diff options
| author | Georges Gonthier | 2018-12-13 12:55:43 +0100 |
|---|---|---|
| committer | Georges Gonthier | 2018-12-13 12:55:43 +0100 |
| commit | 0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch) | |
| tree | 60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/algebra/zmodp.v | |
| parent | fa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff) | |
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose
conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or
`ocancel`) are passed to
generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should
not have trailing on-demand implicits _just before_ the `cancel`
conclusion, as these would be inconvenient to insert (requiring
essentially an explicit eta-expansion).
We therefore use `Arguments` or `Prenex Implicits` directives to make
all such arguments maximally inserted implicits. We don’t, however make
other arguments implicit, so as not to spoil direct instantiation of
the lemmas (in, e.g., `rewrite -[y](invmK injf)`).
We have also tried to do this with lemmas whose statement matches a
`cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern
unification will pick up `f = fun x => E[x]`).
We also adjusted implicits of a few stray injectivity
lemmas, and defined constants.
We provide a shorthand for reindexing a bigop with a permutation.
Finally we used the new implicit signatures to simplify proofs that
use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/algebra/zmodp.v')
| -rw-r--r-- | mathcomp/algebra/zmodp.v | 5 |
1 files changed, 4 insertions, 1 deletions
diff --git a/mathcomp/algebra/zmodp.v b/mathcomp/algebra/zmodp.v index ba6c1b3..5e931ef 100644 --- a/mathcomp/algebra/zmodp.v +++ b/mathcomp/algebra/zmodp.v @@ -180,7 +180,8 @@ End ZpDef. Arguments Zp0 {p'}. Arguments Zp1 {p'}. -Arguments inZp {p'}. +Arguments inZp {p'} i. +Arguments valZpK {p'} x. Lemma ord1 : all_equal_to (0 : 'I_1). Proof. by case=> [[] // ?]; apply: val_inj. Qed. @@ -259,6 +260,8 @@ Notation "''Z_' p" := 'I_(Zp_trunc p).+2 Notation "''F_' p" := 'Z_(pdiv p) (at level 8, p at level 2, format "''F_' p") : type_scope. +Arguments natr_Zp {p'} x. + Section Groups. Variable p : nat. |
