diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/algebra/vector.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/algebra/vector.v')
| -rw-r--r-- | mathcomp/algebra/vector.v | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v index b7a9052..c4865ca 100644 --- a/mathcomp/algebra/vector.v +++ b/mathcomp/algebra/vector.v @@ -204,7 +204,7 @@ Proof. have r2vP r: {v | v2r v = r}. by apply: sig_eqW; have [v _ vK] := v2r_bij; exists (v r). by exists (fun r => sval (r2vP r)) => r; case: (r2vP r). -Qed. +Qed. Definition r2v := sval r2v_subproof. Lemma r2vK : cancel r2v v2r. Proof. exact: (svalP r2v_subproof). Qed. @@ -721,7 +721,7 @@ Lemma dimvS U V : (U <= V)%VS -> \dim U <= \dim V. Proof. exact: mxrankS. Qed. Lemma dimv_leqif_sup U V : (U <= V)%VS -> \dim U <= \dim V ?= iff (V <= U)%VS. -Proof. exact: mxrank_leqif_sup. Qed. +Proof. exact: mxrank_leqif_sup. Qed. Lemma dimv_leqif_eq U V : (U <= V)%VS -> \dim U <= \dim V ?= iff (U == V). Proof. by rewrite eqEsubv; apply: mxrank_leqif_eq. Qed. @@ -939,7 +939,7 @@ Lemma span_subvP {X U} : reflect {subset X <= U} (<<X>> <= U)%VS. Proof. rewrite /subV [@span _ _]unlock genmxE. apply: (iffP row_subP) => /= [sXU | sXU i]. - by move=> _ /seq_tnthP[i ->]; have:= sXU i; rewrite rowK memvK. + by move=> _ /seq_tnthP[i ->]; have:= sXU i; rewrite rowK memvK. by rewrite rowK -memvK sXU ?mem_tnth. Qed. @@ -1005,7 +1005,7 @@ Lemma seq1_free v : free [:: v] = (v != 0). Proof. by rewrite /free span_seq1 dim_vline; case: (~~ _). Qed. Lemma perm_free X Y : perm_eq X Y -> free X = free Y. -Proof. +Proof. by move=> eqX; rewrite /free (perm_eq_size eqX) (eq_span (perm_eq_mem eqX)). Qed. @@ -1202,7 +1202,7 @@ Lemma bigcat_free : directv (\sum_(i | P i) <<Xs i>>) -> (forall i, P i -> free (Xs i)) -> free (\big[cat/[::]]_(i | P i) Xs i). Proof. -rewrite /free directvE /= span_bigcat => /directvP-> /= freeXs. +rewrite /free directvE /= span_bigcat => /directvP-> /= freeXs. rewrite (big_morph _ (@size_cat _) (erefl _)) /=. by apply/eqP/eq_bigr=> i /freeXs/eqP. Qed. @@ -1534,7 +1534,7 @@ Qed. Lemma limg_lfunVK f : {in limg f, cancel f^-1%VF f}. Proof. by move=> _ /memv_imgP[u _ ->]; rewrite -!comp_lfunE inv_lfun_def. Qed. -Lemma lkerE f U : (U <= lker f)%VS = (f @: U == 0)%VS. +Lemma lkerE f U : (U <= lker f)%VS = (f @: U == 0)%VS. Proof. rewrite unlock -dimv_eq0 /dimv /subsetv !genmxE mxrank_eq0. by rewrite (sameP sub_kermxP eqP). @@ -1550,7 +1550,7 @@ Lemma eqlfun_inP V f g : reflect {in V, f =1 g} (V <= lker (f - g))%VS. Proof. by apply: (iffP subvP) => E x /E/eqlfunP. Qed. Lemma limg_ker_compl f U : (f @: (U :\: lker f) = f @: U)%VS. -Proof. +Proof. rewrite -{2}(addv_diff_cap U (lker f)) limg_add; apply/esym/addv_idPl. by rewrite (subv_trans _ (sub0v _)) // subv0 -lkerE capvSr. Qed. @@ -1825,7 +1825,7 @@ Lemma addv_pi2_proj U V w (pi2 := addv_pi2 U V) : pi2 (pi2 w) = pi2 w. Proof. by rewrite addv_pi2_id ?memv_pi2. Qed. Lemma addv_pi1_pi2 U V w : - w \in (U + V)%VS -> addv_pi1 U V w + addv_pi2 U V w = w. + w \in (U + V)%VS -> addv_pi1 U V w + addv_pi2 U V w = w. Proof. by rewrite -addv_diff; apply: daddv_pi_add; apply: capv_diff. Qed. Section Sumv_Pi. |
