diff options
| author | Enrico Tassi | 2015-03-09 11:07:53 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2015-03-09 11:24:38 +0100 |
| commit | fc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch) | |
| tree | c16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/algebra/interval.v | |
Initial commit
Diffstat (limited to 'mathcomp/algebra/interval.v')
| -rw-r--r-- | mathcomp/algebra/interval.v | 403 |
1 files changed, 403 insertions, 0 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v new file mode 100644 index 0000000..1f59ce2 --- /dev/null +++ b/mathcomp/algebra/interval.v @@ -0,0 +1,403 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div choice fintype. +Require Import bigop ssralg finset fingroup zmodp ssrint ssrnum. + +(*****************************************************************************) +(* This file provide support for intervals in numerical and real domains. *) +(* The datatype (interval R) gives a formal characterization of an *) +(* interval, as the pair of its right and left bounds. *) +(* interval R == the type of formal intervals on R. *) +(* x \in i == when i is a formal interval on a numeric domain, *) +(* \in can be used to test membership. *) +(* itvP x_in_i == where x_in_i has type x \in i, if i is ground, *) +(* gives a set of rewrite rules that x_in_i imply. *) +(* x <= y ?< if c == x is smaller than y, and strictly if c is true *) +(* *) +(* We provide a set of notations to write intervals (see below) *) +(* `[a, b], `]a, b], ..., `]-oo, a], ..., `]-oo, +oo[ *) +(* We also provide the lemma subitvP which computes the inequalities one *) +(* needs to prove when trying to prove the inclusion of intervals. *) +(* *) +(* Remark that we cannot implement a boolean comparison test for intervals *) +(* on an arbitrary numeric domains, for this problem might be undecidable. *) +(* Note also that type (interval R) may contain several inhabitants coding *) +(* for the same interval. However, this pathological issues do nor arise *) +(* when R is a real domain: we could provide a specific theory for this *) +(* important case. *) +(* *) +(* See also "Formal proofs in real algebraic geometry: from ordered fields *) +(* to quantifier elimination", LMCS journal, 2012 *) +(* by Cyril Cohen and Assia Mahboubi *) +(* *) +(* And "Formalized algebraic numbers: construction and first-order theory" *) +(* Cyril Cohen, PhD, 2012, section 4.3. *) +(*****************************************************************************) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Local Open Scope ring_scope. +Import GRing.Theory Num.Theory. + +Local Notation mid x y := ((x + y) / 2%:R). + +Section IntervalPo. + +CoInductive itv_bound (T : Type) : Type := BOpen_if of bool & T | BInfty. +Notation BOpen := (BOpen_if true). +Notation BClose := (BOpen_if false). +CoInductive interval (T : Type) := Interval of itv_bound T & itv_bound T. + +Variable (R : numDomainType). + +Definition pred_of_itv (i : interval R) : pred R := + [pred x | let: Interval l u := i in + match l with + | BOpen a => a < x + | BClose a => a <= x + | BInfty => true + end && + match u with + | BOpen b => x < b + | BClose b => x <= b + | BInfty => true + end]. +Canonical