aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/interval.v
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2019-10-07 14:31:34 +0200
committerKazuhiko Sakaguchi2020-09-28 20:12:56 +0900
commit3e292da9f901e1032311181990bbc1dd160105bb (patch)
treecdb7f986354abf9510315da5d8179910afe7c0bd /mathcomp/algebra/interval.v
parentc9e5a9621c9a2143e1170ef1553fa7d9135b4130 (diff)
The new interval library
- `x <= y ?< if c` (lersif) has been replaced with `x < y ?<= if c'` (lteif) where `c'` is negation of `c`. This change makes statements of several lemmas (e.g., `lteif_orb`) easily comprehensible. - The first constructor `BOpen_if` of `itv_bound` has been replaced with `BClose_if` where the first argument is inverted. Now `pred_of_itv` is defined by using `lteif` instead of `lersif`. - Intervals of `T : porderType` form a `porderType` where the ordering relation is the subset relation. If `T` is a `latticeType`, intervals also form a `latticeType` where the join and meet are intersection and convex hull respectively. They are distributive if `T` is an `orderType`.
Diffstat (limited to 'mathcomp/algebra/interval.v')
-rw-r--r--mathcomp/algebra/interval.v1743
1 files changed, 1372 insertions, 371 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v
index 950546b..03b5e4d 100644
--- a/mathcomp/algebra/interval.v
+++ b/mathcomp/algebra/interval.v
@@ -4,265 +4,165 @@ From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import div fintype bigop order ssralg finset fingroup.
From mathcomp Require Import ssrnum.
-(*****************************************************************************)
-(* This file provide support for intervals in numerical and real domains. *)
-(* The datatype (interval R) gives a formal characterization of an *)
-(* interval, as the pair of its right and left bounds. *)
-(* interval R == the type of formal intervals on R. *)
-(* x \in i == when i is a formal interval on a numeric domain, *)
-(* \in can be used to test membership. *)
-(* itvP x_in_i == where x_in_i has type x \in i, if i is ground, *)
-(* gives a set of rewrite rules that x_in_i imply. *)
-(* x <= y ?< if c == x is smaller than y, and strictly if c is true *)
-(* *)
-(* We provide a set of notations to write intervals (see below) *)
-(* `[a, b], `]a, b], ..., `]-oo, a], ..., `]-oo, +oo[ *)
-(* We also provide the lemma subitvP which computes the inequalities one *)
-(* needs to prove when trying to prove the inclusion of intervals. *)
-(* *)
-(* Remark that we cannot implement a boolean comparison test for intervals *)
-(* on an arbitrary numeric domains, for this problem might be undecidable. *)
-(* Note also that type (interval R) may contain several inhabitants coding *)
-(* for the same interval. However, this pathological issues do nor arise *)
-(* when R is a real domain: we could provide a specific theory for this *)
-(* important case. *)
-(* *)
-(* See also ``Formal proofs in real algebraic geometry: from ordered fields *)
-(* to quantifier elimination'', LMCS journal, 2012 *)
-(* by Cyril Cohen and Assia Mahboubi *)
-(* *)
-(* And "Formalized algebraic numbers: construction and first-order theory" *)
-(* Cyril Cohen, PhD, 2012, section 4.3. *)
-(*****************************************************************************)
+(******************************************************************************)
+(* This file provide support for intervals in ordered types. The datatype *)
+(* (interval T) gives a formal characterization of an interval, as the pair *)
+(* of its right and left bounds. *)
+(* interval R == the type of formal intervals on R. *)
+(* x \in i == when i is a formal interval on an ordered type, *)
+(* \in can be used to test membership. *)
+(* itvP x_in_i == where x_in_i has type x \in i, if i is ground, *)
+(* gives a set of rewrite rules that x_in_i imply. *)
+(* x < y ?<= if c == x is smaller than y, and strictly if c is false *)
+(* *)
+(* Intervals of T form an partially ordered type (porderType) whose ordering *)
+(* is the subset relation. If T is a lattice, intervals also form a lattice *)
+(* (latticeType) whose meet and join are intersection and convex hull *)
+(* respectively. They are distributive if T is an orderType. *)
+(* *)
+(* We provide a set of notations to write intervals (see below) *)
+(* `[a, b], `]a, b], ..., `]-oo, a], ..., `]-oo, +oo[ *)
+(* We also provide the lemma subitvP which computes the inequalities one *)
+(* needs to prove when trying to prove the inclusion of intervals. *)
+(* *)
+(* Remark that we cannot implement a boolean comparison test for intervals on *)
+(* an arbitrary ordered types, for this problem might be undecidable. Note *)
+(* also that type (interval R) may contain several inhabitants coding for the *)
+(* same interval. However, this pathological issues do nor arise when R is a *)
+(* real domain: we could provide a specific theory for this important case. *)
+(* *)
+(* See also ``Formal proofs in real algebraic geometry: from ordered fields *)
+(* to quantifier elimination'', LMCS journal, 2012 *)
+(* by Cyril Cohen and Assia Mahboubi *)
+(* *)
+(* And "Formalized algebraic numbers: construction and first-order theory" *)
+(* Cyril Cohen, PhD, 2012, section 4.3. *)
+(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
-Local Open Scope ring_scope.
