aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/mxpoly.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/algebra/mxpoly.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/algebra/mxpoly.v')
-rw-r--r--mathcomp/algebra/mxpoly.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/algebra/mxpoly.v b/mathcomp/algebra/mxpoly.v
index eeece16..4d043ea 100644
--- a/mathcomp/algebra/mxpoly.v
+++ b/mathcomp/algebra/mxpoly.v
@@ -147,7 +147,7 @@ Proof.
move=> p_nc q_nc; pose dp := (size p).-1; pose dq := (size q).-1.
pose S := Sylvester_mx p q; pose dS := (dq + dp)%N.
have dS_gt0: dS > 0 by rewrite /dS /dq -(subnKC q_nc).
-pose j0 := Ordinal dS_gt0.
+pose j0 := Ordinal dS_gt0.
pose Ss0 := col_mx (p *: \col_(i < dq) 'X^i) (q *: \col_(i < dp) 'X^i).
pose Ss := \matrix_(i, j) (if j == j0 then Ss0 i 0 else (S i j)%:P).
pose u ds s := \sum_(i < ds) cofactor Ss (s i) j0 * 'X^i.
@@ -325,13 +325,13 @@ apply: leq_trans (_ : #|[pred j | s j == j]|.+1 <= n.-1).
- by rewrite size_poly1.
- apply: leq_trans (size_mul_leq _ _) _.
by rewrite -subn1 -addnS leq_subLR addnA leq_add.
- rewrite !mxE eq_sym !inE; case: (s j == j); first by rewrite polyseqXsubC.
+ rewrite !mxE eq_sym !inE; case: (s j == j); first by rewrite polyseqXsubC.
by rewrite sub0r size_opp size_polyC leq_b1.
rewrite -{8}[n]card_ord -(cardC (pred2 (s i) i)) card2 nfix_i !ltnS.
apply: subset_leq_card; apply/subsetP=> j; move/(_ =P j)=> fix_j.
rewrite !inE -{1}fix_j (inj_eq (@perm_inj _ s)) orbb.
by apply: contraNneq nfix_i => <-; rewrite fix_j.
-Qed.
+Qed.
Lemma size_char_poly : size char_poly = n.+1.
Proof.
@@ -356,7 +356,7 @@ have ->: \tr A = \sum_(x <- diagA) x by rewrite big_map enumT.
rewrite -size_diagA {}/p; elim: diagA => [|x d IHd].
by rewrite !big_nil mulr1 coefX oppr0.
rewrite !big_cons coefXM mulrBl coefB IHd opprD addrC; congr (- _ + _).
-rewrite mul_polyC coefZ [size _]/= -(size_prod_XsubC _ id) -lead_coefE.
+rewrite mul_polyC coefZ [size _]/= -(size_prod_XsubC _ id) -lead_coefE.
by rewrite (monicP _) ?monic_prod_XsubC ?mulr1.
Qed.
@@ -591,7 +591,7 @@ Variables (d n : nat) (A : 'M[aR]_n).
Lemma map_rVpoly (u : 'rV_d) : fp (rVpoly u) = rVpoly u^f.
Proof.
apply/polyP=> k; rewrite coef_map !coef_rVpoly.
-by case: (insub k) => [i|]; rewrite /= ?rmorph0 // mxE.
+by case: (insub k) => [i|]; rewrite /= ?rmorph0 // mxE.
Qed.
Lemma map_poly_rV p : (poly_rV p)^f = poly_rV (fp p) :> 'rV_d.
@@ -817,7 +817,7 @@ rewrite polySpred ?monic_neq0 // -/m1 big_ord_recr /= -lead_coefE.
rewrite opprD addrC (monicP mon_p) mul1r subrK !mulrN -mulNr !mulr_sumr.
apply: Msum => j _; rewrite mulrA mulrACA -exprD; apply: IHn.
by rewrite -addnS addnC addnBA // leq_subLR leq_add.
-by rewrite -mulN1r; do 2!apply: (genM) => //; apply: genR.
+by rewrite -mulN1r; do 2!apply: (genM) => //; apply: genR.
Qed.
Lemma integral_root_monic u p :