aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra
diff options
context:
space:
mode:
authorAnton Trunov2018-11-26 14:48:50 +0100
committerAnton Trunov2018-12-11 12:13:06 +0100
commit2e6e0001f8215e3c42f2557df42e0d6486035c07 (patch)
tree10e3129f0584233d7fb825973794b517371c6024 /mathcomp/algebra
parent316cca94aef28c2023cd823c588b140e13d0aded (diff)
Fix some new warnings emitted by Coq 8.10:
``` Warning: Adding and removing hints in the core database implicitly is deprecated. Please specify a hint database. [implicit-core-hint-db,deprecated] ```
Diffstat (limited to 'mathcomp/algebra')
-rw-r--r--mathcomp/algebra/fraction.v2
-rw-r--r--mathcomp/algebra/intdiv.v2
-rw-r--r--mathcomp/algebra/interval.v6
-rw-r--r--mathcomp/algebra/mxalgebra.v8
-rw-r--r--mathcomp/algebra/mxpoly.v2
-rw-r--r--mathcomp/algebra/polydiv.v18
-rw-r--r--mathcomp/algebra/rat.v6
-rw-r--r--mathcomp/algebra/ssralg.v2
-rw-r--r--mathcomp/algebra/ssrint.v2
-rw-r--r--mathcomp/algebra/ssrnum.v36
-rw-r--r--mathcomp/algebra/vector.v4
11 files changed, 44 insertions, 44 deletions
diff --git a/mathcomp/algebra/fraction.v b/mathcomp/algebra/fraction.v
index 28dd82b..dd3ce30 100644
--- a/mathcomp/algebra/fraction.v
+++ b/mathcomp/algebra/fraction.v
@@ -305,7 +305,7 @@ End FracField.
Notation "{ 'fraction' T }" := (FracField.type_of (Phant T)).
Notation equivf := (@FracField.equivf _).
-Hint Resolve denom_ratioP.
+Hint Resolve denom_ratioP : core.
Section Canonicals.
diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v
index 933bfcb..2f5e844 100644
--- a/mathcomp/algebra/intdiv.v
+++ b/mathcomp/algebra/intdiv.v
@@ -326,7 +326,7 @@ Proof. by rewrite !dvdzE abszM; apply: dvdn_mull. Qed.
Lemma dvdz_mulr d m n : (d %| m)%Z -> (d %| m * n)%Z.
Proof. by move=> d_m; rewrite mulrC dvdz_mull. Qed.
-Hint Resolve dvdz0 dvd1z dvdzz dvdz_mull dvdz_mulr.
+Hint Resolve dvdz0 dvd1z dvdzz dvdz_mull dvdz_mulr : core.
Lemma dvdz_mul d1 d2 m1 m2 : (d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2)%Z.
Proof. by rewrite !dvdzE !abszM; apply: dvdn_mul. Qed.
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v
index 1ca3414..b5d58cb 100644
--- a/mathcomp/algebra/interval.v
+++ b/mathcomp/algebra/interval.v
@@ -187,12 +187,12 @@ Proof. by move: bl br => [[] a|] [[] b|]. Qed.
Lemma le_boundr_refl : reflexive le_boundr.
Proof. by move=> [[] b|]; rewrite /le_boundr /= ?lerr. Qed.
-Hint Resolve le_boundr_refl.
+Hint Resolve le_boundr_refl : core.
Lemma le_boundl_refl : reflexive le_boundl.
Proof. by move=> [[] b|]; rewrite /le_boundl /= ?lerr. Qed.
-Hint Resolve le_boundl_refl.
+Hint Resolve le_boundl_refl : core.
Lemma le_boundl_bb x b1 b2 :
le_boundl (BOpen_if b1 x) (BOpen_if b2 x) = (b1 ==> b2).
@@ -242,7 +242,7 @@ move=> x [[[] a|] [[] b|]]; move/itv_dec=> //= [hl hu]; do ?[split=> //;
| by apply: negbTE; rewrite ltr_geF // (@ler_lt_trans _ x)].
Qed.
-Hint Rewrite intP.
+Hint Rewrite intP : core.
Arguments itvP [x i].
