| p) = (p == 0). Proof. by rewrite /dvdp modp0. Qed. @@ -1231,7 +1231,7 @@ Qed. Lemma dvdpp d : d %| d. Proof. by rewrite /dvdp modpp. Qed. -Hint Resolve dvdpp. +Hint Resolve dvdpp : core. Lemma divp_dvd p q : (p %| q) -> ((q %/ p) %| q). Proof. @@ -1253,7 +1253,7 @@ Qed. Lemma dvdp_mulr n d m : d %| m -> d %| m * n. Proof. by move=> hdm; rewrite mulrC dvdp_mull. Qed. -Hint Resolve dvdp_mull dvdp_mulr. +Hint Resolve dvdp_mull dvdp_mulr : core. Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2. Proof. @@ -1468,7 +1468,7 @@ Qed. Lemma eqpxx : reflexive (@eqp R). Proof. by move=> p; rewrite /eqp dvdpp. Qed. -Hint Resolve eqpxx. +Hint Resolve eqpxx : core. Lemma eqp_sym : symmetric (@eqp R). Proof. by move=> p q; rewrite /eqp andbC. Qed. @@ -2533,8 +2533,8 @@ Qed. End IDomainPseudoDivision. -Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp. -Hint Resolve dvdp0. +Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp : core. +Hint Resolve dvdp0 : core. End CommonIdomain. diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v index 6015f33..14fde5a 100644 --- a/mathcomp/algebra/rat.v +++ b/mathcomp/algebra/rat.v @@ -56,7 +56,7 @@ Definition denq x := nosimpl ((valq x).2). Lemma denq_gt0 x : 0 < denq x. Proof. by rewrite /denq; case: x=> [[a b] /= /andP []]. Qed. -Hint Resolve denq_gt0. +Hint Resolve denq_gt0 : core. Definition denq_ge0 x := ltrW (denq_gt0 x). @@ -64,7 +64,7 @@ Lemma denq_lt0 x : (denq x < 0) = false. Proof. by rewrite ltr_gtF. Qed. Lemma denq_neq0 x : denq x != 0. Proof. by rewrite /denq gtr_eqF ?denq_gt0. Qed. -Hint Resolve denq_neq0. +Hint Resolve denq_neq0 : core. Lemma denq_eq0 x : (denq x == 0) = false. Proof. exact: negPf (denq_neq0 _). Qed. @@ -368,7 +368,7 @@ Qed. Notation "n %:Q" := ((n : int)%:~R : rat) (at level 2, left associativity, format "n %:Q") : ring_scope. -Hint Resolve denq_neq0 denq_gt0 denq_ge0. +Hint Resolve denq_neq0 denq_gt0 denq_ge0 : core. Definition subq (x y : rat) : rat := (addq x (oppq y)). Definition divq (x y : rat) : rat := (mulq x (invq y)). diff --git a/mathcomp/algebra/ssralg.v b/mathcomp/algebra/ssralg.v index 5542959..40a1f83 100644 --- a/mathcomp/algebra/ssralg.v +++ b/mathcomp/algebra/ssralg.v @@ -1305,7 +1305,7 @@ Hypothesis charFp : p \in [char R]. Lemma charf0 : p%:R = 0 :> R. Proof. by apply/eqP; case/andP: charFp. Qed. Lemma charf_prime : prime p. Proof. by case/andP: charFp. Qed. -Hint Resolve charf_prime. +Hint Resolve charf_prime : core. Lemma mulrn_char x : x *+ p = 0. Proof. by rewrite -mulr_natl charf0 mul0r. Qed. diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v index 614fbc2..b734ad7 100644 --- a/mathcomp/algebra/ssrint.v +++ b/mathcomp/algebra/ssrint.v @@ -967,7 +967,7 @@ Proof. by rewrite mulrz_eq0 negb_or. Qed. Lemma realz n : (n%:~R : R) \in Num.real. Proof. by rewrite -topredE /Num.real /= ler0z lerz0 