diff options
| author | Enrico Tassi | 2015-03-09 11:07:53 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2015-03-09 11:24:38 +0100 |
| commit | fc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch) | |
| tree | c16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/algebra/rat.v | |
Initial commit
Diffstat (limited to 'mathcomp/algebra/rat.v')
| -rw-r--r-- | mathcomp/algebra/rat.v | 808 |
1 files changed, 808 insertions, 0 deletions
diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v new file mode 100644 index 0000000..b2b88d9 --- /dev/null +++ b/mathcomp/algebra/rat.v @@ -0,0 +1,808 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice fintype. +Require Import bigop ssralg div ssrnum ssrint. + +(******************************************************************************) +(* This file defines a datatype for rational numbers and equips it with a *) +(* structure of archimedean, real field, with int and nat declared as closed *) +(* subrings. *) +(* rat == the type of rational number, with single constructor Rat *) +(* Rat p h == the element of type rat build from p a pair of integers and*) +(* h a proof of (0 < p.2) && coprime `|p.1| `|p.2| *) +(* n%:Q == explicit cast from int to rat, postfix notation for the *) +(* ratz constant *) +(* numq r == numerator of (r : rat) *) +(* denq r == denominator of (r : rat) *) +(* x \is a Qint == x is an element of rat whose denominator is equal to 1 *) +(* x \is a Qnat == x is a positive element of rat whose denominator is equal *) +(* to 1 *) +(* ratr x == generic embedding of (r : R) into an arbitrary unitring. *) +(******************************************************************************) + +Import GRing.Theory. +Import Num.Theory. + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Local Open Scope ring_scope. +Local Notation sgr := Num.sg. + +Record rat : Set := Rat { + valq : (int * int) ; + _ : (0 < valq.2) && coprime `|valq.1| `|valq.2| +}. + +Bind Scope ring_scope with rat. +Delimit Scope rat_scope with Q. + +Definition ratz (n : int) := @Rat (n, 1) (coprimen1 _). +(* Coercion ratz (n : int) := @Rat (n, 1) (coprimen1 _). *) + +Canonical rat_subType := Eval hnf in [subType for valq]. +Definition rat_eqMixin := [eqMixin of rat by <:]. +Canonical rat_eqType := EqType rat rat_eqMixin. +Definition rat_choiceMixin := [choiceMixin of rat by <:]. +Canonical rat_choiceType := ChoiceType rat rat_choiceMixin. +Definition rat_countMixin := [countMixin of rat by <:]. +Canonical rat_countType := CountType rat rat_countMixin. +Canonical rat_subCountType := [subCountType of rat]. + +Definition numq x := nosimpl ((valq x).1). +Definition denq x := nosimpl ((valq x).2). + +Lemma denq_gt0 x : 0 < denq x. +Proof. by rewrite /denq; case: x=> [[a b] /= /andP []]. Qed. +Hint Resolve denq_gt0. + +Definition denq_ge0 x := ltrW (denq_gt0 x). + +Lemma denq_lt0 x : (denq x < 0) = false. Proof. by rewrite ltr_gtF. Qed. + +Lemma denq_neq0 x : denq x != 0. +Proof. by rewrite /denq gtr_eqF ?denq_gt0. Qed. +Hint Resolve denq_neq0. + +Lemma denq_eq0 x : (denq x == 0) = false. +Proof. exact: negPf (denq_neq0 _). Qed. + +Lemma coprime_num_den x : coprime `|numq x| `|denq x|. +Proof. by rewrite /numq /denq; case: x=> [[a b] /= /andP []]. Qed. + +Fact RatK x P : @Rat (numq x, denq x) P = x. +Proof. by move:x P => [[a b] P'] P; apply: val_inj. Qed. + +Fact fracq_subproof : forall x : int * int, + let n := + if x.2 == 0 then 0 else + (-1) ^ ((x.2 < 0) (+) (x.1 < 0)) * (`|x.1| %/ gcdn `|x.1| `|x.2|)%:Z in + let d := if x.2 == 0 then 1 else (`|x.2| %/ gcdn `|x.1| `|x.2|)%:Z in + (0 < d) && (coprime `|n| `|d|). +Proof. +move=> [m n] /=; case: (altP (n =P 0))=> [//|n0]. +rewrite ltz_nat divn_gt0 ?gcdn_gt0 ?absz_gt0 ?n0 ?orbT //. +rewrite dvdn_leq ?absz_gt0 ?dvdn_gcdr //= !abszM absz_sign mul1n. +have [->|m0] := altP (m =P 0); first by rewrite div0n gcd0n divnn absz_gt0 n0. +move: n0 m0; rewrite -!absz_gt0 absz_nat. +move: `|_|%N `|_|%N => {m n} [|m] [|n] // _ _. +rewrite /coprime -(@eqn_pmul2l (gcdn m.