diff options
| author | Cyril Cohen | 2018-07-28 21:30:02 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2018-10-26 03:33:07 +0200 |
| commit | bccc54dc85e2d9cd7248c24a576d6092630fb51d (patch) | |
| tree | deb09d0b341008596781f2ceafa69bc84fc5b86f /mathcomp/algebra/rat.v | |
| parent | 76fb3c00580488f75362153f6ea252f9b4d4084b (diff) | |
moving countalg and closed_field around
- countalg goes to the algebra package
- finalg now get the expected inheritance from countalg
- closed_field now contains the construction of algebraic closure for countable fields (previously in countalg)
- proof of quantifier elimination for closed field rewritten in a monadic style
Diffstat (limited to 'mathcomp/algebra/rat.v')
| -rw-r--r-- | mathcomp/algebra/rat.v | 10 |
1 files changed, 9 insertions, 1 deletions
diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v index b56bc2a..6015f33 100644 --- a/mathcomp/algebra/rat.v +++ b/mathcomp/algebra/rat.v @@ -4,7 +4,7 @@ Require Import mathcomp.ssreflect.ssreflect. From mathcomp Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype. From mathcomp -Require Import bigop ssralg div ssrnum ssrint. +Require Import bigop ssralg countalg div ssrnum ssrint. (******************************************************************************) (* This file defines a datatype for rational numbers and equips it with a *) @@ -350,6 +350,14 @@ Canonical rat_iDomain := Eval hnf in IdomainType rat (FieldIdomainMixin rat_field_axiom). Canonical rat_fieldType := FieldType rat rat_field_axiom. +Canonical rat_countZmodType := [countZmodType of rat]. +Canonical rat_countRingType := [countRingType of rat]. +Canonical rat_countComRingType := [countComRingType of rat]. +Canonical rat_countUnitRingType := [countUnitRingType of rat]. +Canonical rat_countComUnitRingType := [countComUnitRingType of rat]. +Canonical rat_countIdomainType := [countIdomainType of rat]. +Canonical rat_countFieldType := [countFieldType of rat]. + Lemma numq_eq0 x : (numq x == 0) = (x == 0). Proof. rewrite -[x]valqK fracq_eq0; case: fracqP=> /= [|k {x} x k0]. |