Definition subitv (i1 i2 : interval R) :=
diff --git a/mathcomp/algebra/mxalgebra.v b/mathcomp/algebra/mxalgebra.v
index a8a91d3..7875b83 100644
--- a/mathcomp/algebra/mxalgebra.v
+++ b/mathcomp/algebra/mxalgebra.v
@@ -388,7 +388,7 @@ case: GaussE (IHm _ B) => [[L U] r] /= uL.
rewrite unitmxE xrowE det_mulmx (@det_lblock _ 1) det1 mul1r unitrM.
by rewrite -unitmxE unitmx_perm.
Qed.
-Hint Resolve rank_leq_row rank_leq_col row_ebase_unit col_ebase_unit.
+Hint Resolve rank_leq_row rank_leq_col row_ebase_unit col_ebase_unit : core.
Lemma mulmx_ebase m n (A : 'M_(m, n)) :
col_ebase A *m pid_mx (\rank A) *m row_ebase A = A.
@@ -504,7 +504,7 @@ Arguments submxP {m1 m2 n A B}.
Lemma submx_refl m n (A : 'M_(m, n)) : (A <= A)%MS.
Proof. by rewrite submxE mulmx_coker. Qed.
-Hint Resolve submx_refl.
+Hint Resolve submx_refl : core.
Lemma submxMl m n p (D : 'M_(m, n)) (A : 'M_(n, p)) : (D *m A <= A)%MS.
Proof. by rewrite submxE -mulmxA mulmx_coker mulmx0. Qed.
@@ -874,7 +874,7 @@ Proof.
apply/row_fullP; exists (pid_mx (\rank A) *m invmx (col_ebase A)).
by rewrite !mulmxA mulmxKV // pid_mx_id // pid_mx_1.
Qed.
-Hint Resolve row_base_free col_base_full.
+Hint Resolve row_base_free col_base_full : core.
Lemma mxrank_leqif_sup m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A <= B)%MS -> \rank A <= \rank B ?= iff (B <= A)%MS.
@@ -1974,7 +1974,7 @@ End Eigenspace.
End RowSpaceTheory.
-Hint Resolve submx_refl.
+Hint Resolve submx_refl : core.
Arguments submxP {F m1 m2 n A B}.
Arguments eq_row_sub [F m n v A].
Arguments row_subP {F m1 m2 n A B}.
diff --git a/mathcomp/algebra/mxpoly.v b/mathcomp/algebra/mxpoly.v
index fe5de6d..f679828 100644
--- a/mathcomp/algebra/mxpoly.v
+++ b/mathcomp/algebra/mxpoly.v
@@ -899,7 +899,7 @@ apply: integral_horner_root mon_p pu0 intRp _.
by apply/integral_poly => i; rewrite coefX; apply: integral_nat.
Qed.
-Hint Resolve (integral0 RtoK) (integral1 RtoK) (@monicXsubC K).
+Hint Resolve (integral0 RtoK) (integral1 RtoK) (@monicXsubC K) : core.
Let XsubC0 (u : K) : root ('X - u%:P) u. Proof. by rewrite root_XsubC. Qed.
Let intR_XsubC u :
diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v
index 34b6e7b..026af3d 100644
--- a/mathcomp/algebra/polydiv.v
+++ b/mathcomp/algebra/polydiv.v
@@ -868,7 +868,7 @@ case: (eqVneq q 0) => [->|nzq]; last by rewrite expf_neq0 ?lead_coef_eq0.
by rewrite /scalp 2!unlock /= eqxx lead_coef0 unitr0 /= oner_neq0.
Qed.
-Hint Resolve lc_expn_scalp_neq0.
+Hint Resolve lc_expn_scalp_neq0 : core.
Variant edivp_spec (m d : {poly R}) :
nat * {poly R} * {poly R} -> bool -> Type :=
@@ -988,7 +988,7 @@ Qed.
End WeakTheoryForIDomainPseudoDivision.
-Hint Resolve lc_expn_scalp_neq0.
+Hint Resolve lc_expn_scalp_neq0 : core.
End WeakIdomain.
@@ -1049,7 +1049,7 @@ Proof.
by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmodp1 // scaler0.
Qed.
-Hint Resolve divp0 divp1 mod0p modp0 modp1.
+Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.
Lemma modp_small p q : size p < size q -> p %% q = p.
Proof.
@@ -1156,7 +1156,7 @@ Qed.