Structure itvPredType := Eval hnf in mkPredType pred_of_itv. + +(* We provide the 9 following notations to help writing formal intervals *) +Notation "`[ a , b ]" := (Interval (BClose a) (BClose b)) + (at level 0, a, b at level 9 , format "`[ a , b ]") : ring_scope. +Notation "`] a , b ]" := (Interval (BOpen a) (BClose b)) + (at level 0, a, b at level 9 , format "`] a , b ]") : ring_scope. +Notation "`[ a , b [" := (Interval (BClose a) (BOpen b)) + (at level 0, a, b at level 9 , format "`[ a , b [") : ring_scope. +Notation "`] a , b [" := (Interval (BOpen a) (BOpen b)) + (at level 0, a, b at level 9 , format "`] a , b [") : ring_scope. +Notation "`] '-oo' , b ]" := (Interval (BInfty _) (BClose b)) + (at level 0, b at level 9 , format "`] '-oo' , b ]") : ring_scope. +Notation "`] '-oo' , b [" := (Interval (BInfty _) (BOpen b)) + (at level 0, b at level 9 , format "`] '-oo' , b [") : ring_scope. +Notation "`[ a , '+oo' [" := (Interval (BClose a) (BInfty _)) + (at level 0, a at level 9 , format "`[ a , '+oo' [") : ring_scope. +Notation "`] a , '+oo' [" := (Interval (BOpen a) (BInfty _)) + (at level 0, a at level 9 , format "`] a , '+oo' [") : ring_scope. +Notation "`] -oo , '+oo' [" := (Interval (BInfty _) (BInfty _)) + (at level 0, format "`] -oo , '+oo' [") : ring_scope. + +(* we compute a set of rewrite rules associated to an interval *) +Definition itv_rewrite (i : interval R) x : Type := + let: Interval l u := i in + (match l with + | BClose a => (a <= x) * (x < a = false) + | BOpen a => (a <= x) * (a < x) * (x <= a = false) + | BInfty => forall x : R, x == x + end * + match u with + | BClose b => (x <= b) * (b < x = false) + | BOpen b => (x <= b) * (x < b) * (b <= x = false) + | BInfty => forall x : R, x == x + end * + match l, u with + | BClose a, BClose b => + (a <= b) * (b < a = false) * (a \in `[a, b]) * (b \in `[a, b]) + | BClose a, BOpen b => + (a <= b) * (a < b) * (b <= a = false) + * (a \in `[a, b]) * (a \in `[a, b[)* (b \in `[a, b]) * (b \in `]a, b]) + | BOpen a, BClose b => + (a <= b) * (a < b) * (b <= a = false) + * (a \in `[a, b]) * (a \in `[a, b[)* (b \in `[a, b]) * (b \in `]a, b]) + | BOpen a, BOpen b => + (a <= b) * (a < b) * (b <= a = false) + * (a \in `[a, b]) * (a \in `[a, b[)* (b \in `[a, b]) * (b \in `]a, b]) + | _, _ => forall x : R, x == x + end)%type. + +Definition itv_decompose (i : interval R) x : Prop := + let: Interval l u := i in + ((match l with + | BClose a => (a <= x) : Prop + | BOpen a => (a < x) : Prop + | BInfty => True + end : Prop) * + (match u with + | BClose b => (x <= b) : Prop + | BOpen b => (x < b) : Prop + | BInfty => True + end : Prop))%type. + +Lemma itv_dec : forall (x : R) (i : interval R), + reflect (itv_decompose i x) (x \in i). +Proof. by move=> x [[[] a|] [[] b|]]; apply: (iffP andP); case. Qed. + +Implicit Arguments itv_dec [x i]. + +Definition lersif (x y : R) b := if b then x < y else x <= y. + +Local Notation "x <= y ?< 'if' b" := (lersif x y b) + (at level 70, y at next level, + format "x '[hv' <= y '/' ?< 'if' b ']'") : ring_scope. + +Lemma lersifxx x b: (x <= x ?< if b) = ~~ b. +Proof. by case: b; rewrite /= lterr. Qed. + +Lemma lersif_trans x y z b1 b2 : + x <= y ?< if b1 -> y <= z ?< if b2 -> x <= z ?