-Import Order.TTheory GRing.Theory Num.Theory.
-
-Local Notation mid x y := ((x + y) / 2%:R).
+Local Open Scope order_scope.
+Import Order.TTheory.
-Section LersifPo.
+Section LteifPOrder.
-Variable R : numDomainType.
-Implicit Types (b : bool) (x y z : R).
+Variable (disp : unit) (T : porderType disp).
+Implicit Types (b : bool) (x y z : T).
-Definition lersif (x y : R) b := if b then x < y else x <= y.
+Definition lteif x y b := if b then x <= y else x < y.
-Local Notation "x <= y ?< 'if' b" := (lersif x y b)
+Local Notation "x < y ?<= 'if' b" := (lteif x y b)
(at level 70, y at next level,
- format "x '[hv' <= y '/' ?< 'if' b ']'") : ring_scope.
+ format "x '[hv' < y '/' ?<= 'if' b ']'") : order_scope.
-Lemma subr_lersifr0 b (x y : R) : (y - x <= 0 ?< if b) = (y <= x ?< if b).
-Proof. by case: b => /=; rewrite subr_lte0. Qed.
-
-Lemma subr_lersif0r b (x y : R) : (0 <= y - x ?< if b) = (x <= y ?< if b).
-Proof. by case: b => /=; rewrite subr_gte0. Qed.
-
-Definition subr_lersif0 := (subr_lersifr0, subr_lersif0r).
-
-Lemma lersif_trans x y z b1 b2 :
- x <= y ?< if b1 -> y <= z ?< if b2 -> x <= z ?< if b1 || b2.
+Lemma lteif_trans x y z b1 b2 :
+ x < y ?<= if b1 -> y < z ?<= if b2 -> x < z ?<= if b1 && b2.
Proof.
-by case: b1 b2 => [] [];
- [apply: lt_trans | apply: lt_le_trans | apply: le_lt_trans | apply: le_trans].
+case: b1 b2 => [][];
+ [exact: le_trans | exact: le_lt_trans | exact: lt_le_trans | exact: lt_trans].
Qed.
-Lemma lersif01 b : 0 <= 1 ?< if b.
-Proof. by case: b; apply lter01. Qed.
+Lemma lteif_anti b1 b2 x y :
+ (x < y ?<= if b1) && (y < x ?<= if b2) = b1 && b2 && (x == y).
+Proof. by case: b1 b2 => [][]; rewrite lte_anti. Qed.
-Lemma lersif_anti b1 b2 x y :
- (x <= y ?< if b1) && (y <= x ?< if b2) =
- if b1 || b2 then false else x == y.
-Proof. by case: b1 b2 => [] []; rewrite lte_anti. Qed.
-
-Lemma lersifxx x b : (x <= x ?< if b) = ~~ b.
+Lemma lteifxx x b : (x < x ?<= if b) = b.
Proof. by case: b; rewrite /= ltexx. Qed.