Lemma dvdp0 d : d %| 0.
Proof. by rewrite /dvdp mod0p. Qed.
-Hint Resolve dvdp0.
+Hint Resolve dvdp0 : core.
Lemma dvd0p p : (0 %| p) = (p == 0).
Proof. by rewrite /dvdp modp0. Qed.
@@ -1231,7 +1231,7 @@ Qed.
Lemma dvdpp d : d %| d.
Proof. by rewrite /dvdp modpp. Qed.
-Hint Resolve dvdpp.
+Hint Resolve dvdpp : core.
Lemma divp_dvd p q : (p %| q) -> ((q %/ p) %| q).
Proof.
@@ -1253,7 +1253,7 @@ Qed.
Lemma dvdp_mulr n d m : d %| m -> d %| m * n.
Proof. by move=> hdm; rewrite mulrC dvdp_mull. Qed.
-Hint Resolve dvdp_mull dvdp_mulr.
+Hint Resolve dvdp_mull dvdp_mulr : core.
Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.
Proof.
@@ -1468,7 +1468,7 @@ Qed.
Lemma eqpxx : reflexive (@eqp R).
Proof. by move=> p; rewrite /eqp dvdpp. Qed.
-Hint Resolve eqpxx.
+Hint Resolve eqpxx : core.
Lemma eqp_sym : symmetric (@eqp R).
Proof. by move=> p q; rewrite /eqp andbC. Qed.
@@ -2533,8 +2533,8 @@ Qed.
End IDomainPseudoDivision.
-Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp.
-Hint Resolve dvdp0.
+Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp : core.
+Hint Resolve dvdp0 : core.
End CommonIdomain.
diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v
index 6015f33..14fde5a 100644
--- a/mathcomp/algebra/rat.v
+++ b/mathcomp/algebra/rat.v
@@ -56,7 +56,7 @@ Definition denq x := nosimpl ((valq x).2).
Lemma denq_gt0 x : 0 < denq x.
Proof. by rewrite /denq; case: x=> [[a b] /= /andP []]. Qed.
-Hint Resolve denq_gt0.
+Hint Resolve denq_gt0 : core.
Definition denq_ge0 x := ltrW (denq_gt0 x).
@@ -64,7 +64,7 @@ Lemma denq_lt0 x : (denq x < 0) = false. Proof. by rewrite ltr_gtF. Qed.
Lemma denq_neq0 x : denq x != 0.
Proof. by rewrite /denq gtr_eqF ?denq_gt0. Qed.
-Hint Resolve denq_neq0.
+Hint Resolve denq_neq0 : core.
Lemma denq_eq0 x : (denq x == 0) = false.
Proof. exact: negPf (denq_neq0 _). Qed.
@@ -368,7 +368,7 @@ Qed.
Notation "n %:Q" := ((n : int)%:~R : rat)
(at level 2, left associativity, format "n %:Q") : ring_scope.
-Hint Resolve denq_neq0 denq_gt0 denq_ge0.
+Hint Resolve denq_neq0 denq_gt0 denq_ge0 : core.
Definition subq (x y : rat) : rat := (addq x (oppq y)).
Definition divq (x y : rat) : rat := (mulq x (invq y)).
diff --git a/mathcomp/algebra/ssralg.v b/mathcomp/algebra/ssralg.v
index 5542959..40a1f83 100644
--- a/mathcomp/algebra/ssralg.v
+++ b/mathcomp/algebra/ssralg.v
@@ -1305,7 +1305,7 @@ Hypothesis charFp : p \in [char R].
Lemma charf0 : p%:R = 0 :> R. Proof. by apply/eqP; case/andP: charFp. Qed.
Lemma charf_prime : prime p. Proof. by case/andP: charFp. Qed.
-Hint Resolve charf_prime.
+Hint Resolve charf_prime : core.
Lemma mulrn_char x : x *+ p = 0. Proof. by rewrite -mulr_natl charf0 mul0r. Qed.
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v
index 614fbc2..b734ad7 100644
--- a/mathcomp/algebra/ssrint.v
+++ b/mathcomp/algebra/ssrint.v
@@ -967,7 +967,7 @@ Proof. by rewrite mulrz_eq0 negb_or. Qed.
Lemma realz n : (n%:~R : R) \in Num.real.