ler_total. Qed. -Hint Resolve realz. +Hint Resolve realz : core. Definition intr_inj := @mulrIz 1 (oner_neq0 R). diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index ae0c00b..2414e13 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -1045,7 +1045,7 @@ Lemma realE x : (x \is real) = (0 <= x) || (x <= 0). Proof. by []. Qed. Lemma lerr x : x <= x. Proof. exact: lerr. Qed. Lemma ltrr x : x < x = false. Proof. by rewrite ltr_def eqxx. Qed. Lemma ltrW x y : x < y -> x <= y. Proof. exact: ltrW. Qed. -Hint Resolve lerr ltrr ltrW. +Hint Resolve lerr ltrr ltrW : core. Lemma ltr_neqAle x y : (x < y) = (x != y) && (x <= y). Proof. by rewrite ltr_def eq_sym. Qed. @@ -1080,12 +1080,12 @@ Qed. Lemma ler01 : 0 <= 1 :> R. Proof. exact: ler01. Qed. Lemma ltr01 : 0 < 1 :> R. Proof. exact: ltr01. Qed. Lemma ler0n n : 0 <= n%:R :> R. Proof. by rewrite -nnegrE rpred_nat. Qed. -Hint Resolve ler01 ltr01 ler0n. +Hint Resolve ler01 ltr01 ler0n : core. Lemma ltr0Sn n : 0 < n.+1%:R :> R. Proof. by elim: n => // n; apply: addr_gt0. Qed. Lemma ltr0n n : (0 < n%:R :> R) = (0 < n)%N. Proof. by case: n => //= n; apply: ltr0Sn. Qed. -Hint Resolve ltr0Sn. +Hint Resolve ltr0Sn : core. Lemma pnatr_eq0 n : (n%:R == 0 :> R) = (n == 0)%N. Proof. by case: n => [|n]; rewrite ?mulr0n ?eqxx // gtr_eqF. Qed. @@ -1154,7 +1154,7 @@ by rewrite -{2}normrN -normr0 -(subrr x) ler_norm_add. Qed. Lemma normr_ge0 x : 0 <= `|x|. Proof. by rewrite ger0_def normr_id. Qed. -Hint Resolve normr_ge0. +Hint Resolve normr_ge0 : core. Lemma ler0_norm x : x <= 0 -> `|x| = - x. Proof. by move=> x_le0; rewrite -[r in _ = r]ger0_norm ?normrN ?oppr_ge0. Qed. @@ -1263,7 +1263,7 @@ Arguments ltr01 {R}. Arguments normr_idP {R x}. Arguments normr0P {R x}. Arguments lerifP {R x y C}. -Hint Resolve @ler01 @ltr01 lerr ltrr ltrW ltr_eqF ltr0Sn ler0n normr_ge0. +Hint Resolve @ler01 @ltr01 lerr ltrr ltrW ltr_eqF ltr0Sn ler0n normr_ge0 : core. Section NumIntegralDomainMonotonyTheory. @@ -1450,10 +1450,10 @@ Implicit Types x y z t : R. Lemma ler_opp2 : {mono -%R : x y /~ x <= y :> R}. Proof. by move=> x y /=; rewrite -subr_ge0 opprK addrC subr_ge0. Qed. -Hint Resolve ler_opp2. +Hint Resolve ler_opp2 : core. Lemma ltr_opp2 : {mono -%R : x y /~ x < y :> R}. Proof. by move=> x y /=; rewrite lerW_nmono. Qed. -Hint Resolve ltr_opp2. +Hint Resolve ltr_opp2 : core. Definition lter_opp2 := (ler_opp2, ltr_opp2). Lemma ler_oppr x y : (x <= - y) = (y <= - x). @@ -1525,10 +1525,10 @@ Lemma ltr0_real x : x < 0 -> x \is real. Proof. by move=> /ltrW/ler0_real. Qed. Lemma real0 : 0 \is @real R. Proof. by rewrite ger0_real. Qed. -Hint Resolve real0. +Hint Resolve real0 : core. Lemma real1 : 1 \is @real R. Proof. by rewrite ger0_real. Qed. -Hint Resolve real1. +Hint Resolve real1 : core. Lemma realn n : n%:R \is @real R. Proof. by rewrite ger0_real. Qed. @@ -2640,7 +2640,7 @@ Qed. (* norm + add *) Lemma normr_real x : `|x| \is real. Proof. by rewrite ger0_real. Qed. -Hint Resolve normr_real. +Hint Resolve normr_real : core. Lemma ler_norm_sum I r (G : I -> R) (P : pred I): `|\sum_(i <- r | P i) G i| <= \sum_(i <- r | P i) `|G i|. @@ -3144,7 +3144,7 @@ Qed. End NumDomainOperationTheory. -Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real. +Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real : core. Arguments ler_sqr {R} [x y]. Arguments ltr_sqr {R} [x y]. Arguments signr_inj {R} [x1 x2]. @@ -3429,13 +3429,13 @@ End NumFieldTheory. Section RealDomainTheory. -Hint Resolve lerr. +Hint Resolve lerr : core. Variable R : realDomainType. Implicit Types x y z t : R. Lemma num_real x : x \is real. Proof. exact: num_real. Qed. -Hint Resolve num_real. +Hint Resolve num_real : core. Lemma ler_total : total (@le R). Proof. by move=> x y; apply: real_leVge. Qed. @@ -3534,14 +3534,14 @@ Proof. by rewrite -real_normrEsign. Qed. End RealDomainTheory. -Hint Resolve num_real. +Hint Resolve num_real : core. Section RealDomainMonotony. Variables (R : realDomainType) (R' : numDomainType) (D : pred R) (f : R -> R'). Implicit Types (m n p : nat) (x y z : R) (u v w : R'). -Hint Resolve (@num_real R). +Hint Resolve (@num_real R) : core. Lemma homo_mono : {homo f : x y / x < y} -> {mono f : x y / x <= y}. Proof. by move=> mf x y; apply: real_mono. Qed. @@ -3569,7 +3569,7 @@ Section RealDomainOperations. Variable R : realDomainType. Implicit Types x y z t : R. -Hint Resolve (@num_real R). +Hint Resolve (@num_real R) : core. Lemma sgr_cp0 x : ((sg x == 1) = (0 < x)) * @@ -4032,7 +4032,7 @@ Lemma poly_ivt : real_closed_axiom R. Proof. exact: poly_ivt. Qed. Lemma sqrtr_ge0 a : 0 <= sqrt a. Proof. by rewrite /sqrt; case: (sig2W _). Qed. -Hint Resolve sqrtr_ge0. +Hint Resolve sqrtr_ge0 : core. Lemma sqr_sqrtr a : 0 <= a -> sqrt a ^+ 2 = a. Proof. @@ -4325,7 +4325,7 @@ Proof. rewrite CrealE fmorph_div rmorph_nat rmorphM rmorphB conjCK. by rewrite conjCi -opprB mulrNN. Qed. -Hint Resolve Creal_Re Creal_Im. +Hint Resolve Creal_Re Creal_Im : core. Fact Re_is_additive : additive Re. Proof. by move=> x y; rewrite /Re rmorphB addrACA -opprD mulrBl. Qed. diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v index 75b2073..c4c62c3 100644 --- a/mathcomp/algebra/vector.v +++ b/mathcomp/algebra/vector.v @@ -460,7 +460,7 @@ by have:= sU12 (r2v u); rewrite !memvE /subsetv !genmxE r2vK. Qed. Lemma subvv U : (U <= U)%VS. Proof. exact/subvP. Qed. -Hint Resolve subvv. +Hint Resolve subvv : core. Lemma subv_trans : transitive subV. Proof. by move=> U V W /subvP sUV /subvP sVW; apply/subvP=> u /sUV/sVW. Qed. @@ -1222,7 +1222,7 @@ End BigSumBasis. End VectorTheory. -Hint Resolve subvv. +Hint Resolve subvv : core. Arguments subvP {K vT U V}. Arguments addv_idPl {K vT U V}. Arguments addv_idPr {K vT U V}. |