-Lemma lersifNF x y b : y <= x ?< if ~~ b -> x <= y ?< if b = false.
-Proof. by case: b => /= [/le_gtF|/lt_geF]. Qed.
+Lemma lteifNF x y b : y < x ?<= if ~~ b -> x < y ?<= if b = false.
+Proof. by case: b => [/lt_geF|/le_gtF]. Qed.
-Lemma lersifS x y b : x < y -> x <= y ?< if b.
+Lemma lteifS x y b : x < y -> x < y ?<= if b.
Proof. by case: b => //= /ltW. Qed.
-Lemma lersifT x y : x <= y ?< if true = (x < y). Proof. by []. Qed.
-
-Lemma lersifF x y : x <= y ?< if false = (x <= y). Proof. by []. Qed.
-
-Lemma lersif_oppl b x y : - x <= y ?< if b = (- y <= x ?< if b).
-Proof. by case: b; apply lter_oppl. Qed.
-
-Lemma lersif_oppr b x y : x <= - y ?< if b = (y <= - x ?< if b).
-Proof. by case: b; apply lter_oppr. Qed.
-
-Lemma lersif_0oppr b x : 0 <= - x ?< if b = (x <= 0 ?< if b).
-Proof. by case: b; apply (oppr_ge0, oppr_gt0). Qed.
-
-Lemma lersif_oppr0 b x : - x <= 0 ?< if b = (0 <= x ?< if b).
-Proof. by case: b; apply (oppr_le0, oppr_lt0). Qed.
-
-Lemma lersif_opp2 b : {mono -%R : x y /~ x <= y ?< if b}.
-Proof. by case: b; apply lter_opp2. Qed.
-
-Definition lersif_oppE := (lersif_0oppr, lersif_oppr0, lersif_opp2).
+Lemma lteifT x y : x < y ?<= if true = (x <= y). Proof. by []. Qed.
-Lemma lersif_add2l b x : {mono +%R x : y z / y <= z ?< if b}.
-Proof. by case: b => ? ?; apply lter_add2. Qed.
+Lemma lteifF x y : x < y ?<= if false = (x < y). Proof. by []. Qed.
-Lemma lersif_add2r b x : {mono +%R^~ x : y z / y <= z ?< if b}.
-Proof. by case: b => ? ?; apply lter_add2. Qed.
+Lemma lteif_orb x y : {morph lteif x y : p q / p || q}.
+Proof. by case=> [][] /=; case: comparableP. Qed.
-Definition lersif_add2 := (lersif_add2l, lersif_add2r).
+Lemma lteif_andb x y : {morph lteif x y : p q / p && q}.
+Proof. by case=> [][] /=; case: comparableP. Qed.
-Lemma lersif_subl_addr b x y z : (x - y <= z ?< if b) = (x <= z + y ?< if b).
-Proof. by case: b; apply lter_sub_addr. Qed.
+Lemma lteif_imply b1 b2 x y : b1 ==> b2 -> x < y ?<= if b1 -> x < y ?<= if b2.
+Proof. by case: b1 b2 => [][] //= _ /ltW. Qed.
-Lemma lersif_subr_addr b x y z : (x <= y - z ?< if b) = (x + z <= y ?< if b).
-Proof. by case: b; apply lter_sub_addr. Qed.
-
-Definition lersif_sub_addr := (lersif_subl_addr, lersif_subr_addr).
-
-Lemma lersif_subl_addl b x y z : (x - y <= z ?< if b) = (x <= y + z ?< if b).
-Proof. by case: b; apply lter_sub_addl. Qed.
-
-Lemma lersif_subr_addl b x y z : (x <= y - z ?< if b) = (z + x <= y ?< if b).
-Proof. by case: b; apply lter_sub_addl. Qed.
-
-Definition lersif_sub_addl := (lersif_subl_addl, lersif_subr_addl).
-
-Lemma lersif_andb x y : {morph lersif x y : p q / p || q >-> p && q}.
-Proof.
