diff options
| author | Cyril Cohen | 2020-10-30 18:50:56 +0100 |
|---|---|---|
| committer | GitHub | 2020-10-30 18:50:56 +0100 |
| commit | 1ec04efdcd1b00a6ae651551699c8b815a2a063f (patch) | |
| tree | 62f0dc367dc9ab3fa4210ee5e003b03a34eda25f /mathcomp/algebra/ssrint.v | |
| parent | fe8759d1faec24cbe9d838f777682e260680d370 (diff) | |
| parent | bd02346e4038871f4d4021dd84df384fc8cf9aa4 (diff) | |
Merge pull request #607 from pi8027/distr-suffixes
Switch from long suffixes to short suffixes
Diffstat (limited to 'mathcomp/algebra/ssrint.v')
| -rw-r--r-- | mathcomp/algebra/ssrint.v | 30 |
1 files changed, 12 insertions, 18 deletions
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v index f54a957..6d7899b 100644 --- a/mathcomp/algebra/ssrint.v +++ b/mathcomp/algebra/ssrint.v @@ -1005,24 +1005,17 @@ Lemma expr1z x : x ^ 1 = x. Proof. by []. Qed. Lemma exprN1 x : x ^ (-1) = x^-1. Proof. by []. Qed. Lemma invr_expz x n : (x ^ n)^-1 = x ^ (- n). -Proof. -by case: (intP n)=> // [|m]; rewrite ?opprK ?expr0z ?invr1 // invrK. -Qed. +Proof. by case: (intP n)=> // [|m]; rewrite ?opprK ?expr0z ?invr1 // invrK. Qed. Lemma exprz_inv x n : (x^-1) ^ n = x ^ (- n). -Proof. -by case: (intP n)=> // m; rewrite -[_ ^ (- _)]exprVn ?opprK ?invrK. -Qed. +Proof. by case: (intP n)=> // m; rewrite -[_ ^ (- _)]exprVn ?opprK ?invrK. Qed. Lemma exp1rz n : 1 ^ n = 1 :> R. -Proof. -by case: (intP n)=> // m; rewrite -?exprz_inv ?invr1; apply: expr1n. -Qed. +Proof. by case: (intP n)=> // m; rewrite -?exprz_inv ?invr1; apply: expr1n. Qed. Lemma exprSz x (n : nat) : x ^ n.+1 = x * x ^ n. Proof. exact: exprS. Qed. -Lemma exprSzr x (n : nat) : x ^ n.+1 = x ^ n * x. -Proof. exact: exprSr. Qed. +Lemma exprSzr x (n : nat) : x ^ n.+1 = x ^ n * x. Proof. exact: exprSr. Qed. Fact exprzD_nat x (m n : nat) : x ^ (m%:Z + n) = x ^ m * x ^ n. Proof. exact: exprD. Qed. @@ -1682,7 +1675,7 @@ Proof. wlog le_n21: n1 n2 / n2 <= n1. move=> IH; case/orP: (leq_total n2 n1) => /IH //. by rewrite (addnC (n2 ^ 2)) (mulnC n2) distnC. -by rewrite distnEl ?sqrn_sub ?subnK ?nat_Cauchy. +by rewrite distnEl ?sqrnB ?subnK ?nat_Cauchy. Qed. End Distn. @@ -1718,11 +1711,8 @@ Implicit Types p q r : {poly R}. Lemma coefMrz : forall p n i, (p *~ n)`_i = (p`_i *~ n). Proof. by move=> p [] n i; rewrite ?NegzE (coefMNn, coefMn). Qed. -Lemma polyC_mulrz : forall n, {morph (@polyC R) : c / c *~ n}. -Proof. -move=> [] n c; rewrite ?NegzE -?pmulrn ?polyC_muln //. -by rewrite polyC_opp mulrNz polyC_muln nmulrn. -Qed. +Lemma polyCMz : forall n, {morph (@polyC R) : c / c *~ n}. +Proof. by case/intP => // n c; rewrite ?mulrNz -!pmulrn ?polyCN ?polyCMn. Qed. Lemma hornerMz : forall n (p : {poly R}) x, (p *~ n).[x] = p.[x] *~ n. Proof. by case=> *; rewrite ?NegzE ?mulNzr ?(hornerN, hornerMn). Qed. @@ -1740,7 +1730,7 @@ Section PolyZintOIdom. Variable R : realDomainType. Lemma mulpz (p : {poly R}) (n : int) : p *~ n = n%:~R *: p. -Proof. by rewrite -[p *~ n]mulrzl -mul_polyC polyC_mulrz polyC1. Qed. +Proof. by rewrite -[p *~ n]mulrzl -mul_polyC polyCMz polyC1. Qed. End PolyZintOIdom. @@ -1787,3 +1777,7 @@ Lemma rpredXsign R S (divS : @divrPred R S) (kS : keyed_pred divS) n x : Proof. by rewrite -signr_odd; case: (odd n); rewrite ?rpredV. Qed. End rpred. + +Notation "@ 'polyC_mulrz'" := + (deprecate polyC_mulrz polyCMz) (at level 10, only parsing) : fun_scope. +Notation polyC_mulrz := (@polyC_mulrz _) (only parsing). |
