aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/matrix.v
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2020-11-25 22:14:58 +0900
committerKazuhiko Sakaguchi2020-11-25 22:29:55 +0900
commitd844896e6418bb00418964bb4ae4219e2bd6b69c (patch)
treeccb40cfc9264241424aba156aa6e5289c9acfa8d /mathcomp/algebra/matrix.v
parent43796130c3e59c0651a283e6654a7d82acbfeed3 (diff)
Rename `all1rel` to `all2rel`, restate `eq_allrel`, and add CHANGELOG entries
Co-authored-by: Cyril Cohen <CohenCyril@users.noreply.github.com>
Diffstat (limited to 'mathcomp/algebra/matrix.v')
-rw-r--r--mathcomp/algebra/matrix.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v
index 5e42904..e7e0e35 100644
--- a/mathcomp/algebra/matrix.v
+++ b/mathcomp/algebra/matrix.v
@@ -112,7 +112,7 @@ From mathcomp Require Import div prime binomial ssralg finalg zmodp countalg.
(* A \is a mxOver S == the matrix A has its coefficients in S. *)
(* comm_mx A B := A *m B = B *m A *)
(* comm_mxb A B := A *m B == B *m A *)
-(* all_comm_mx As fs := all1rel comm_mxb fs *)
+(* all_comm_mx As fs := all2rel comm_mxb fs *)
(* The following operations provide a correspondence between linear functions *)
(* and matrices: *)
(* lin1_mx f == the m x n matrix that emulates via right product *)
@@ -2772,21 +2772,21 @@ Proof. by move=> comm_mxfF; elim/big_ind: _ => // g h; apply: comm_mxD. Qed.
Lemma comm_mxP f g : reflect (comm_mx f g) (comm_mxb f g).
Proof. exact: eqP. Qed.
-Notation all_comm_mx fs := (all1rel comm_mxb fs).
+Notation all_comm_mx fs := (all2rel comm_mxb fs).
Lemma all_comm_mxP fs :
reflect {in fs &, forall f g, f *m g = g *m f} (all_comm_mx fs).
Proof. by apply: (iffP allrelP) => fsP ? ? ? ?; apply/eqP/fsP. Qed.
Lemma all_comm_mx1 f : all_comm_mx [:: f].
-Proof. by rewrite /comm_mxb all1rel1. Qed.
+Proof. by rewrite /comm_mxb all2rel1. Qed.
Lemma all_comm_mx2P f g : reflect (f *m g = g *m f) (all_comm_mx [:: f; g]).
-Proof. by rewrite /comm_mxb /= all1rel2 ?eqxx //; exact: eqP. Qed.
+Proof. by rewrite /comm_mxb /= all2rel2 ?eqxx //; exact: eqP. Qed.
Lemma all_comm_mx_cons f fs :
all_comm_mx (f :: fs) = all (comm_mxb f) fs && all_comm_mx fs.
-Proof. by rewrite /comm_mxb /= all1rel_cons //= eqxx. Qed.
+Proof. by rewrite /comm_mxb /= all2rel_cons //= eqxx. Qed.
End CommMx.
Notation all_comm_mx := (allrel comm_mxb).