-by case=> [] [] /=; rewrite ?le_eqVlt;
- case: (_ < _)%R; rewrite ?(orbT, orbF, andbF, andbb).
-Qed.
-
-Lemma lersif_orb x y : {morph lersif x y : p q / p && q >-> p || q}.
-Proof.
-by case=> [] [] /=; rewrite ?le_eqVlt;
- case: (_ < _)%R; rewrite ?(orbT, orbF, orbb).
-Qed.
-
-Lemma lersif_imply b1 b2 r1 r2 :
- b2 ==> b1 -> r1 <= r2 ?< if b1 -> r1 <= r2 ?< if b2.
-Proof. by case: b1 b2 => [] [] //= _ /ltW. Qed.
-
-Lemma lersifW b x y : x <= y ?< if b -> x <= y.
+Lemma lteifW b x y : x < y ?<= if b -> x <= y.
Proof. by case: b => // /ltW. Qed.
-Lemma ltrW_lersif b x y : x < y -> x <= y ?< if b.
+Lemma ltrW_lteif b x y : x < y -> x < y ?<= if b.
Proof. by case: b => // /ltW. Qed.
-Lemma lersif_pmul2l b x : 0 < x -> {mono *%R x : y z / y <= z ?< if b}.
-Proof. by case: b; apply lter_pmul2l. Qed.
-
-Lemma lersif_pmul2r b x : 0 < x -> {mono *%R^~ x : y z / y <= z ?< if b}.
-Proof. by case: b; apply lter_pmul2r. Qed.
-
-Lemma lersif_nmul2l b x : x < 0 -> {mono *%R x : y z /~ y <= z ?< if b}.
-Proof. by case: b; apply lter_nmul2l. Qed.
-
-Lemma lersif_nmul2r b x : x < 0 -> {mono *%R^~ x : y z /~ y <= z ?< if b}.
-Proof. by case: b; apply lter_nmul2r. Qed.
-
-Lemma real_lersifN x y b : x \is Num.real -> y \is Num.real ->
- x <= y ?< if ~~b = ~~ (y <= x ?< if b).
-Proof. by case: b => [] xR yR /=; case: real_ltgtP. Qed.
-
-Lemma real_lersif_norml b x y :
- x \is Num.real ->
- (`|x| <= y ?< if b) = ((- y <= x ?< if b) && (x <= y ?< if b)).
-Proof. by case: b; apply real_lter_norml. Qed.
-
-Lemma real_lersif_normr b x y :
- y \is Num.real ->
- (x <= `|y| ?< if b) = ((x <= y ?< if b) || (x <= - y ?< if b)).
-Proof. by case: b; apply real_lter_normr. Qed.
+Lemma comparable_lteifN x y b :
+ x >=< y -> x < y ?<= if ~~b = ~~ (y < x ?<= if b).
+Proof. by case: b => /=; case: comparableP. Qed.
-Lemma lersif_nnormr b x y : y <= 0 ?< if ~~ b -> (`|x| <= y ?< if b) = false.
-Proof. by case: b => /=; apply lter_nnormr. Qed.
-
-End LersifPo.
+End LteifPOrder.
-Notation "x <= y ?< 'if' b" := (lersif x y b)
+Notation "x < y ?<= 'if' b" := (lteif x y b)
(at level 70, y at next level,
- format "x '[hv' <= y '/' ?< 'if' b ']'") : ring_scope.
+ format "x '[hv' < y '/' ?<= 'if' b ']'") : order_scope.
-Section LersifOrdered.
-
-Variable (R : realDomainType) (b : bool) (x y z e : R).
-
-Lemma lersifN : (x <= y ?< if ~~ b) = ~~ (y <= x ?< if b).
-Proof. by rewrite real_lersifN ?num_real. Qed.
-
-Lemma lersif_norml :
- (`|x| <= y ?< if b) = (- y <= x ?< if b) && (x <= y ?< if b).
-Proof. by case: b; apply lter_norml. Qed.
+Notation "x < y ?<= 'if' b" := (@lteif ring_display _ x y b)
+ (at level 70, y at next level,
+ format "x '[hv' < y '/' ?<= 'if' b ']'") : ring_scope.
