aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/ssrint.v
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2018-07-12 20:19:55 +0900
committerKazuhiko Sakaguchi2018-07-12 20:19:55 +0900
commit10171942883948c8144ec076ef48eb73f8e49cdd (patch)
treee5e5f5ff58fd3b3c07afd49388afcab5cbbe165b /mathcomp/algebra/ssrint.v
parentb8be28130d6a2a057858e3978c75ee0796630dce (diff)
Replace all the CoInductives with Variants
Diffstat (limited to 'mathcomp/algebra/ssrint.v')
-rw-r--r--mathcomp/algebra/ssrint.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v
index cbfd593..f12784b 100644
--- a/mathcomp/algebra/ssrint.v
+++ b/mathcomp/algebra/ssrint.v
@@ -48,7 +48,7 @@ Delimit Scope int_scope with Z.
Local Open Scope int_scope.
(* Defining int *)
-CoInductive int : Set := Posz of nat | Negz of nat.
+Variant int : Set := Posz of nat | Negz of nat.
(* This must be deferred to module DistInt to work around the design flaws of *)
(* the Coq module system. *)
(* Coercion Posz : nat >-> int. *)
@@ -126,7 +126,7 @@ Qed.
Definition int_rec := int_rect.
Definition int_ind := int_rect.
-CoInductive int_spec (x : int) : int -> Type :=
+Variant int_spec (x : int) : int -> Type :=
| ZintNull of x = 0 : int_spec x 0
| ZintPos n of x = n.+1 : int_spec x n.+1
| ZintNeg n of x = - (n.+1)%:Z : int_spec x (- n.+1).
@@ -216,7 +216,7 @@ Qed.
Definition int_rec := int_rect.
Definition int_ind := int_rect.
-CoInductive int_spec (x : int) : int -> Type :=
+Variant int_spec (x : int) : int -> Type :=
| ZintNull : int_spec x 0
| ZintPos n : int_spec x n.+1
| ZintNeg n : int_spec x (- (n.+1)%:Z).
@@ -1438,7 +1438,7 @@ Lemma sgz_cp0 x :
((sgz x == 0) = (x == 0)).
Proof. by rewrite /sgz; case: ltrgtP. Qed.
-CoInductive sgz_val x : bool -> bool -> bool -> bool -> bool -> bool
+Variant sgz_val x : bool -> bool -> bool -> bool -> bool -> bool
-> bool -> bool -> bool -> bool -> bool -> bool
-> bool -> bool -> bool -> bool -> bool -> bool
-> R -> R -> int -> Set :=
@@ -1783,4 +1783,4 @@ Lemma rpredXsign R S (divS : @divrPred R S) (kS : keyed_pred divS) n x :
(x ^ ((-1) ^+ n) \in kS) = (x \in kS).
Proof. by rewrite -signr_odd; case: (odd n); rewrite ?rpredV. Qed.
-End rpred. \ No newline at end of file
+End rpred.