diff options
| author | Georges Gonthier | 2018-12-13 12:55:43 +0100 |
|---|---|---|
| committer | Georges Gonthier | 2018-12-13 12:55:43 +0100 |
| commit | 0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch) | |
| tree | 60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/algebra/poly.v | |
| parent | fa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff) | |
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose
conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or
`ocancel`) are passed to
generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should
not have trailing on-demand implicits _just before_ the `cancel`
conclusion, as these would be inconvenient to insert (requiring
essentially an explicit eta-expansion).
We therefore use `Arguments` or `Prenex Implicits` directives to make
all such arguments maximally inserted implicits. We don’t, however make
other arguments implicit, so as not to spoil direct instantiation of
the lemmas (in, e.g., `rewrite -[y](invmK injf)`).
We have also tried to do this with lemmas whose statement matches a
`cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern
unification will pick up `f = fun x => E[x]`).
We also adjusted implicits of a few stray injectivity
lemmas, and defined constants.
We provide a shorthand for reindexing a bigop with a permutation.
Finally we used the new implicit signatures to simplify proofs that
use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/algebra/poly.v')
| -rw-r--r-- | mathcomp/algebra/poly.v | 9 |
1 files changed, 5 insertions, 4 deletions
diff --git a/mathcomp/algebra/poly.v b/mathcomp/algebra/poly.v index 929c313..702dfc4 100644 --- a/mathcomp/algebra/poly.v +++ b/mathcomp/algebra/poly.v @@ -142,8 +142,8 @@ Definition coefp_head h i (p : poly_of (Phant R)) := let: tt := h in p`_i. End Polynomial. -(* We need to break off the section here to let the argument scope *) -(* directives take effect. *) +(* We need to break off the section here to let the Bind Scope directives *) +(* take effect. *) Bind Scope ring_scope with poly_of. Bind Scope ring_scope with polynomial. Arguments polyseq {R} p%R. @@ -1675,7 +1675,7 @@ Qed. End PolynomialTheory. -Prenex Implicits polyC Poly lead_coef root horner polyOver. +Prenex Implicits polyC polyCK Poly polyseqK lead_coef root horner polyOver. Arguments monic {R}. Notation "\poly_ ( i < n ) E" := (poly n (fun i => E)) : ring_scope. Notation "c %:P" := (polyC c) : ring_scope. @@ -1694,6 +1694,7 @@ Arguments rootPf {R p x}. Arguments rootPt {R p x}. Arguments unity_rootP {R n z}. Arguments polyOverP {R S0 addS kS p}. +Arguments polyC_inj {R} [x1 x2] eq_x12P. Canonical polynomial_countZmodType (R : countRingType) := [countZmodType of polynomial R]. @@ -1947,7 +1948,7 @@ Definition comp_poly q p := p^:P.[q]. Local Notation "p \Po q" := (comp_poly q p) : ring_scope. Lemma size_map_polyC p : size p^:P = size p. -Proof. exact: size_map_inj_poly (@polyC_inj R) _ _. Qed. +Proof. exact/(size_map_inj_poly polyC_inj). Qed. Lemma map_polyC_eq0 p : (p^:P == 0) = (p == 0). Proof. by rewrite -!size_poly_eq0 size_map_polyC. Qed. |