< if b1 || b2. +Proof. +move: b1 b2 => [] [] //=; +by [exact: ler_trans|exact: ler_lt_trans|exact: ltr_le_trans|exact: ltr_trans]. +Qed. + +Lemma lersifW b x y : x <= y ?< if b -> x <= y. +Proof. by case: b => //; move/ltrW. Qed. + +Lemma lersifNF x y b : y <= x ?< if ~~ b -> x <= y ?< if b = false. +Proof. by case: b => /= [/ler_gtF|/ltr_geF]. Qed. + +Lemma lersifS x y b : x < y -> x <= y ?< if b. +Proof. by case: b => //= /ltrW. Qed. + +Lemma lersifT x y : x <= y ?< if true = (x < y). Proof. by []. Qed. + +Lemma lersifF x y : x <= y ?< if false = (x <= y). Proof. by []. Qed. + +Definition le_boundl b1 b2 := + match b1, b2 with + | BOpen_if b1 x1, BOpen_if b2 x2 => x1 <= x2 ?< if (~~ b2 && b1) + | BOpen_if _ _, BInfty => false + | _, _ => true + end. + +Definition le_boundr b1 b2 := + match b1, b2 with + | BOpen_if b1 x1, BOpen_if b2 x2 => x1 <= x2 ?< if (~~ b1 && b2) + | BInfty, BOpen_if _ _ => false + | _, _ => true + end. + +Lemma itv_boundlr bl br x : + (x \in Interval bl br) = + (le_boundl bl (BClose x)) && (le_boundr (BClose x) br). +Proof. by move: bl br => [[] a|] [[] b|]. Qed. + +Lemma le_boundr_refl : reflexive le_boundr. +Proof. by move=> [[] b|]; rewrite /le_boundr /= ?lerr. Qed. + +Hint Resolve le_boundr_refl. + +Lemma le_boundl_refl : reflexive le_boundl. +Proof. by move=> [[] b|]; rewrite /le_boundl /= ?lerr. Qed. + +Hint Resolve le_boundl_refl. + +Lemma le_boundl_bb x b1 b2 : + le_boundl (BOpen_if b1 x) (BOpen_if b2 x) = (b1 ==> b2). +Proof. by rewrite /le_boundl lersifxx andbC negb_and negbK implybE. Qed. + +Lemma le_boundr_bb x b1 b2 : + le_boundr (BOpen_if b1 x) (BOpen_if b2 x) = (b2 ==> b1). +Proof. by rewrite /le_boundr lersifxx andbC negb_and negbK implybE. Qed. + +Lemma itv_xx x bl br : + Interval (BOpen_if bl x) (BOpen_if br x) =i + if ~~ (bl || br) then pred1 x else pred0. +Proof. +by move: bl br => [] [] y /=; rewrite !inE 1?eq_sym (eqr_le, lter_anti). +Qed. + +Lemma itv_gte ba xa bb xb : xb <= xa ?< if ~~ (ba || bb) + -> Interval (BOpen_if ba xa) (BOpen_if bb xb) =i pred0. +Proof. +move=> hx y; rewrite itv_boundlr inE /=. +by apply/negP => /andP [] /lersif_trans hy /hy {hy}; rewrite lersifNF. +Qed. + +Lemma boundl_in_itv : forall ba xa b, + xa \in Interval (BOpen_if ba xa) b = + if ba then false else le_boundr (BClose xa) b. +Proof. by move=> [] xa [[] xb|] //=; rewrite inE lterr. Qed. + +Lemma boundr_in_itv : forall bb xb a, + xb \in Interval a (BOpen_if bb xb) = + if bb then false else le_boundl a (BClose xb). +Proof. by move=> [] xb [[] xa|] //=; rewrite inE lterr ?andbT ?andbF. Qed. + +Definition bound_in_itv := (boundl_in_itv, boundr_in_itv). + +Lemma itvP : forall (x : R) (i : interval R), (x \in i) -> itv_rewrite i x. +Proof. +move=> x [[[] a|] [[] b|]]; move/itv_dec=> //= [hl hu];do ?[split=> //; + do ?[by rewrite ltrW | by rewrite ltrWN | by rewrite ltrNW | + by rewrite (ltr_geF, ler_gtF)]]; + rewrite ?