aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/vector.v
diff options
context:
space:
mode:
authorGeorges Gonthier2018-12-13 12:55:43 +0100
committerGeorges Gonthier2018-12-13 12:55:43 +0100
commit0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch)
tree60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/algebra/vector.v
parentfa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff)
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or `ocancel`) are passed to generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should not have trailing on-demand implicits _just before_ the `cancel` conclusion, as these would be inconvenient to insert (requiring essentially an explicit eta-expansion). We therefore use `Arguments` or `Prenex Implicits` directives to make all such arguments maximally inserted implicits. We don’t, however make other arguments implicit, so as not to spoil direct instantiation of the lemmas (in, e.g., `rewrite -[y](invmK injf)`). We have also tried to do this with lemmas whose statement matches a `cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern unification will pick up `f = fun x => E[x]`). We also adjusted implicits of a few stray injectivity lemmas, and defined constants. We provide a shorthand for reindexing a bigop with a permutation. Finally we used the new implicit signatures to simplify proofs that use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/algebra/vector.v')
-rw-r--r--mathcomp/algebra/vector.v7
1 files changed, 6 insertions, 1 deletions
diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v
index c4c62c3..4766c74 100644
--- a/mathcomp/algebra/vector.v
+++ b/mathcomp/algebra/vector.v
@@ -1355,6 +1355,8 @@ Proof. by elim/big_rec2: _ => [|i _ f _ <-]; rewrite lfunE. Qed.
End LfunZmodType.
+Arguments fun_of_lfunK {R aT rT}.
+
Section LfunVectType.
Variables (R : comRingType) (aT rT : vectType R).
@@ -1603,6 +1605,7 @@ Arguments lfunPn {K aT rT f g}.
Arguments lker0P {K aT rT f}.
Arguments eqlfunP {K aT rT f g v}.
Arguments eqlfun_inP {K aT rT V f g}.
+Arguments limg_lfunVK {K aT rT f} [x] f_x.
Section FixedSpace.
@@ -1718,6 +1721,8 @@ Qed.
End LinearPreimage.
+Arguments lpreimK {K aT rT f} [W] fW.
+
Section LfunAlgebra.
(* This section is a bit of a place holder: the instances we build here can't *)
(* be canonical because we are missing an interface for proper vectTypes, *)
@@ -1944,7 +1949,7 @@ Canonical subvs_vectType := VectType K subvs_of subvs_vectMixin.
End SubVector.
Prenex Implicits vsval vsproj vsvalK.
Arguments subvs_inj {K vT U} [x1 x2].
-Arguments vsprojK {K vT U} [x].
+Arguments vsprojK {K vT U} [x] Ux.
Section MatrixVectType.