+1 n.+1)) ?gcdn_gt0 //. +rewrite muln_gcdr; do 2!rewrite muln_divCA ?(dvdn_gcdl, dvdn_gcdr) ?divnn //. +by rewrite ?gcdn_gt0 ?muln1. +Qed. + +Definition fracq (x : int * int) := nosimpl (@Rat (_, _) (fracq_subproof x)). + +Fact ratz_frac n : ratz n = fracq (n, 1). +Proof. by apply: val_inj; rewrite /= gcdn1 !divn1 abszE mulr_sign_norm. Qed. + +Fact valqK x : fracq (valq x) = x. +Proof. +move:x => [[n d] /= Pnd]; apply: val_inj=> /=. +move: Pnd; rewrite /coprime /fracq /=; case/andP=> hd; move/eqP=> hnd. +by rewrite ltr_gtF ?gtr_eqF //= hnd !divn1 mulz_sign_abs abszE gtr0_norm. +Qed. + +Fact scalq_key : unit. Proof. by []. Qed. +Definition scalq_def x := sgr x.2 * (gcdn `|x.1| `|x.2|)%:Z. +Definition scalq := locked_with scalq_key scalq_def. +Canonical scalq_unlockable := [unlockable fun scalq]. + +Fact scalq_eq0 x : (scalq x == 0) = (x.2 == 0). +Proof. +case: x => n d; rewrite unlock /= mulf_eq0 sgr_eq0 /= eqz_nat. +rewrite -[gcdn _ _ == 0%N]negbK -lt0n gcdn_gt0 ?absz_gt0 [X in ~~ X]orbC. +by case: sgrP. +Qed. + +Lemma sgr_scalq x : sgr (scalq x) = sgr x.2. +Proof. +rewrite unlock sgrM sgr_id -[(gcdn _ _)%:Z]intz sgr_nat. +by rewrite -lt0n gcdn_gt0 ?absz_gt0 orbC; case: sgrP; rewrite // mul0r. +Qed. + +Lemma signr_scalq x : (scalq x < 0) = (x.2 < 0). +Proof. by rewrite -!sgr_cp0 sgr_scalq. Qed. + +Lemma scalqE x : + x.2 != 0 -> scalq x = (-1) ^+ (x.2 < 0)%R * (gcdn `|x.1| `|x.2|)%:Z. +Proof. by rewrite unlock; case: sgrP. Qed. + +Fact valq_frac x : + x.2 != 0 -> x = (scalq x * numq (fracq x), scalq x * denq (fracq x)). +Proof. +case: x => [n d] /= d_neq0; rewrite /denq /numq scalqE //= (negPf d_neq0). +rewrite mulr_signM -mulrA -!PoszM addKb. +do 2!rewrite muln_divCA ?(dvdn_gcdl, dvdn_gcdr) // divnn. +by rewrite gcdn_gt0 !absz_gt0 d_neq0 orbT !muln1 !mulz_sign_abs. +Qed. + +Definition zeroq := fracq (0, 1). +Definition oneq := fracq (1, 1). + +Fact frac0q x : fracq (0, x) = zeroq. +Proof. +apply: val_inj; rewrite //= div0n !gcd0n !mulr0 !divnn. +by have [//|x_neq0] := altP eqP; rewrite absz_gt0 x_neq0. +Qed. + +Fact fracq0 x : fracq (x, 0) = zeroq. Proof. exact/eqP. Qed. + +CoInductive fracq_spec (x : int * int) : int * int -> rat -> Type := + | FracqSpecN of x.2 = 0 : fracq_spec x (x.1, 0) zeroq + | FracqSpecP k fx of k != 0 : fracq_spec x (k * numq fx, k * denq fx) fx. + +Fact fracqP x : fracq_spec x x (fracq x). +Proof. +case: x => n d /=; have [d_eq0 | d_neq0] := eqVneq d 0. + by rewrite d_eq0 fracq0; constructor. +by rewrite {2}[(_, _)]valq_frac //; constructor; rewrite scalq_eq0. +Qed. + +Lemma rat_eqE x y : (x == y) = (numq x == numq y) && (denq x == denq y). +Proof. +rewrite -val_eqE [val x]surjective_pairing [val y]surjective_pairing /=. +by rewrite xpair_eqE. +Qed. + +Lemma sgr_denq x : sgr (denq x) = 1. Proof. by apply/eqP; rewrite sgr_cp0. Qed. + +Lemma normr_denq x : `|denq x| = denq x. Proof. by rewrite gtr0_norm. Qed. + +Lemma absz_denq x : `|denq x|%N = denq x :> int. +Proof. by rewrite abszE normr_denq. Qed. + +Lemma rat_eq x y : (x == y) = (numq x * denq y == numq y * denq x). +Proof. +symmetry; rewrite rat_eqE andbC. +have [->|] /= := altP (denq _ =P _); first by rewrite (inj_eq (mulIf _)). +apply: contraNF => /eqP hxy; rewrite -absz_denq -[X in _ == X]absz_denq. +rewrite eqz_nat /= eqn_dvd. +rewrite -(@Gauss_dvdr _ `|numq x|) 1?coprime_sym ?coprime_num_den // andbC. +rewrite -(@Gauss_dvdr _ `|numq y|) 1?coprime_sym ?coprime_num_den //. +by rewrite -!abszM hxy -{1}hxy !abszM !dvdn_mull ?dvdnn. +Qed. + +Fact fracq_eq x y : x.2 != 0 -> y.2 != 0 -> + (fracq x == fracq y) = (x.1 * y.2 == y.1 * x.2). +Proof. +case: fracqP=> //= u fx u_neq0 _; case: fracqP=> //= v fy v_neq0 _; symmetry. +rewrite [X in (_ == X)]mulrC mulrACA [X in (_ == X)]mulrACA. +by rewrite [denq _ * _]mulrC (inj_eq (mulfI _)) ?mulf_neq0 // rat_eq. +Qed. + +Fact fracq_eq0 x : (fracq x == zeroq) = (x.1 == 0) || (x.2 == 0). +Proof. +move: x=> [n d] /=; have [->|d0] := altP (d =P 0). + by rewrite fracq0 eqxx orbT. +by rewrite orbF fracq_eq ?d0 //= mulr1 mul0r. +Qed. + +Fact fracqMM x n d : x != 0 -> fracq (x * n, x * d) = fracq (n, d). +Proof. +move=> x_neq0; apply/eqP. +have [->|d_neq0] := eqVneq d 0; first by rewrite mulr0 !fracq0. +by rewrite fracq_eq ?mulf_neq0 //= mulrCA mulrA. +Qed. + +Definition addq_subdef (x y : int * int) := (x.1 * y.2 + y.1 * x.2, x.2 * y.2). +Definition addq (x y : rat) := nosimpl fracq (addq_subdef (valq x) (valq y)). + +Definition oppq_subdef (x : int * int) := (- x.1, x.2). +Definition oppq (x : rat) := nosimpl fracq (oppq_subdef (valq x)). + +Fact addq_subdefC : commutative addq_subdef. +Proof. by move=> x y; rewrite /addq_subdef addrC [_.2 * _]mulrC. Qed. + +Fact addq_subdefA : associative addq_subdef. +Proof. +move=> x y z; rewrite /addq_subdef. +by rewrite !mulrA !mulrDl addrA ![_ * x.2]mulrC !mulrA. +Qed. + +Fact addq_frac x y : x.2 != 0 -> y.2 != 0 -> + (addq (fracq x) (fracq y)) = fracq (addq_subdef x y). +Proof. +case: fracqP => // u fx u_neq0 _; case: fracqP => // v fy v_neq0 _. +rewrite /addq_subdef /= ![(_ * numq _) * _]mulrACA [(_ * denq _) * _]mulrACA. +by rewrite [v * _]mulrC -mulrDr fracqMM ?mulf_neq0. +Qed. + +Fact ratzD : {morph ratz : x y / x + y >-> addq x y}. +Proof. +by move=> x y /=; rewrite !ratz_frac addq_frac // /addq_subdef /= !mulr1. +Qed. + +Fact oppq_frac x : oppq (fracq x) = fracq (oppq_subdef x). +Proof. +rewrite /oppq_subdef; case: fracqP => /= [|u fx u_neq0]. + by rewrite fracq0. +by rewrite -mulrN fracqMM. +Qed. + +Fact ratzN : {morph ratz : x / - x >-> oppq x}. +Proof. by move=> x /=; rewrite !ratz_frac oppq_frac // /add /= !mulr1. Qed. + +Fact addqC : commutative addq. +Proof. by move=> x y; rewrite /addq /=; rewrite addq_subdefC. Qed. + +Fact addqA : associative addq. +Proof. +move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK. +by rewrite !addq_frac ?mulf_neq0 ?denq_neq0 // addq_subdefA. +Qed. + +Fact add0q : left_id zeroq addq. +Proof. +move=> x; rewrite -[x]valqK addq_frac ?denq_neq0 // /addq_subdef /=. +by rewrite mul0r add0r mulr1 mul1r -surjective_pairing. +Qed. + +Fact addNq : left_inverse (fracq (0, 1)) oppq addq. +Proof. +move=> x; rewrite -[x]valqK !(addq_frac, oppq_frac) ?denq_neq0 //. +rewrite /addq_subdef /oppq_subdef //= mulNr addNr; apply/eqP. +by rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= !mul0r. +Qed. + +Definition rat_ZmodMixin := ZmodMixin addqA addqC add0q addNq. +Canonical rat_ZmodType := ZmodType rat rat_ZmodMixin. + +Definition mulq_subdef (x y : int * int) := nosimpl (x.1 * y.1, x.2 * y.2). +Definition mulq (x y : rat) := nosimpl fracq (mulq_subdef (valq x) (valq y)). + +Fact mulq_subdefC : commutative mulq_subdef. +Proof. by move=> x y; rewrite /mulq_subdef mulrC [_ * x.2]mulrC. Qed. + +Fact mul_subdefA : associative mulq_subdef. +Proof. by move=> x y z; rewrite /mulq_subdef !mulrA. Qed. + +Definition invq_subdef (x : int * int) := nosimpl (x.2, x.1). +Definition invq (x : rat) := nosimpl fracq (invq_subdef (valq x)). + +Fact mulq_frac x y : (mulq (fracq x) (fracq y)) = fracq (mulq_subdef x y). +Proof. +rewrite /mulq_subdef; case: fracqP => /= [|u fx u_neq0]. + by rewrite mul0r fracq0 /mulq /mulq_subdef /= mul0r frac0q. +case: fracqP=> /= [|v fy v_neq0]. + by rewrite mulr0 fracq0 /mulq /mulq_subdef /= mulr0 frac0q. +by rewrite ![_ * (v * _)]mulrACA fracqMM ?mulf_neq0. +Qed. + +Fact ratzM : {morph ratz : x y / x * y >-> mulq x y}. +Proof. by move=> x y /=; rewrite !ratz_frac mulq_frac // /= !mulr1. Qed. + +Fact invq_frac x : + x.1 != 0 -> x.2 != 0 -> invq (fracq x) = fracq (invq_subdef x). +Proof. +by rewrite /invq_subdef; case: fracqP => // k {x} x k0; rewrite fracqMM. +Qed. + +Fact mulqC : commutative mulq. +Proof. by move=> x y; rewrite /mulq mulq_subdefC. Qed. + +Fact mulqA : associative mulq. +Proof. +by move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK !mulq_frac mul_subdefA. +Qed. + +Fact mul1q : left_id oneq mulq. +Proof. +move=> x; rewrite -[x]valqK; rewrite mulq_frac /mulq_subdef. +by rewrite !mul1r -surjective_pairing. +Qed. + +Fact mulq_addl : left_distributive mulq addq. +Proof. +move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK /=. +rewrite !(mulq_frac, addq_frac) ?mulf_neq0 ?denq_neq0 //=. +apply/eqP; rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= !mulrDl; apply/eqP. +by rewrite !mulrA ![_ * (valq z).1]mulrC !mulrA ![_ * (valq x).2]mulrC !mulrA. +Qed. + +Fact nonzero1q : oneq != zeroq. Proof. by []. Qed. + +Definition rat_comRingMixin := + ComRingMixin mulqA mulqC mul1q mulq_addl nonzero1q. +Canonical rat_Ring := Eval hnf in RingType rat rat_comRingMixin. +Canonical rat_comRing := Eval hnf in ComRingType rat mulqC. + +Fact mulVq x : x != 0 -> mulq (invq x) x = 1. +Proof. +rewrite -[x]valqK fracq_eq ?denq_neq0 //= mulr1 mul0r=> nx0. +rewrite !(mulq_frac, invq_frac) ?denq_neq0 //. +by apply/eqP; rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= mulr1 mul1r mulrC. +Qed. + +Fact invq0 : invq 0 = 0. Proof. by apply/eqP. Qed. + +Definition RatFieldUnitMixin := FieldUnitMixin mulVq invq0. +Canonical rat_unitRing := + Eval hnf in UnitRingType rat RatFieldUnitMixin. +Canonical rat_comUnitRing := Eval hnf in [comUnitRingType of rat]. + +Fact rat_field_axiom : GRing.Field.mixin_of rat_unitRing. Proof. exact. Qed. + +Definition RatFieldIdomainMixin := (FieldIdomainMixin rat_field_axiom). +Canonical rat_iDomain := + Eval hnf in IdomainType rat (FieldIdomainMixin rat_field_axiom). +Canonical rat_fieldType := FieldType rat rat_field_axiom. + +Lemma numq_eq0 x : (numq x == 0) = (x == 0). +Proof. +rewrite -[x]valqK fracq_eq0; case: fracqP=> /= [|k {x} x k0]. + by rewrite eqxx orbT. +by rewrite !mulf_eq0 (negPf k0) /= denq_eq0 orbF. +Qed. + +Notation "n %:Q" := ((n : int)%:~R : rat) + (at level 2, left associativity, format "n %:Q") : ring_scope. + +Hint Resolve denq_neq0 denq_gt0 denq_ge0. + +Definition subq (x y : rat) : rat := (addq x (oppq y)). +Definition divq (x y : rat) : rat := (mulq x (invq y)). + +Notation "0" := zeroq : rat_scope. +Notation "1" := oneq : rat_scope. +Infix "+" := addq : rat_scope. +Notation "- x" := (oppq x) : rat_scope. +Infix "*" := mulq : rat_scope. +Notation "x ^-1" := (invq x) : rat_scope. +Infix "-" := subq : rat_scope. +Infix "/" := divq : rat_scope. + +(* ratz should not be used, %:Q should be used instead *) +Lemma ratzE n : ratz n = n%:Q. +Proof. +elim: n=> [|n ihn|n ihn]; first by rewrite mulr0z ratz_frac. + by rewrite intS mulrzDl ratzD ihn. +by rewrite intS opprD mulrzDl ratzD ihn. +Qed. + +Lemma numq_int n : numq n%:Q = n. Proof. by rewrite -ratzE. Qed. +Lemma denq_int n : denq n%:Q = 1. Proof. by rewrite -ratzE. Qed. + +Lemma rat0 : 0%:Q = 0. Proof. by []. Qed. +Lemma rat1 : 1%:Q = 1. Proof. by []. Qed. + +Lemma numqN x : numq (- x) = - numq x. +Proof. +rewrite /numq; case: x=> [[a b] /= /andP [hb]]; rewrite /coprime=> /eqP hab. +by rewrite ltr_gtF ?gtr_eqF // {2}abszN hab divn1 mulz_sign_abs. +Qed. + +Lemma denqN x : denq (- x) = denq x. +Proof. +rewrite /denq; case: x=> [[a b] /= /andP [hb]]; rewrite /coprime=> /eqP hab. +by rewrite gtr_eqF // abszN hab divn1 gtz0_abs. +Qed. + +(* Will be subsumed by pnatr_eq0 *) +Fact intq_eq0 n : (n%:~R == 0 :> rat) = (n == 0)%N. +Proof. by rewrite -ratzE /ratz rat_eqE /numq /denq /= mulr0 eqxx andbT. Qed. + +(* fracq should never appear, its canonical form is _%:Q / _%:Q *) +Lemma fracqE x : fracq x = x.1%:Q / x.2%:Q. +Proof. +move:x => [m n] /=. +case n0: (n == 0); first by rewrite (eqP n0) fracq0 rat0 invr0 mulr0. +rewrite -[m%:Q]valqK -[n%:Q]valqK. +rewrite [_^-1]invq_frac ?(denq_neq0, numq_eq0, n0, intq_eq0) //. +rewrite [_ / _]mulq_frac /= /invq_subdef /mulq_subdef /=. +by rewrite -!/(numq _) -!/(denq _) !numq_int !denq_int mul1r mulr1. +Qed. + +Lemma divq_num_den x : (numq x)%:Q / (denq x)%:Q = x. +Proof. by rewrite -{3}[x]valqK [valq _]surjective_pairing /= fracqE. Qed. + +CoInductive divq_spec (n d : int) : int -> int -> rat -> Type := +| DivqSpecN of d = 0 : divq_spec n d n 0 0 +| DivqSpecP k x of k != 0 : divq_spec n d (k * numq x) (k * denq x) x. + +(* replaces fracqP *) +Lemma divqP n d : divq_spec n d n d (n%:Q / d%:Q). +Proof. +set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE. +by case: fracqP => [_|k fx k_neq0] /=; constructor. +Qed. + +Lemma divq_eq (nx dx ny dy : rat) : + dx != 0 -> dy != 0 -> (nx / dx == ny / dy) = (nx * dy == ny * dx). +Proof. +move=> dx_neq0 dy_neq0; rewrite -(inj_eq (@mulIf _ (dx * dy) _)) ?mulf_neq0 //. +by rewrite mulrA divfK // mulrCA divfK // [dx * _ ]mulrC. +Qed. + +CoInductive rat_spec (* (x : rat) *) : rat -> int -> int -> Type := + Rat_spec (n : int) (d : nat) & coprime `|n| d.+1 + : rat_spec (* x *) (n%:Q / d.+1%:Q) n d.+1. + +Lemma ratP x : rat_spec x (numq x) (denq x). +Proof. +rewrite -{1}[x](divq_num_den); case hd: denq => [p|n]. + have: 0 < p%:Z by rewrite -hd denq_gt0. + case: p hd=> //= n hd; constructor; rewrite -?hd ?divq_num_den //. + by rewrite -[n.+1]/`|n.+1|%N -hd coprime_num_den. +by move: (denq_gt0 x); rewrite hd. +Qed. + +Lemma coprimeq_num n d : coprime `|n| `|d| -> numq (n%:~R / d%:~R) = sgr d * n. +Proof. +move=> cnd /=; have <- := fracqE (n, d). +rewrite /numq /= (eqP (cnd : _ == 1%N)) divn1. +have [|d_gt0|d_lt0] := sgrP d; +by rewrite (mul0r, mul1r, mulN1r) //= ?[_ ^ _]signrN ?mulNr mulz_sign_abs. +Qed. + +Lemma coprimeq_den n d : + coprime `|n| `|d| -> denq (n%:~R / d%:~R) = (if d == 0 then 1 else `|d|). +Proof. +move=> cnd; have <- := fracqE (n, d). +by rewrite /denq /= (eqP (cnd : _ == 1%N)) divn1; case: d {cnd}. +Qed. + +Lemma denqVz (i : int) : i != 0 -> denq (i%:~R^-1) = `|i|. +Proof. +by move=> h; rewrite -div1r -[1]/(1%:~R) coprimeq_den /= ?coprime1n // (negPf h). +Qed. + +Lemma numqE x : (numq x)%:~R = x * (denq x)%:~R. +Proof. by rewrite -{2}[x]divq_num_den divfK // intq_eq0 denq_eq0. Qed. + +Lemma denqP x : {d | denq x = d.+1}. +Proof. by rewrite /denq; case: x => [[_ [[|d]|]] //= _]; exists d. Qed. + +Definition normq (x : rat) : rat := `|numq x|%:~R / (denq x)%:~R. +Definition le_rat (x y : rat) := numq x * denq y <= numq y * denq x. +Definition lt_rat (x y : rat) := numq x * denq y < numq y * denq x. + +Lemma gt_rat0 x : lt_rat 0 x = (0 < numq x). +Proof. by rewrite /lt_rat mul0r mulr1. Qed. + +Lemma lt_rat0 x : lt_rat x 0 = (numq x < 0). +Proof. by rewrite /lt_rat mul0r mulr1. Qed. + +Lemma ge_rat0 x : le_rat 0 x = (0 <= numq x). +Proof. by rewrite /le_rat mul0r mulr1. Qed. + +Lemma le_rat0 x : le_rat x 0 = (numq x <= 0). +Proof. by