-Lemma lersif_normr :
- (x <= `|y| ?< if b) = (x <= y ?< if b) || (x <= - y ?< if b).
-Proof. by case: b; apply lter_normr. Qed.
+Section LteifTotal.
-Lemma lersif_distl :
- (`|x - y| <= e ?< if b) = (y - e <= x ?< if b) && (x <= y + e ?< if b).
-Proof. by case: b; apply lter_distl. Qed.
+Variable (disp : unit) (T : orderType disp) (b : bool) (x y z e : T).
-Lemma lersif_minr :
- (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
+Lemma lteif_minr :
+ (x < Order.min y z ?<= if b) = (x < y ?<= if b) && (x < z ?<= if b).
Proof. by case: b; rewrite /= (le_minr, lt_minr). Qed.
-Lemma lersif_minl :
- (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
+Lemma lteif_minl :
+ (Order.min y z < x ?<= if b) = (y < x ?<= if b) || (z < x ?<= if b).
Proof. by case: b; rewrite /= (le_minl, lt_minl). Qed.
-Lemma lersif_maxr :
- (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
+Lemma lteif_maxr :
+ (x < Order.max y z ?<= if b) = (x < y ?<= if b) || (x < z ?<= if b).
Proof. by case: b; rewrite /= (le_maxr, lt_maxr). Qed.
-Lemma lersif_maxl :
- (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
+Lemma lteif_maxl :
+ (Order.max y z < x ?<= if b) = (y < x ?<= if b) && (z < x ?<= if b).
Proof. by case: b; rewrite /= (le_maxl, lt_maxl). Qed.
-End LersifOrdered.
-
-Section LersifField.
-
-Variable (F : numFieldType) (b : bool) (z x y : F).
-
-Lemma lersif_pdivl_mulr : 0 < z -> x <= y / z ?< if b = (x * z <= y ?< if b).
-Proof. by case: b => ? /=; rewrite lter_pdivl_mulr. Qed.
-
-Lemma lersif_pdivr_mulr : 0 < z -> y / z <= x ?< if b = (y <= x * z ?< if b).
-Proof. by case: b => ? /=; rewrite lter_pdivr_mulr. Qed.
-
-Lemma lersif_pdivl_mull : 0 < z -> x <= z^-1 * y ?< if b = (z * x <= y ?< if b).
-Proof. by case: b => ? /=; rewrite lter_pdivl_mull. Qed.
-
-Lemma lersif_pdivr_mull : 0 < z -> z^-1 * y <= x ?< if b = (y <= z * x ?< if b).
-Proof. by case: b => ? /=; rewrite lter_pdivr_mull. Qed.
-
-Lemma lersif_ndivl_mulr : z < 0 -> x <= y / z ?< if b = (y <= x * z ?< if b).
-Proof. by case: b => ? /=; rewrite lter_ndivl_mulr. Qed.
-
-Lemma lersif_ndivr_mulr : z < 0 -> y / z <= x ?< if b = (x * z <= y ?< if b).
-Proof. by case: b => ? /=; rewrite lter_ndivr_mulr. Qed.
-
-Lemma lersif_ndivl_mull : z < 0 -> x <= z^-1 * y ?< if b = (y <=z * x ?< if b).
-Proof. by case: b => ? /=; rewrite lter_ndivl_mull. Qed.
-
-Lemma lersif_ndivr_mull : z < 0 -> z^-1 * y <= x ?< if b = (z * x <= y ?< if b).
-Proof. by case: b => ? /=; rewrite lter_ndivr_mull. Qed.
+Lemma lteifN : (x < y ?<= if ~~ b) = ~~ (y < x ?<= if b).
+Proof. by rewrite comparable_lteifN ?comparableT. Qed.
-End LersifField.
+End LteifTotal.
-Variant itv_bound (T : Type) : Type := BOpen_if of bool & T | BInfty.
-Notation BOpen := (BOpen_if true).
-Notation BClose := (BOpen_if false).
-Variant interval (T : Type) := Interval of itv_bound T & itv_bound T.
