diff options
| author | affeldt-aist | 2019-11-14 20:49:44 +0900 |
|---|---|---|
| committer | Cyril Cohen | 2019-12-11 14:26:52 +0100 |
| commit | b3261c9020105f3c6667697b22ca8a542271bc4c (patch) | |
| tree | f7c6918d64decf70ce01d0bf5d21e868532402a8 /mathcomp/algebra/ssrnum.v | |
| parent | 050ad8395fb250e9396b7a376a75c523567e177c (diff) | |
renaming NormedZmoduleType and NormedZmoduleMixin (#416)
* renaming
NormedZmoduleType -> NormedZmodType
NormedZmoduleMixin -> NormedZmodMixin
that looks more homogeneous with regard to naming conventions used so far
* update .gitlab-ci.yml
* typo
Diffstat (limited to 'mathcomp/algebra/ssrnum.v')
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index 36adce0..d607291 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -26,7 +26,7 @@ From mathcomp Require Import ssralg poly. (* normedZmodType R *) (* == interface for a normed Zmodule structure indexed by *) (* numDomainType R. *) -(* NormedZmoduleType R T m *) +(* NormedZmodType R T m *) (* == pack the normed Zmodule mixin into a normedZmodType. *) (* The carrier T must have an integral domain structure. *) (* [normedZmodType R of T for S] *) @@ -64,7 +64,7 @@ From mathcomp Require Import ssralg poly. (* * ArchiField (A Real Field with the archimedean axiom) *) (* archiFieldType == interface for an archimedean field. *) (* ArchiFieldType T r *) -(* == packs the archimeadean axiom r into an archiFieldType. *) +(* == packs the archimedean axiom r into an archiFieldType. *) (* The carrier T must have a real field type structure. *) (* [archiFieldType of T for S] *) (* == T-clone of the archiFieldType structure S. *) @@ -310,8 +310,8 @@ Canonical zmodType. Coercion numDomain_normedZmodType : NumDomain.type >-> type. Canonical numDomain_normedZmodType. Notation normedZmodType R := (type (Phant R)). -Notation NormedZmoduleType R T m := (@pack _ (Phant R) T _ m). -Notation NormedZmoduleMixin := Mixin. +Notation NormedZmodType R T m := (@pack _ (Phant R) T _ m). +Notation NormedZmodMixin := Mixin. Notation "[ 'normedZmodType' R 'of' T 'for' cT ]" := (@clone _ (Phant R) T cT _ idfun) (at level 0, format "[ 'normedZmodType' R 'of' T 'for' cT ]") : @@ -548,7 +548,7 @@ Definition idomainType := @GRing.IntegralDomain.Pack cT xclass. Definition porderType := @Order.POrder.Pack ring_display cT xclass. Definition numDomainType := @NumDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition porder_fieldType := @GRing.Field.Pack porderType xclass. Definition normedZmod_fieldType := @GRing.Field.Pack normedZmodType xclass. @@ -648,7 +648,7 @@ Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. Definition decFieldType := @GRing.DecidableField.Pack cT xclass. Definition closedFieldType := @GRing.ClosedField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition porder_decFieldType := @GRing.DecidableField.Pack porderType xclass. Definition normedZmod_decFieldType := @GRing.DecidableField.Pack normedZmodType xclass. @@ -764,7 +764,7 @@ Definition porderType := @Order.POrder.Pack ring_display cT xclass. Definition distrLatticeType := @Order.DistrLattice.Pack ring_display cT xclass. Definition orderType := @Order.Total.Pack ring_display cT xclass. Definition numDomainType := @NumDomain.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition zmod_distrLatticeType := @Order.DistrLattice.Pack ring_display zmodType xclass. Definition ring_distrLatticeType := @@ -897,7 +897,7 @@ Definition orderType := @Order.Total.Pack ring_display cT xclass. Definition realDomainType := @RealDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition field_distrLatticeType := @Order.DistrLattice.Pack ring_display fieldType xclass. Definition field_orderType := @Order.Total.Pack ring_display fieldType xclass. @@ -996,7 +996,7 @@ Definition realDomainType := @RealDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. Definition realFieldType := @RealField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. End ClassDef. @@ -1084,7 +1084,7 @@ Definition realDomainType := @RealDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. Definition realFieldType := @RealField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. End ClassDef. @@ -5064,7 +5064,7 @@ Definition normedZmodMixin : @normed_mixin_of R [zmodType of U * V] (Num.RealDomain.class R) := @Num.NormedMixin _ _ _ norm normD norm_eq0 normrMn normrN. -Canonical normedZmodType := NormedZmoduleType R (U * V) normedZmodMixin. +Canonical normedZmodType := NormedZmodType R (U * V) normedZmodMixin. Lemma prod_normE (x : U * V) : `|x| = Num.max `|x.1| `|x.2|. Proof. by []. Qed. |
