aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/ssrint.v
diff options
context:
space:
mode:
authoraffeldt-aist2020-11-26 17:41:23 +0900
committerGitHub2020-11-26 17:41:23 +0900
commit53c0ecb76bb2f5d06a93ec9b2fc8644d258d3fb3 (patch)
tree79002ee09b1489f1f29d67fc18d58991c7ec13aa /mathcomp/algebra/ssrint.v
parent4153b5eabf27cb36dfb6ce03a0b52fcbfda7145c (diff)
parent9c693eedb8e7e11aeaedbd3ce79a9478b10be7c8 (diff)
Merge pull request #674 from CohenCyril/clean-print-only
Using `only printing` and fixing coercion in notations
Diffstat (limited to 'mathcomp/algebra/ssrint.v')
-rw-r--r--mathcomp/algebra/ssrint.v14
1 files changed, 8 insertions, 6 deletions
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v
index e234504..9ea0ce4 100644
--- a/mathcomp/algebra/ssrint.v
+++ b/mathcomp/algebra/ssrint.v
@@ -67,10 +67,13 @@ Variant int : Set := Posz of nat | Negz of nat.
Notation "n %:Z" := (Posz n) (only parsing) : int_scope.
Notation "n %:Z" := (Posz n) (only parsing) : ring_scope.
-Notation "n = m :> 'in' 't'" := (Posz n = Posz m) : ring_scope.
-Notation "n == m :> 'in' 't'" := (Posz n == Posz m) : ring_scope.
-Notation "n != m :> 'in' 't'" := (Posz n != Posz m) : ring_scope.
-Notation "n <> m :> 'in' 't'" := (Posz n <> Posz m) : ring_scope.
+Notation "n = m :> 'in' 't'" := (Posz n = Posz m) (only printing) : ring_scope.
+Notation "n == m :> 'in' 't'" := (Posz n == Posz m)
+ (only printing) : ring_scope.
+Notation "n != m :> 'in' 't'" := (Posz n != Posz m)
+ (only printing) : ring_scope.
+Notation "n <> m :> 'in' 't'" := (Posz n <> Posz m)
+ (only printing) : ring_scope.
Definition natsum_of_int (m : int) : nat + nat :=
match m with Posz p => inl _ p | Negz n => inr _ n end.
@@ -452,8 +455,7 @@ Local Coercion Posz : nat >-> int.
Implicit Types m n p : nat.
Implicit Types x y z : int.
-Lemma lez_nat m n : (m <= n :> int) = (m <= n)%N.
-Proof. by []. Qed.
+Lemma lez_nat m n : (m <= n :> int) = (m <= n)%N. Proof. by []. Qed.
Lemma ltz_nat m n : (m < n :> int) = (m < n)%N.
Proof. by rewrite ltnNge ltNge lez_nat. Qed.