+Variant itv_bound (T : Type) : Type := BClose_if of bool & T | BInfty.
+Definition itv_boundl := itv_bound.
+Definition itv_boundr := itv_bound.
+Notation BOpen := (BClose_if false).
+Notation BClose := (BClose_if true).
+Variant interval (T : Type) := Interval of itv_boundl T & itv_boundr T.
(* We provide the 9 following notations to help writing formal intervals *)
Notation "`[ a , b ]" := (Interval (BClose a) (BClose b))
+ (at level 0, a, b at level 9 , format "`[ a , b ]") : order_scope.
+Notation "`] a , b ]" := (Interval (BOpen a) (BClose b))
+ (at level 0, a, b at level 9 , format "`] a , b ]") : order_scope.
+Notation "`[ a , b [" := (Interval (BClose a) (BOpen b))
+ (at level 0, a, b at level 9 , format "`[ a , b [") : order_scope.
+Notation "`] a , b [" := (Interval (BOpen a) (BOpen b))
+ (at level 0, a, b at level 9 , format "`] a , b [") : order_scope.
+Notation "`] '-oo' , b ]" := (Interval (BInfty _) (BClose b))
+ (at level 0, b at level 9 , format "`] '-oo' , b ]") : order_scope.
+Notation "`] '-oo' , b [" := (Interval (BInfty _) (BOpen b))
+ (at level 0, b at level 9 , format "`] '-oo' , b [") : order_scope.
+Notation "`[ a , '+oo' [" := (Interval (BClose a) (BInfty _))
+ (at level 0, a at level 9 , format "`[ a , '+oo' [") : order_scope.
+Notation "`] a , '+oo' [" := (Interval (BOpen a) (BInfty _))
+ (at level 0, a at level 9 , format "`] a , '+oo' [") : order_scope.
+Notation "`] -oo , '+oo' [" := (Interval (BInfty _) (BInfty _))
+ (at level 0, format "`] -oo , '+oo' [") : order_scope.
+
+Notation "`[ a , b ]" := (Interval (BClose a) (BClose b))
(at level 0, a, b at level 9 , format "`[ a , b ]") : ring_scope.
Notation "`] a , b ]" := (Interval (BOpen a) (BClose b))
(at level 0, a, b at level 9 , format "`] a , b ]") : ring_scope.
@@ -281,13 +181,17 @@ Notation "`] a , '+oo' [" := (Interval (BOpen a) (BInfty _))
Notation "`] -oo , '+oo' [" := (Interval (BInfty _) (BInfty _))
(at level 0, format "`] -oo , '+oo' [") : ring_scope.
+Fact itv_boundl_display (disp : unit) : unit. Proof. exact. Qed.
+Fact itv_boundr_display (disp : unit) : unit. Proof. exact. Qed.
+Fact interval_display (disp : unit) : unit. Proof. exact. Qed.
+
Section IntervalEq.
Variable T : eqType.
Definition eq_itv_bound (b1 b2 : itv_bound T) : bool :=
match b1, b2 with
- | BOpen_if a x, BOpen_if b y => (a == b) && (x == y)
+ | BClose_if a x, BClose_if b y => (a == b) && (x == y)
| BInfty, BInfty => true
| _, _ => false
end.
@@ -295,13 +199,14 @@ Definition eq_itv_bound (b1 b2 : itv_bound T) : bool :=
Lemma eq_itv_boundP : Equality.axiom eq_itv_bound.
Proof.
move=> b1 b2; apply: (iffP idP).
-- by move: b1 b2 => [a x |] [b y |] => //= /andP [] /eqP -> /eqP ->.
+- by move: b1 b2 => [a x|][b y|] => //= /andP [] /eqP -> /eqP ->.
- by move=> <-; case: b1 => //= a x; rewrite !eqxx.
Qed.
Canonical itv_bound_eqMixin := EqMixin eq_itv_boundP.
-Canonical itv_bound_eqType :=
- Eval hnf in EqType (itv_bound T) itv_bound_eqMixin.
+Canonical itv_bound_eqType := EqType (itv_bound T) itv_bound_eqMixin.