rewrite /le_rat mul0r mulr1. Qed. + +Fact le_rat0D x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x + y). +Proof. +rewrite !ge_rat0 => hnx hny. +have hxy: (0 <= numq x * denq y + numq y * denq x). + by rewrite addr_ge0 ?mulr_ge0. +by rewrite /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0 !ler_gtF ?mulr_ge0. +Qed. + +Fact le_rat0M x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x * y). +Proof. +rewrite !ge_rat0 => hnx hny. +have hxy: (0 <= numq x * denq y + numq y * denq x). + by rewrite addr_ge0 ?mulr_ge0. +by rewrite /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0 !ler_gtF ?mulr_ge0. +Qed. + +Fact le_rat0_anti x : le_rat 0 x -> le_rat x 0 -> x = 0. +Proof. +by move=> hx hy; apply/eqP; rewrite -numq_eq0 eqr_le -ge_rat0 -le_rat0 hx hy. +Qed. + +Lemma sgr_numq_div (n d : int) : sgr (numq (n%:Q / d%:Q)) = sgr n * sgr d. +Proof. +set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE. +case: fracqP => [|k fx k_neq0] /=; first by rewrite mulr0. +by rewrite !sgrM mulrACA -expr2 sqr_sg k_neq0 sgr_denq mulr1 mul1r. +Qed. + +Fact subq_ge0 x y : le_rat 0 (y - x) = le_rat x y. +Proof. +symmetry; rewrite ge_rat0 /le_rat -subr_ge0. +case: ratP => nx dx cndx; case: ratP => ny dy cndy. +rewrite -!mulNr addf_div ?intq_eq0 // !mulNr -!rmorphM -rmorphB /=. +symmetry; rewrite !lerNgt -sgr_cp0 sgr_numq_div mulrC gtr0_sg //. +by rewrite mul1r sgr_cp0. +Qed. + +Fact le_rat_total : total le_rat. +Proof. by move=> x y; apply: ler_total. Qed. + +Fact numq_sign_mul (b : bool) x : numq ((-1) ^+ b * x) = (-1) ^+ b * numq x. +Proof. by case: b; rewrite ?(mul1r, mulN1r) // numqN. Qed. + +Fact numq_div_lt0 n d : n != 0 -> d != 0 -> + (numq (n%:~R / d%:~R) < 0)%R = (n < 0)%R (+) (d < 0)%R. +Proof. +move=> n0 d0; rewrite -sgr_cp0 sgr_numq_div !sgr_def n0 d0. +by rewrite !mulr1n -signr_addb; case: (_ (+) _). +Qed. + +Lemma normr_num_div n d : `|numq (n%:~R / d%:~R)| = numq (`|n|%:~R / `|d|%:~R). +Proof. +rewrite (normrEsg n) (normrEsg d) !rmorphM /= invfM mulrACA !sgr_def. +have [->|n_neq0] := altP eqP; first by rewrite mul0r mulr0. +have [->|d_neq0] := altP eqP; first by rewrite invr0 !mulr0. +rewrite !intr_sign invr_sign -signr_addb numq_sign_mul -numq_div_lt0 //. +by apply: (canRL (signrMK _)); rewrite mulz_sign_abs. +Qed. + +Fact norm_ratN x : normq (- x) = normq x. +Proof. by rewrite /normq numqN denqN normrN. Qed. + +Fact ge_rat0_norm x : le_rat 0 x -> normq x = x. +Proof. +rewrite ge_rat0; case: ratP=> [] // n d cnd n_ge0. +by rewrite /normq /= normr_num_div ?ger0_norm // divq_num_den. +Qed. + +Fact lt_rat_def x y : (lt_rat x y) = (y != x) && (le_rat x y). +Proof. by rewrite /lt_rat ltr_def rat_eq. Qed. + +Definition ratLeMixin := RealLeMixin le_rat0D le_rat0M le_rat0_anti + subq_ge0 (@le_rat_total 0) norm_ratN ge_rat0_norm lt_rat_def. + +Canonical rat_numDomainType := NumDomainType rat ratLeMixin. +Canonical rat_numFieldType := [numFieldType of rat]. +Canonical rat_realDomainType := RealDomainType rat (@le_rat_total 0). +Canonical rat_realFieldType := [realFieldType of rat]. + +Lemma numq_ge0 x : (0 <= numq x) = (0 <= x). +Proof. +by case: ratP => n d cnd; rewrite ?pmulr_lge0 ?invr_gt0 (ler0z, ltr0z). +Qed. + +Lemma numq_le0 x : (numq x <= 0) = (x <= 0). +Proof. by rewrite -oppr_ge0 -numqN numq_ge0 oppr_ge0. Qed. + +Lemma numq_gt0 x : (0 < numq x) = (0 < x). +Proof. by rewrite !ltrNge numq_le0. Qed. + +Lemma numq_lt0 x : (numq x < 0) = (x < 0). +Proof. by rewrite !ltrNge numq_ge0. Qed. + +Lemma sgr_numq x : sgz (numq x) = sgz x. +Proof. +apply/eqP; case: (sgzP x); rewrite sgz_cp0 ?(numq_gt0, numq_lt0) //. +by move->. +Qed. + +Lemma denq_mulr_sign (b : bool) x : denq ((-1) ^+ b * x) = denq x. +Proof. by case: b; rewrite ?