aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/vector.v
diff options
context:
space:
mode:
authorGeorges Gonthier2019-05-08 09:43:34 +0200
committerGeorges Gonthier2019-05-17 09:04:50 +0200
commit5d7bd2ea2a0a28fb275da8ba2e2c0dc5a33d1034 (patch)
treef193a80ae41a42e5f877a932b136d37f9d598c10 /mathcomp/algebra/vector.v
parent51b9988f608625c60184dbe90133d64cdaa2a1f9 (diff)
refactor `seq` permutation theory
- Change the naming of permutation lemmas so they conform to a consistent policy: `perm_eq` lemmas have a `perm_` (_not_ `perm_eq`) prefix, or sometimes a `_perm` suffix for lemmas that _prove_ `perm_eq` using a property when there is also a lemma _using_ `perm_eq` for the same property. Lemmas that do not concern `perm_eq` do _not_ have `perm` in their name. - Change the definition of `permutations` for a time- and space- back-to-front generation algorithm. - Add frequency tally operations `tally`, `incr_tally`, `wf_tally` and `tally_seq`, used by the improved `permutation` algorithm. - add deprecated aliases for renamed lemmas
Diffstat (limited to 'mathcomp/algebra/vector.v')
-rw-r--r--mathcomp/algebra/vector.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v
index e73ca33..87ca0f4 100644
--- a/mathcomp/algebra/vector.v
+++ b/mathcomp/algebra/vector.v
@@ -1004,7 +1004,7 @@ Proof. by rewrite /free span_seq1 dim_vline; case: (~~ _). Qed.
Lemma perm_free X Y : perm_eq X Y -> free X = free Y.
Proof.
-by move=> eqX; rewrite /free (perm_eq_size eqX) (eq_span (perm_eq_mem eqX)).
+by move=> eqXY; rewrite /free (perm_size eqXY) (eq_span (perm_mem eqXY)).
Qed.
Lemma free_directv X : free X = (0 \notin X) && directv (\sum_(v <- X) <[v]>).
@@ -1061,7 +1061,7 @@ Proof. by rewrite cat_free => /and3P[]. Qed.
Lemma filter_free p X : free X -> free (filter p X).
Proof.
-rewrite -(perm_free (etrans (perm_filterC p X _) (perm_eq_refl X))).
+rewrite -(perm_free (etrans (perm_filterC p X _) (perm_refl X))).
exact: catl_free.
Qed.
@@ -1170,7 +1170,7 @@ Qed.
Lemma perm_basis X Y U : perm_eq X Y -> basis_of U X = basis_of U Y.
Proof.
move=> eqXY; congr ((_ == _) && _); last exact: perm_free.
-by apply/eq_span; apply: perm_eq_mem.
+by apply/eq_span; apply: perm_mem.
Qed.
Lemma vbasisP U : basis_of U (vbasis U).