diff options
| author | Cyril Cohen | 2020-09-08 03:25:04 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2020-09-28 16:03:52 +0200 |
| commit | fab8ceb34957ca4e261a5ba91cf8379f694dd1b8 (patch) | |
| tree | 570b5622a69d92d21098248cfbf051e71672bbd7 /mathcomp/algebra/matrix.v | |
| parent | 85166cd6c9074f96e71ebce91e2d1243fabada64 (diff) | |
Update `map_mx_id`, fix some implicits and argument orders
- Fix implicits of `eq_map_mx`, `eq_in_map_mx`, `map_mx_id_in` and `map_mx_id`,
in order to give more practical arguments first.
- Generalized `map_mx_id` to take the shape f =1 id -> M ^ f = M.
The previous behaviour can be recovered through `map_mx_id (frefl id)` or `[_ ^ id]map_mx_id`
Diffstat (limited to 'mathcomp/algebra/matrix.v')
| -rw-r--r-- | mathcomp/algebra/matrix.v | 31 |
1 files changed, 18 insertions, 13 deletions
diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v index 70f28ec..6f13375 100644 --- a/mathcomp/algebra/matrix.v +++ b/mathcomp/algebra/matrix.v @@ -1100,28 +1100,33 @@ End MapMatrix. Arguments map_mx {aT rT} f {m n} A. Section MultipleMapMatrix. +Context {R S T : Type} {m n : nat}. Local Notation "M ^ phi" := (map_mx phi M). -Lemma map_mx_id (R : Type) m n (M : 'M[R]_(m,n)) : M ^ id = M. +Lemma map_mx_comp (f : R -> S) (g : S -> T) + (M : 'M_(m, n)) : M ^ (g \o f) = (M ^ f) ^ g. Proof. by apply/matrixP => i j; rewrite !mxE. Qed. -Lemma map_mx_comp (R S T : Type) m n (M : 'M[R]_(m,n)) - (f : R -> S) (g : S -> T) : M ^ (g \o f) = (M ^ f) ^ g. -Proof. by apply/matrixP => i j; rewrite !mxE. Qed. - -Lemma eq_in_map_mx (R S : Type) m n (M : 'M[R]_(m,n)) (g f : R -> S) : - (forall i j, f (M i j) = g (M i j)) <-> M ^ f = M ^ g. -Proof. by rewrite -matrixP; split => fg i j; have := fg i j; rewrite !mxE. Qed. +Lemma eq_in_map_mx (g f : R -> S) (M : 'M_(m, n)) : + (forall i j, f (M i j) = g (M i j)) -> M ^ f = M ^ g. +Proof. by move=> fg; apply/matrixP => i j; rewrite !mxE. Qed. -Lemma eq_map_mx (R S : Type) m n (M : 'M[R]_(m,n)) (g f : R -> S) : - f =1 g -> M ^ f = M ^ g. -Proof. by move=> eq_fg; apply/eq_in_map_mx. Qed. +Lemma eq_map_mx (g f : R -> S) : f =1 g -> + forall (M : 'M_(m, n)), M ^ f = M ^ g. +Proof. by move=> eq_fg M; apply/eq_in_map_mx. Qed. -Lemma map_mx_id_in (R : Type) m n (M : 'M[R]_(m,n)) (f : R -> R) : +Lemma map_mx_id_in (f : R -> R) (M : 'M_(m, n)) : (forall i j, f (M i j) = M i j) -> M ^ f = M. -Proof. by rewrite -[RHS]map_mx_id -eq_in_map_mx. Qed. +Proof. by move=> fM; apply/matrixP => i j; rewrite !mxE. Qed. + +Lemma map_mx_id (f : R -> R) : f =1 id -> forall M : 'M_(m, n), M ^ f = M. +Proof. by move=> fid M; rewrite map_mx_id_in. Qed. End MultipleMapMatrix. +Arguments eq_map_mx {R S m n} g [f]. +Arguments eq_in_map_mx {R S m n} g [f M]. +Arguments map_mx_id_in {R m n} [f M]. +Arguments map_mx_id {R m n} [f]. (*****************************************************************************) (********************* Matrix Zmodule (additive) structure *******************) |
