aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/rat.v
diff options
context:
space:
mode:
authorCyril Cohen2018-07-28 21:30:02 +0200
committerCyril Cohen2018-10-26 03:33:07 +0200
commitbccc54dc85e2d9cd7248c24a576d6092630fb51d (patch)
treedeb09d0b341008596781f2ceafa69bc84fc5b86f /mathcomp/algebra/rat.v
parent76fb3c00580488f75362153f6ea252f9b4d4084b (diff)
moving countalg and closed_field around
- countalg goes to the algebra package - finalg now get the expected inheritance from countalg - closed_field now contains the construction of algebraic closure for countable fields (previously in countalg) - proof of quantifier elimination for closed field rewritten in a monadic style
Diffstat (limited to 'mathcomp/algebra/rat.v')
-rw-r--r--mathcomp/algebra/rat.v10
1 files changed, 9 insertions, 1 deletions
diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v
index b56bc2a..6015f33 100644
--- a/mathcomp/algebra/rat.v
+++ b/mathcomp/algebra/rat.v
@@ -4,7 +4,7 @@ Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
-Require Import bigop ssralg div ssrnum ssrint.
+Require Import bigop ssralg countalg div ssrnum ssrint.
(******************************************************************************)
(* This file defines a datatype for rational numbers and equips it with a *)
@@ -350,6 +350,14 @@ Canonical rat_iDomain :=
Eval hnf in IdomainType rat (FieldIdomainMixin rat_field_axiom).
Canonical rat_fieldType := FieldType rat rat_field_axiom.
+Canonical rat_countZmodType := [countZmodType of rat].
+Canonical rat_countRingType := [countRingType of rat].
+Canonical rat_countComRingType := [countComRingType of rat].
+Canonical rat_countUnitRingType := [countUnitRingType of rat].
+Canonical rat_countComUnitRingType := [countComUnitRingType of rat].
+Canonical rat_countIdomainType := [countIdomainType of rat].
+Canonical rat_countFieldType := [countFieldType of rat].
+
Lemma numq_eq0 x : (numq x == 0) = (x == 0).
Proof.
rewrite -[x]valqK fracq_eq0; case: fracqP=> /= [|k {x} x k0].