Proof. by rewrite -topredE /Num.real /= ler0z lerz0 ler_total. Qed.
-Hint Resolve realz.
+Hint Resolve realz : core.
Definition intr_inj := @mulrIz 1 (oner_neq0 R).
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index ae0c00b..2414e13 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -1045,7 +1045,7 @@ Lemma realE x : (x \is real) = (0 <= x) || (x <= 0). Proof. by []. Qed.
Lemma lerr x : x <= x. Proof. exact: lerr. Qed.
Lemma ltrr x : x < x = false. Proof. by rewrite ltr_def eqxx. Qed.
Lemma ltrW x y : x < y -> x <= y. Proof. exact: ltrW. Qed.
-Hint Resolve lerr ltrr ltrW.
+Hint Resolve lerr ltrr ltrW : core.
Lemma ltr_neqAle x y : (x < y) = (x != y) && (x <= y).
Proof. by rewrite ltr_def eq_sym. Qed.
@@ -1080,12 +1080,12 @@ Qed.
Lemma ler01 : 0 <= 1 :> R. Proof. exact: ler01. Qed.
Lemma ltr01 : 0 < 1 :> R. Proof. exact: ltr01. Qed.
Lemma ler0n n : 0 <= n%:R :> R. Proof. by rewrite -nnegrE rpred_nat. Qed.
-Hint Resolve ler01 ltr01 ler0n.
+Hint Resolve ler01 ltr01 ler0n : core.
Lemma ltr0Sn n : 0 < n.+1%:R :> R.
Proof. by elim: n => // n; apply: addr_gt0. Qed.
Lemma ltr0n n : (0 < n%:R :> R) = (0 < n)%N.
Proof. by case: n => //= n; apply: ltr0Sn. Qed.
-Hint Resolve ltr0Sn.
+Hint Resolve ltr0Sn : core.
Lemma pnatr_eq0 n : (n%:R == 0 :> R) = (n == 0)%N.
Proof. by case: n => [|n]; rewrite ?mulr0n ?eqxx // gtr_eqF. Qed.
@@ -1154,7 +1154,7 @@ by rewrite -{2}normrN -normr0 -(subrr x) ler_norm_add.
Qed.
Lemma normr_ge0 x : 0 <= `|x|. Proof. by rewrite ger0_def normr_id. Qed.
-Hint Resolve normr_ge0.
+Hint Resolve normr_ge0 : core.
Lemma ler0_norm x : x <= 0 -> `|x| = - x.
Proof. by move=> x_le0; rewrite -[r in _ = r]ger0_norm ?normrN ?oppr_ge0. Qed.
@@ -1263,7 +1263,7 @@ Arguments ltr01 {R}.
Arguments normr_idP {R x}.
Arguments normr0P {R x}.
Arguments lerifP {R x y C}.
-Hint Resolve @ler01 @ltr01 lerr ltrr ltrW ltr_eqF ltr0Sn ler0n normr_ge0.
+Hint Resolve @ler01 @ltr01 lerr ltrr ltrW ltr_eqF ltr0Sn ler0n normr_ge0 : core.
Section NumIntegralDomainMonotonyTheory.
@@ -1450,10 +1450,10 @@ Implicit Types x y z t : R.
Lemma ler_opp2 : {mono -%R : x y /~ x <= y :> R}.
Proof. by move=> x y /=; rewrite -subr_ge0 opprK addrC subr_ge0. Qed.
-Hint Resolve ler_opp2.
+Hint Resolve ler_opp2 : core.
Lemma ltr_opp2 : {mono -%R : x y /~ x < y :> R}.
Proof. by move=> x y /=; rewrite lerW_nmono. Qed.
-Hint Resolve ltr_opp2.
+Hint Resolve ltr_opp2 : core.
Definition lter_opp2 := (ler_opp2, ltr_opp2).
Lemma ler_oppr x y : (x <= - y) = (y <= - x).
@@ -1525,10 +1525,10 @@ Lemma ltr0_real x : x < 0 -> x \is real.
Proof. by move=> /ltrW/ler0_real. Qed.
Lemma real0 : 0 \is @real R. Proof. by rewrite ger0_real. Qed.
-Hint Resolve real0.
+Hint Resolve real0 : core.