(bound_in_itv) /le_boundl /le_boundr //=; do ? + [ by rewrite (@ler_trans _ x) + | by rewrite 1?ltrW // (@ltr_le_trans _ x) + | by rewrite 1?ltrW // (@ler_lt_trans _ x) // 1?ltrW + | by apply: negbTE; rewrite ler_gtF // (@ler_trans _ x) + | by apply: negbTE; rewrite ltr_geF // (@ltr_le_trans _ x) // 1?ltrW + | by apply: negbTE; rewrite ltr_geF // (@ler_lt_trans _ x)]. +Qed. + +Hint Rewrite intP. +Implicit Arguments itvP [x i]. + +Definition subitv (i1 i2 : interval R) := + match i1, i2 with + | Interval a1 b1, Interval a2 b2 => le_boundl a2 a1 && le_boundr b1 b2 + end. + +Lemma subitvP : forall (i2 i1 : interval R), + (subitv i1 i2) -> {subset i1 <= i2}. +Proof. +by move=> [[[] a2|] [[] b2|]] [[[] a1|] [[] b1|]]; + rewrite /subitv //; case/andP=> /= ha hb; move=> x hx; rewrite ?inE; + rewrite ?(ler_trans ha) ?(ler_lt_trans ha) ?(ltr_le_trans ha) //; + rewrite ?(ler_trans _ hb) ?(ltr_le_trans _ hb) ?(ler_lt_trans _ hb) //; + rewrite ?(itvP hx) //. +Qed. + +Lemma subitvPr : forall (a b1 b2 : itv_bound R), + le_boundr b1 b2 -> {subset (Interval a b1) <= (Interval a b2)}. +Proof. by move=> a b1 b2 hb; apply: subitvP=> /=; rewrite hb andbT. Qed. + +Lemma subitvPl : forall (a1 a2 b : itv_bound R), + le_boundl a2 a1 -> {subset (Interval a1 b) <= (Interval a2 b)}. +Proof. by move=> a1 a2 b ha; apply: subitvP=> /=; rewrite ha /=. Qed. + +Lemma lersif_in_itv : forall ba bb xa xb x, + x \in Interval (BOpen_if ba xa) (BOpen_if bb xb) -> + xa <= xb ?< if ba || bb. +Proof. +by move=> ba bb xa xb y; rewrite itv_boundlr; case/andP; apply: lersif_trans. +Qed. + +Lemma ltr_in_itv : forall ba bb xa xb x, ba || bb -> + x \in Interval (BOpen_if ba xa) (BOpen_if bb xb) -> xa < xb. +Proof. +move=> ba bb xa xb x; case bab: (_ || _) => // _. +by move/lersif_in_itv; rewrite bab. +Qed. + +Lemma ler_in_itv : forall ba bb xa xb x, + x \in Interval (BOpen_if ba xa) (BOpen_if bb xb) -> xa <= xb. +Proof. by move=> ba bb xa xb x; move/lersif_in_itv; move/lersifW. Qed. + +Lemma mem0_itvcc_xNx : forall x, (0 \in `[-x, x]) = (0 <= x). +Proof. +by move=> x; rewrite !inE; case hx: (0 <= _); rewrite (andbT, andbF) ?ge0_cp. +Qed. + +Lemma mem0_itvoo_xNx : forall x, 0 \in `](-x), x[ = (0 < x). +Proof. +by move=> x; rewrite !inE; case hx: (0 < _); rewrite (andbT, andbF) ?gt0_cp. +Qed. + +Lemma itv_splitI : forall a b, forall x, + x \in Interval a b = (x \in Interval a (BInfty _)) && (x \in Interval (BInfty _) b). +Proof. by move=> [[] a|] [[] b|] x; rewrite ?inE ?andbT. Qed. + + +Lemma real_lersifN x y b : x \in Num.real -> y \in Num.real -> + x <= y ?< if ~~b = ~~ (y <= x ?< if b). +Proof. by case: b => [] xR yR /=; rewrite (real_ltrNge, real_lerNgt). Qed. + +Lemma oppr_itv ba bb (xa xb x : R) : + (-x \in Interval (BOpen_if ba xa) (BOpen_if bb xb)) = + (x \in Interval (BOpen_if bb (-xb)) (BOpen_if ba (-xa))). +Proof. by move: ba bb => [] []; rewrite ?inE lter_oppr andbC lter_oppl. Qed. + +Lemma oppr_itvoo (a b x : R) : (-x \in `]a, b[) = (x \in `](-b), (-a)[). +Proof. exact: oppr_itv. Qed. + +Lemma oppr_itvco (a b x : R) : (-x \in `[a, b[) = (x \in `](-b), (-a)]). +Proof. exact: oppr_itv. Qed. + +Lemma oppr_itvoc (a b x : R) : (-x \in `]a, b]) = (x \in `[(-b), (-a)[). +Proof. exact: oppr_itv. Qed. + +Lemma oppr_itvcc (a b x : R) : (-x \in `[a, b]) = (x \in `[(-b), (-a)]). +Proof. exact: oppr_itv. Qed. + +End IntervalPo. + +Notation BOpen := (BOpen_if true). +Notation BClose := (BOpen_if false). +Notation "`[ a , b ]" := (Interval (BClose a) (BClose b)) + (at level 0, a, b at level 9 , format "`[ a , b ]") : ring_scope. +Notation "`] a , b ]" := (Interval (BOpen a) (BClose b)) + (at level 0, a, b at level 9 , format "`] a , b ]") : ring_scope. +Notation "`[ a , b [" := (Interval (BClose a) (BOpen b)) + (at level 0, a, b at level 9 , format "`[ a , b [") : ring_scope. +Notation "`] a , b [" := (Interval (BOpen a) (BOpen b)) + (at level 0, a, b at level 9 , format "`] a , b [") : ring_scope. +Notation "`] '-oo' , b ]" := (Interval (BInfty _) (BClose b)) + (at level 0, b at level 9 , format "`] '-oo' , b ]") : ring_scope. +Notation "`] '-oo' , b [" := (Interval (BInfty _) (BOpen b)) + (at level 0, b at level 9 , format "`] '-oo' , b [") : ring_scope. +Notation "`[ a , '+oo' [" := (Interval (BClose a) (BInfty _)) + (at level 0, a at level 9 , format "`[ a , '+oo' [") : ring_scope. +Notation "`] a , '+oo' [" := (Interval (BOpen a) (BInfty _)) + (at level 0, a at level 9 , format "`] a , '+oo' [") : ring_scope. +Notation "`] -oo , '+oo' [" := (Interval (BInfty _) (BInfty _)) + (at level 0, format "`] -oo , '+oo' [") : ring_scope. + +Notation "x <= y ?< 'if' b" := (lersif x y b) + (at level 70, y at next level, + format "x '[hv' <= y '/' ?< 'if' b ']'") : ring_scope. + +Section IntervalOrdered. + +Variable R : realDomainType. + +Lemma lersifN (x y : R) b : (x <= y ?< if ~~ b) = ~~ (y <= x ?< if b). +Proof. by rewrite real_lersifN ?num_real. Qed. + +Lemma itv_splitU (xc : R) bc a b : xc \in Interval a b -> + forall y, y \in Interval a b = + (y \in Interval a (BOpen_if (~~ bc) xc)) + || (y \in Interval (BOpen_if bc xc) b). +Proof. +move=> hxc y; rewrite !itv_boundlr [le_boundr]lock /=. +have [la /=|nla /=] := boolP (le_boundl a _); rewrite -lock. + have [lb /=|nlb /=] := boolP (le_boundr _ b); rewrite ?andbT ?andbF ?orbF //. + by case: bc => //=; case: ltrgtP. + symmetry; apply: contraNF nlb; rewrite /le_boundr /=. + case: b hxc => // bb xb hxc hyc. + suff /(lersif_trans hyc) : xc <= xb ?< if bb. + by case: bc {hyc} => //= /lersifS. + by case: a bb hxc {la} => [[] ?|] [] /= /itvP->. +symmetry; apply: contraNF nla => /andP [hc _]. +case: a hxc hc => [[] xa|] hxc; rewrite /le_boundl //=. + by move=> /lersifW /(ltr_le_trans _) -> //; move: b hxc=> [[] ?|] /itvP->. +by move=> /lersifW /(ler_trans _) -> //; move: b hxc=> [[] ?|] /itvP->. +Qed. + +Lemma itv_splitU2 (x : R) a b : x \in Interval a b -> + forall y, y \in Interval a b = + [|| (y \in Interval a (BOpen x)), (y == x) + | (y \in Interval (BOpen x) b)]. +Proof. +move=> xab y; rewrite (itv_splitU false xab y); congr (_ || _). +rewrite (@itv_splitU x true _ _ _ y); first by rewrite itv_xx inE. +by move: xab; rewrite boundl_in_itv itv_boundlr => /andP []. +Qed. + +End IntervalOrdered. + +Section IntervalField. + +Variable R : realFieldType. + +Lemma mid_in_itv : forall ba bb (xa xb : R), xa <= xb ?< if (ba || bb) + -> mid xa xb \in Interval (BOpen_if ba xa) (BOpen_if bb xb). +Proof. +by move=> [] [] xa xb /= hx; apply/itv_dec=> /=; rewrite ?midf_lte // ?ltrW. +Qed. + +Lemma mid_in_itvoo : forall (xa xb : R), xa < xb -> mid xa xb \in `]xa, xb[. +Proof. by move=> xa xb hx; apply: mid_in_itv. Qed. + +Lemma mid_in_itvcc : forall (xa xb : R), xa <= xb -> mid xa xb \in `[xa, xb]. +Proof. by move=> xa xb hx; apply: mid_in_itv. Qed. + +End IntervalField. |