(mul1r, mulN1r) // denqN. Qed. + +Lemma denq_norm x : denq `|x| = denq x. +Proof. by rewrite normrEsign denq_mulr_sign. Qed. + +Fact rat_archimedean : Num.archimedean_axiom [numDomainType of rat]. +Proof. +move=> x; exists `|numq x|.+1; rewrite mulrS ltr_spaddl //. +rewrite pmulrn abszE intr_norm numqE normrM ler_pemulr ?norm_ge0 //. +by rewrite -intr_norm ler1n absz_gt0 denq_eq0. +Qed. + +Canonical archiType := ArchiFieldType rat rat_archimedean. + +Section QintPred. + +Definition Qint := [qualify a x : rat | denq x == 1]. +Fact Qint_key : pred_key Qint. Proof. by []. Qed. +Canonical Qint_keyed := KeyedQualifier Qint_key. + +Lemma Qint_def x : (x \is a Qint) = (denq x == 1). Proof. by []. Qed. + +Lemma numqK : {in Qint, cancel (fun x => numq x) intr}. +Proof. by move=> x /(_ =P 1 :> int) Zx; rewrite numqE Zx rmorph1 mulr1. Qed. + +Lemma QintP x : reflect (exists z, x = z%:~R) (x \in Qint). +Proof. +apply: (iffP idP) => [/numqK <- | [z ->]]; first by exists (numq x). +by rewrite Qint_def denq_int. +Qed. + +Fact Qint_subring_closed : subring_closed Qint. +Proof. +split=> // _ _ /QintP[x ->] /QintP[y ->]; apply/QintP. + by exists (x - y); rewrite -rmorphB. +by exists (x * y); rewrite -rmorphM. +Qed. + +Canonical Qint_opprPred := OpprPred Qint_subring_closed. +Canonical Qint_addrPred := AddrPred Qint_subring_closed. +Canonical Qint_mulrPred := MulrPred Qint_subring_closed. +Canonical Qint_zmodPred := ZmodPred Qint_subring_closed. +Canonical Qint_semiringPred := SemiringPred Qint_subring_closed. +Canonical Qint_smulrPred := SmulrPred Qint_subring_closed. +Canonical Qint_subringPred := SubringPred Qint_subring_closed. + +End QintPred. + +Section QnatPred. + +Definition Qnat := [qualify a x : rat | (x \is a Qint) && (0 <= x)]. +Fact Qnat_key : pred_key Qnat. Proof. by []. Qed. +Canonical Qnat_keyed := KeyedQualifier Qnat_key. + +Lemma Qnat_def x : (x \is a Qnat) = (x \is a Qint) && (0 <= x). +Proof. by []. Qed. + +Lemma QnatP x : reflect (exists n : nat, x = n%:R) (x \in Qnat). +Proof. +rewrite Qnat_def; apply: (iffP idP) => [/andP []|[n ->]]; last first. + by rewrite Qint_def pmulrn denq_int eqxx ler0z. +by move=> /QintP [] [] n ->; rewrite ?ler0z // => _; exists n. +Qed. + +Fact Qnat_semiring_closed : semiring_closed Qnat. +Proof. +do 2?split; move => // x y; rewrite !Qnat_def => /andP[xQ hx] /andP[yQ hy]. + by rewrite rpredD // addr_ge0. +by rewrite rpredM // mulr_ge0. +Qed. + +Canonical Qnat_addrPred := AddrPred Qnat_semiring_closed. +Canonical Qnat_mulrPred := MulrPred Qnat_semiring_closed. +Canonical Qnat_semiringPred := SemiringPred Qnat_semiring_closed. + +End QnatPred. + +Lemma natq_div m n : n %| m -> (m %/ n)%:R = m%:R / n%:R :> rat. +Proof. by apply: char0_natf_div; apply: char_num. Qed. + +Section InRing. + +Variable R : unitRingType. + +Definition ratr x : R := (numq x)%:~R / (denq x)%:~R. + +Lemma ratr_int z : ratr z%:~R = z%:~R. +Proof. by rewrite /ratr numq_int denq_int divr1. Qed. + +Lemma ratr_nat n : ratr n%:R = n%:R. +Proof. exact: (ratr_int n). Qed. + +Lemma rpred_rat S (ringS : @divringPred R S) (kS : keyed_pred ringS) a : + ratr a \in kS. +Proof. by rewrite rpred_div ?rpred_int. Qed. + +End InRing. + +Section Fmorph. + +Implicit Type rR : unitRingType. + +Lemma fmorph_rat (aR : fieldType) rR (f : {rmorphism aR -> rR}) a : + f (ratr _ a) = ratr _ a. +Proof. by rewrite fmorph_div !rmorph_int. Qed. + +Lemma fmorph_eq_rat rR (f : {rmorphism rat -> rR}) : f =1 ratr _. +Proof. by move=> a; rewrite -{1}[a]divq_num_den fmorph_div !rmorph_int. Qed. + +End Fmorph. + +Section Linear. + +Implicit Types (U V : lmodType rat) (A B : lalgType rat). + +Lemma rat_linear U V (f : U -> V) : additive f -> linear