aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/poly.v
diff options
context:
space:
mode:
authorGeorges Gonthier2018-12-13 12:55:43 +0100
committerGeorges Gonthier2018-12-13 12:55:43 +0100
commit0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch)
tree60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/algebra/poly.v
parentfa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff)
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or `ocancel`) are passed to generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should not have trailing on-demand implicits _just before_ the `cancel` conclusion, as these would be inconvenient to insert (requiring essentially an explicit eta-expansion). We therefore use `Arguments` or `Prenex Implicits` directives to make all such arguments maximally inserted implicits. We don’t, however make other arguments implicit, so as not to spoil direct instantiation of the lemmas (in, e.g., `rewrite -[y](invmK injf)`). We have also tried to do this with lemmas whose statement matches a `cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern unification will pick up `f = fun x => E[x]`). We also adjusted implicits of a few stray injectivity lemmas, and defined constants. We provide a shorthand for reindexing a bigop with a permutation. Finally we used the new implicit signatures to simplify proofs that use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/algebra/poly.v')
-rw-r--r--mathcomp/algebra/poly.v9
1 files changed, 5 insertions, 4 deletions
diff --git a/mathcomp/algebra/poly.v b/mathcomp/algebra/poly.v
index 929c313..702dfc4 100644
--- a/mathcomp/algebra/poly.v
+++ b/mathcomp/algebra/poly.v
@@ -142,8 +142,8 @@ Definition coefp_head h i (p : poly_of (Phant R)) := let: tt := h in p`_i.
End Polynomial.
-(* We need to break off the section here to let the argument scope *)
-(* directives take effect. *)
+(* We need to break off the section here to let the Bind Scope directives *)
+(* take effect. *)
Bind Scope ring_scope with poly_of.
Bind Scope ring_scope with polynomial.
Arguments polyseq {R} p%R.
@@ -1675,7 +1675,7 @@ Qed.
End PolynomialTheory.
-Prenex Implicits polyC Poly lead_coef root horner polyOver.
+Prenex Implicits polyC polyCK Poly polyseqK lead_coef root horner polyOver.
Arguments monic {R}.
Notation "\poly_ ( i < n ) E" := (poly n (fun i => E)) : ring_scope.
Notation "c %:P" := (polyC c) : ring_scope.
@@ -1694,6 +1694,7 @@ Arguments rootPf {R p x}.
Arguments rootPt {R p x}.
Arguments unity_rootP {R n z}.
Arguments polyOverP {R S0 addS kS p}.
+Arguments polyC_inj {R} [x1 x2] eq_x12P.
Canonical polynomial_countZmodType (R : countRingType) :=
[countZmodType of polynomial R].
@@ -1947,7 +1948,7 @@ Definition comp_poly q p := p^:P.[q].
Local Notation "p \Po q" := (comp_poly q p) : ring_scope.
Lemma size_map_polyC p : size p^:P = size p.
-Proof. exact: size_map_inj_poly (@polyC_inj R) _ _. Qed.
+Proof. exact/(size_map_inj_poly polyC_inj). Qed.
Lemma map_polyC_eq0 p : (p^:P == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 size_map_polyC. Qed.