Lemma real1 : 1 \is @real R. Proof. by rewrite ger0_real. Qed.
-Hint Resolve real1.
+Hint Resolve real1 : core.
Lemma realn n : n%:R \is @real R. Proof. by rewrite ger0_real. Qed.
@@ -2640,7 +2640,7 @@ Qed.
(* norm + add *)
Lemma normr_real x : `|x| \is real. Proof. by rewrite ger0_real. Qed.
-Hint Resolve normr_real.
+Hint Resolve normr_real : core.
Lemma ler_norm_sum I r (G : I -> R) (P : pred I):
`|\sum_(i <- r | P i) G i| <= \sum_(i <- r | P i) `|G i|.
@@ -3144,7 +3144,7 @@ Qed.
End NumDomainOperationTheory.
-Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real.
+Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real : core.
Arguments ler_sqr {R} [x y].
Arguments ltr_sqr {R} [x y].
Arguments signr_inj {R} [x1 x2].
@@ -3429,13 +3429,13 @@ End NumFieldTheory.
Section RealDomainTheory.
-Hint Resolve lerr.
+Hint Resolve lerr : core.
Variable R : realDomainType.
Implicit Types x y z t : R.
Lemma num_real x : x \is real. Proof. exact: num_real. Qed.
-Hint Resolve num_real.
+Hint Resolve num_real : core.
Lemma ler_total : total (@le R). Proof. by move=> x y; apply: real_leVge. Qed.
@@ -3534,14 +3534,14 @@ Proof. by rewrite -real_normrEsign. Qed.
End RealDomainTheory.
-Hint Resolve num_real.
+Hint Resolve num_real : core.
Section RealDomainMonotony.
Variables (R : realDomainType) (R' : numDomainType) (D : pred R) (f : R -> R').
Implicit Types (m n p : nat) (x y z : R) (u v w : R').
-Hint Resolve (@num_real R).
+Hint Resolve (@num_real R) : core.
Lemma homo_mono : {homo f : x y / x < y} -> {mono f : x y / x <= y}.
Proof. by move=> mf x y; apply: real_mono. Qed.
@@ -3569,7 +3569,7 @@ Section RealDomainOperations.
Variable R : realDomainType.
Implicit Types x y z t : R.
-Hint Resolve (@num_real R).
+Hint Resolve (@num_real R) : core.
Lemma sgr_cp0 x :
((sg x == 1) = (0 < x)) *
@@ -4032,7 +4032,7 @@ Lemma poly_ivt : real_closed_axiom R. Proof. exact: poly_ivt. Qed.
Lemma sqrtr_ge0 a : 0 <= sqrt a.
Proof. by rewrite /sqrt; case: (sig2W _). Qed.
-Hint Resolve sqrtr_ge0.
+Hint Resolve sqrtr_ge0 : core.
Lemma sqr_sqrtr a : 0 <= a -> sqrt a ^+ 2 = a.
Proof.
@@ -4325,7 +4325,7 @@ Proof.
rewrite CrealE fmorph_div rmorph_nat rmorphM rmorphB conjCK.
by rewrite conjCi -opprB mulrNN.
Qed.
-Hint Resolve Creal_Re Creal_Im.
+Hint Resolve Creal_Re Creal_Im : core.
Fact Re_is_additive : additive Re.
Proof. by move=> x y; rewrite /Re rmorphB addrACA -opprD mulrBl. Qed.
diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v
index 75b2073..c4c62c3 100644
--- a/mathcomp/algebra/vector.v
+++ b/mathcomp/algebra/vector.v
@@ -460,7 +460,7 @@ by have:= sU12 (r2v u); rewrite !memvE /subsetv !genmxE r2vK.
Qed.
Lemma subvv U : (U <= U)%VS. Proof. exact/subvP. Qed.
-Hint Resolve subvv.
+Hint Resolve subvv : core.
Lemma subv_trans : transitive subV.
Proof. by move=> U V W /subvP sUV /subvP sVW; apply/subvP=> u /sUV/sVW. Qed.
@@ -1222,7 +1222,7 @@ End BigSumBasis.
End VectorTheory.
-Hint Resolve subvv.
+Hint Resolve subvv : core.
Arguments subvP {K vT U V}.
Arguments addv_idPl {K vT U V}.
Arguments addv_idPr {K vT U V}.