f. +Proof. +move=> fB a u v; pose phi := Additive fB; rewrite [f _](raddfD phi). +congr (_ + _); rewrite -{2}[a]divq_num_den mulrC -scalerA. +apply: canRL (scalerK _) _; first by rewrite intr_eq0 denq_neq0. +by rewrite !scaler_int -raddfMz scalerMzl -mulrzr -numqE scaler_int raddfMz. +Qed. + +Lemma rat_lrmorphism A B (f : A -> B) : rmorphism f -> lrmorphism f. +Proof. by case=> /rat_linear fZ fM; do ?split=> //; apply: fZ. Qed. + +End Linear. + +Section InPrealField. + +Variable F : numFieldType. + +Fact ratr_is_rmorphism : rmorphism (@ratr F). +Proof. +have injZtoQ: @injective rat int intr by exact: intr_inj. +have nz_den x: (denq x)%:~R != 0 :> F by rewrite intr_eq0 denq_eq0. +do 2?split; rewrite /ratr ?divr1 // => x y; last first. + rewrite mulrC mulrAC; apply: canLR (mulKf (nz_den _)) _; rewrite !mulrA. + do 2!apply: canRL (mulfK (nz_den _)) _; rewrite -!rmorphM; congr _%:~R. + apply: injZtoQ; rewrite !rmorphM [x * y]lock /= !numqE -lock. + by rewrite -!mulrA mulrA mulrCA -!mulrA (mulrCA y). +apply: (canLR (mulfK (nz_den _))); apply: (mulIf (nz_den x)). +rewrite mulrAC mulrBl divfK ?nz_den // mulrAC -!rmorphM. +apply: (mulIf (nz_den y)); rewrite mulrAC mulrBl divfK ?nz_den //. +rewrite -!(rmorphM, rmorphB); congr _%:~R; apply: injZtoQ. +rewrite !(rmorphM, rmorphB) [_ - _]lock /= -lock !numqE. +by rewrite (mulrAC y) -!mulrBl -mulrA mulrAC !mulrA. +Qed. + +Canonical ratr_additive := Additive ratr_is_rmorphism. +Canonical ratr_rmorphism := RMorphism ratr_is_rmorphism. + +Lemma ler_rat : {mono (@ratr F) : x y / x <= y}. +Proof. +move=> x y /=; case: (ratP x) => nx dx cndx; case: (ratP y) => ny dy cndy. +rewrite !fmorph_div /= !ratr_int !ler_pdivl_mulr ?ltr0z //. +by rewrite ![_ / _ * _]mulrAC !ler_pdivr_mulr ?ltr0z // -!rmorphM /= !ler_int. +Qed. + +Lemma ltr_rat : {mono (@ratr F) : x y / x < y}. +Proof. exact: lerW_mono ler_rat. Qed. + +Lemma ler0q x : (0 <= ratr F x) = (0 <= x). +Proof. by rewrite (_ : 0 = ratr F 0) ?ler_rat ?rmorph0. Qed. + +Lemma lerq0 x : (ratr F x <= 0) = (x <= 0). +Proof. by rewrite (_ : 0 = ratr F 0) ?ler_rat ?rmorph0. Qed. + +Lemma ltr0q x : (0 < ratr F x) = (0 < x). +Proof. by rewrite (_ : 0 = ratr F 0) ?ltr_rat ?rmorph0. Qed. + +Lemma ltrq0 x : (ratr F x < 0) = (x < 0). +Proof. by rewrite (_ : 0 = ratr F 0) ?ltr_rat ?rmorph0. Qed. + +Lemma ratr_sg x : ratr F (sgr x) = sgr (ratr F x). +Proof. by rewrite !sgr_def fmorph_eq0 ltrq0 rmorphMn rmorph_sign. Qed. + +Lemma ratr_norm x : ratr F `|x| = `|ratr F x|. +Proof. +rewrite {2}[x]numEsign rmorphMsign normrMsign [`|ratr F _|]ger0_norm //. +by rewrite ler0q ?normr_ge0. +Qed. + +End InPrealField. + +Implicit Arguments ratr [[R]]. + +(* Conntecting rationals to the ring an field tactics *) + +Ltac rat_to_ring := + rewrite -?[0%Q]/(0 : rat)%R -?[1%Q]/(1 : rat)%R + -?[(_ - _)%Q]/(_ - _ : rat)%R -?[(_ / _)%Q]/(_ / _ : rat)%R + -?[(_ + _)%Q]/(_ + _ : rat)%R -?[(_ * _)%Q]/(_ * _ : rat)%R + -?[(- _)%Q]/(- _ : rat)%R -?[(_ ^-1)%Q]/(_ ^-1 : rat)%R /=. + +Ltac ring_to_rat := + rewrite -?[0%R]/0%Q -?[1%R]/1%Q + -?[(_ - _)%R]/(_ - _)%Q -?[(_ / _)%R]/(_ / _)%Q + -?[(_ + _)%R]/(_ + _)%Q -?[(_ * _)%R]/(_ * _)%Q + -?[(- _)%R]/(- _)%Q -?[(_ ^-1)%R]/(_ ^-1)%Q /=. + +Lemma rat_ring_theory : (ring_theory 0%Q 1%Q addq mulq subq oppq eq). +Proof. +split => * //; rat_to_ring; +by rewrite ?(add0r, addrA, mul1r, mulrA, mulrDl, subrr) // (addrC, mulrC). +Qed. + +Require setoid_ring.Field_theory setoid_ring.Field_tac. + +Lemma rat_field_theory : + Field_theory.field_theory 0%Q 1%Q addq mulq subq oppq divq invq eq. +Proof. +split => //; first exact rat_ring_theory. +by move=> p /eqP p_neq0; rat_to_ring; rewrite mulVf. +Qed. + +Add Field rat_field : rat_field_theory. |