+Canonical itv_boundl_eqType := [eqType of itv_boundl T].
+Canonical itv_boundr_eqType := [eqType of itv_boundr T].
Definition eqitv (x y : interval T) : bool :=
let: Interval x x' := x in
@@ -310,319 +215,775 @@ Definition eqitv (x y : interval T) : bool :=
Lemma eqitvP : Equality.axiom eqitv.
Proof.
move=> x y; apply: (iffP idP).
-- by move: x y => [x x'] [y y'] => //= /andP [] /eqP -> /eqP ->.
+- by move: x y => [x x'][y y'] => //= /andP [] /eqP -> /eqP ->.
- by move=> <-; case: x => /= x x'; rewrite !eqxx.
Qed.
Canonical interval_eqMixin := EqMixin eqitvP.
-Canonical interval_eqType := Eval hnf in EqType (interval T) interval_eqMixin.
+Canonical interval_eqType := EqType (interval T) interval_eqMixin.
End IntervalEq.
-Section IntervalPo.
+Module IntervalChoice.
+Section IntervalChoice.
-Variable R : numDomainType.
+Variable T : choiceType.
+
+Lemma itv_bound_can :
+ cancel (fun b : itv_bound T =>
+ match b with BInfty => None | BClose_if b x => Some (b, x) end)
+ (fun b =>
+ match b with None => BInfty _ | Some (b, x) => BClose_if b x end).
+Proof. by case. Qed.
+
+Lemma interval_can :
+ @cancel _ (interval T)
+ (fun '(Interval b1 b2) => (b1, b2)) (fun '(b1, b2) => Interval b1 b2).
+Proof. by case. Qed.
+
+End IntervalChoice.
+
+Module Exports.
+
+Canonical itv_bound_choiceType (T : choiceType) :=
+ ChoiceType (itv_bound T) (CanChoiceMixin (@itv_bound_can T)).
+Canonical interval_choiceType (T : choiceType) :=
+ ChoiceType (interval T) (CanChoiceMixin (@interval_can T)).
+Canonical itv_boundl_choiceType (T : choiceType) :=
+ [choiceType of itv_boundl T].
+Canonical itv_boundr_choiceType (T : choiceType) :=
+ [choiceType of itv_boundr T].
+
+Canonical itv_bound_countType (T : countType) :=
+ CountType (itv_bound T) (CanCountMixin (@itv_bound_can T)).
+Canonical interval_countType (T : countType) :=
+ CountType (interval T) (CanCountMixin (@interval_can T)).
+Canonical itv_boundl_countType (T : countType) := [countType of itv_boundl T].
+Canonical itv_boundr_countType (T : countType) := [countType of itv_boundr T].
-Definition pred_of_itv (i : interval R) : pred R :=
+Canonical itv_bound_finType (T : finType) :=
+ FinType (itv_bound T) (CanFinMixin (@itv_bound_can T)).
+Canonical interval_finType (T : finType) :=
+ FinType (interval T) (CanFinMixin (@interval_can T)).
+Canonical itv_boundl_finType (T : finType) := [finType of itv_boundl T].
+Canonical itv_boundr_finType (T : finType) := [finType of itv_boundr T].
+
+End Exports.
+
+End IntervalChoice.
+Export IntervalChoice.Exports.
+
+Section IntervalPOrder.
+
+Variable (disp : unit) (T : porderType disp).
+Implicit Types (x y z : T) (i : interval T).
+
+Definition pred_of_itv i : pred T :=
[pred x | let: Interval l u := i in
match l with
- | BOpen_if b lb => lb <= x ?< if b
+ | BClose_if b lb => lb < x ?<= if b
| BInfty => true
end &&
match u with
- | BOpen_if b ub => x <= ub ?< if b
+ | BClose_if b ub => x < ub ?<= if b
| BInfty => true
end].
+
Canonical Structure itvPredType := PredType pred_of_itv.
