aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/matrix.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/algebra/matrix.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/algebra/matrix.v')
-rw-r--r--mathcomp/algebra/matrix.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v
index dfa8474..aecbce9 100644
--- a/mathcomp/algebra/matrix.v
+++ b/mathcomp/algebra/matrix.v
@@ -864,7 +864,7 @@ Section VecMatrix.
Variables m n : nat.
-Lemma mxvec_cast : #|{:'I_m * 'I_n}| = (m * n)%N.
+Lemma mxvec_cast : #|{:'I_m * 'I_n}| = (m * n)%N.
Proof. by rewrite card_prod !card_ord. Qed.
Definition mxvec_index (i : 'I_m) (j : 'I_n) :=
@@ -973,7 +973,7 @@ Proof. by apply/matrixP=> i j; rewrite !(castmxE, mxE). Qed.
Lemma map_conform_mx m' n' (B : 'M_(m', n')) :
(conform_mx B A)^f = conform_mx B^f A^f.
Proof.
-move: B; have [[<- <-] B|] := eqVneq (m, n) (m', n').
+move: B; have [[<- <-] B|] := eqVneq (m, n) (m', n').
by rewrite !conform_mx_id.
by rewrite negb_and => neq_mn B; rewrite !nonconform_mx.
Qed.
@@ -1197,7 +1197,7 @@ Lemma nz_row_eq0 m n (A : 'M_(m, n)) : (nz_row A == 0) = (A == 0).
Proof.
rewrite /nz_row; symmetry; case: pickP => [i /= nzAi | Ai0].
by rewrite (negbTE nzAi); apply: contraTF nzAi => /eqP->; rewrite row0 eqxx.
-by rewrite eqxx; apply/eqP/row_matrixP=> i; move/eqP: (Ai0 i) ->; rewrite row0.
+by rewrite eqxx; apply/eqP/row_matrixP=> i; move/eqP: (Ai0 i) ->; rewrite row0.
Qed.
End MatrixZmodule.
@@ -1755,7 +1755,7 @@ Lemma mul_pid_mx m n p q r :
(pid_mx q : 'M_(m, n)) *m (pid_mx r : 'M_(n, p)) = pid_mx (minn n (minn q r)).
Proof.
apply/matrixP=> i k; rewrite !mxE !leq_min.
-have [le_n_i | lt_i_n] := leqP n i.
+have [le_n_i | lt_i_n] := leqP n i.
rewrite andbF big1 // => j _.
by rewrite -pid_mx_minh !mxE leq_min ltnNge le_n_i andbF mul0r.
rewrite (bigD1 (Ordinal lt_i_n)) //= big1 ?addr0 => [|j].
@@ -1903,7 +1903,7 @@ move=> a A B; apply/row_matrixP; case/mxvec_indexP=> i j.
rewrite linearP /= !rowE !mul_rV_lin /= vec_mx_delta -linearP mulmxDr.
congr (mxvec (_ + _)); apply/row_matrixP=> k.
rewrite linearZ /= !row_mul rowE mul_delta_mx_cond.
-by case: (k == i); [rewrite -!rowE linearZ | rewrite !mul0mx raddf0].
+by case: (k == i); [rewrite -!rowE linearZ | rewrite !mul0mx raddf0].
Qed.
Canonical lin_mulmxr_additive := Additive lin_mulmxr_is_linear.
Canonical lin_mulmxr_linear := Linear lin_mulmxr_is_linear.
@@ -2810,7 +2810,7 @@ Proof. exact: map_unitmx. Qed.
Lemma map_invmx n (A : 'M_n) : (invmx A)^f = invmx A^f.
Proof.
rewrite /invmx map_unitmx (fun_if ((map_mx f) n n)).
-by rewrite map_mxZ map_mx_adj det_map_mx fmorphV.
+by rewrite map_mxZ map_mx_adj det_map_mx fmorphV.
Qed.
Lemma map_mx_inv n' (A : 'M_n'.+1) : A^-1^f = A^f^-1.