diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/algebra/mxpoly.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/algebra/mxpoly.v')
| -rw-r--r-- | mathcomp/algebra/mxpoly.v | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/algebra/mxpoly.v b/mathcomp/algebra/mxpoly.v index eeece16..4d043ea 100644 --- a/mathcomp/algebra/mxpoly.v +++ b/mathcomp/algebra/mxpoly.v @@ -147,7 +147,7 @@ Proof. move=> p_nc q_nc; pose dp := (size p).-1; pose dq := (size q).-1. pose S := Sylvester_mx p q; pose dS := (dq + dp)%N. have dS_gt0: dS > 0 by rewrite /dS /dq -(subnKC q_nc). -pose j0 := Ordinal dS_gt0. +pose j0 := Ordinal dS_gt0. pose Ss0 := col_mx (p *: \col_(i < dq) 'X^i) (q *: \col_(i < dp) 'X^i). pose Ss := \matrix_(i, j) (if j == j0 then Ss0 i 0 else (S i j)%:P). pose u ds s := \sum_(i < ds) cofactor Ss (s i) j0 * 'X^i. @@ -325,13 +325,13 @@ apply: leq_trans (_ : #|[pred j | s j == j]|.+1 <= n.-1). - by rewrite size_poly1. - apply: leq_trans (size_mul_leq _ _) _. by rewrite -subn1 -addnS leq_subLR addnA leq_add. - rewrite !mxE eq_sym !inE; case: (s j == j); first by rewrite polyseqXsubC. + rewrite !mxE eq_sym !inE; case: (s j == j); first by rewrite polyseqXsubC. by rewrite sub0r size_opp size_polyC leq_b1. rewrite -{8}[n]card_ord -(cardC (pred2 (s i) i)) card2 nfix_i !ltnS. apply: subset_leq_card; apply/subsetP=> j; move/(_ =P j)=> fix_j. rewrite !inE -{1}fix_j (inj_eq (@perm_inj _ s)) orbb. by apply: contraNneq nfix_i => <-; rewrite fix_j. -Qed. +Qed. Lemma size_char_poly : size char_poly = n.+1. Proof. @@ -356,7 +356,7 @@ have ->: \tr A = \sum_(x <- diagA) x by rewrite big_map enumT. rewrite -size_diagA {}/p; elim: diagA => [|x d IHd]. by rewrite !big_nil mulr1 coefX oppr0. rewrite !big_cons coefXM mulrBl coefB IHd opprD addrC; congr (- _ + _). -rewrite mul_polyC coefZ [size _]/= -(size_prod_XsubC _ id) -lead_coefE. +rewrite mul_polyC coefZ [size _]/= -(size_prod_XsubC _ id) -lead_coefE. by rewrite (monicP _) ?monic_prod_XsubC ?mulr1. Qed. @@ -591,7 +591,7 @@ Variables (d n : nat) (A : 'M[aR]_n). Lemma map_rVpoly (u : 'rV_d) : fp (rVpoly u) = rVpoly u^f. Proof. apply/polyP=> k; rewrite coef_map !coef_rVpoly. -by case: (insub k) => [i|]; rewrite /= ?rmorph0 // mxE. +by case: (insub k) => [i|]; rewrite /= ?rmorph0 // mxE. Qed. Lemma map_poly_rV p : (poly_rV p)^f = poly_rV (fp p) :> 'rV_d. @@ -817,7 +817,7 @@ rewrite polySpred ?monic_neq0 // -/m1 big_ord_recr /= -lead_coefE. rewrite opprD addrC (monicP mon_p) mul1r subrK !mulrN -mulNr !mulr_sumr. apply: Msum => j _; rewrite mulrA mulrACA -exprD; apply: IHn. by rewrite -addnS addnC addnBA // leq_subLR leq_add. -by rewrite -mulN1r; do 2!apply: (genM) => //; apply: genR. +by rewrite -mulN1r; do 2!apply: (genM) => //; apply: genR. Qed. Lemma integral_root_monic u p : |