(* we compute a set of rewrite rules associated to an interval *)
-Definition itv_rewrite (i : interval R) x : Type :=
+Definition itv_rewrite i x : Type :=
let: Interval l u := i in
(match l with
| BClose a => (a <= x) * (x < a = false)
| BOpen a => (a <= x) * (a < x) * (x <= a = false) * (x < a = false)
- | BInfty => forall x : R, x == x
+ | BInfty => forall x : T, x == x
end *
- match u with
+ match u with
| BClose b => (x <= b) * (b < x = false)
| BOpen b => (x <= b) * (x < b) * (b <= x = false) * (b < x = false)
- | BInfty => forall x : R, x == x
+ | BInfty => forall x : T, x == x
end *
- match l, u with
+ match l, u with
| BClose a, BClose b =>
(a <= b) * (b < a = false) * (a \in `[a, b]) * (b \in `[a, b])
| BClose a, BOpen b =>
(a <= b) * (a < b) * (b <= a = false) * (b < a = false)
- * (a \in `[a, b]) * (a \in `[a, b[)* (b \in `[a, b]) * (b \in `]a, b])
+ * (a \in `[a, b]) * (a \in `[a, b[) * (b \in `[a, b]) * (b \in `]a, b])
| BOpen a, BClose b =>
(a <= b) * (a < b) * (b <= a = false) * (b < a = false)
- * (a \in `[a, b]) * (a \in `[a, b[)* (b \in `[a, b]) * (b \in `]a, b])
+ * (a \in `[a, b]) * (a \in `[a, b[) * (b \in `[a, b]) * (b \in `]a, b])
| BOpen a, BOpen b =>
(a <= b) * (a < b) * (b <= a = false) * (b < a = false)
- * (a \in `[a, b]) * (a \in `[a, b[)* (b \in `[a, b]) * (b \in `]a, b])
- | _, _ => forall x : R, x == x
- end)%type.
+ * (a \in `[a, b]) * (a \in `[a, b[) * (b \in `[a, b]) * (b \in `]a, b])
+ | _, _ => forall x : T, x == x
+ end)%type.
-Definition itv_decompose (i : interval R) x : Prop :=
+Definition itv_decompose i x : Prop :=
let: Interval l u := i in
((match l with
- | BOpen_if b lb => (lb <= x ?< if b) : Prop
+ | BClose_if b lb => (lb < x ?<= if b) : Prop
| BInfty => True
end : Prop) *
(match u with
- | BOpen_if b ub => (x <= ub ?< if b) : Prop
+ | BClose_if b ub => (x < ub ?<= if b) : Prop
| BInfty => True
end : Prop))%type.
-Lemma itv_dec : forall (x : R) (i : interval R),
- reflect (itv_decompose i x) (x \in i).
-Proof. by move=> ? [[? ?|] [? ?|]]; apply: (iffP andP); case. Qed.
+Lemma itv_dec : forall x i, reflect (itv_decompose i x) (x \in i).
+Proof. by move=> ? [[? ?|][? ?|]]; apply: (iffP andP); case. Qed.
Arguments itv_dec {x i}.
-Definition le_boundl (b1 b2 : itv_bound R) :=
+Definition le_boundl (b1 b2 : itv_boundl T) :=
match b1, b2 with
- | BOpen_if b1 x1, BOpen_if b2 x2 => x1 <= x2 ?< if ~~ b2 && b1
- | BOpen_if _ _, BInfty => false
+ | BClose_if b1 x1, BClose_if b2 x2 => x1 < x2 ?<= if b2 ==> b1
+ | BClose_if _ _, BInfty => false
| _, _ => true
end.
-Definition le_boundr (b1 b2 : itv_bound R) :=
+Definition le_boundr (b1 b2 : itv_boundr T) :=
match b1, b2 with
- | BOpen_if b1 x1, BOpen_if b2 x2 => x1 <= x2 ?< if ~~ b1 && b2
- | BInfty, BOpen_if _ _ => false
+ | BClose_if b1 x1, BClose_if b2 x2 => x1 < x2 ?<= if b1 ==> b2
+ | BInfty, BClose_if _ _ => false
| _, _ => true
end.
Lemma itv_boundlr bl br x :
(x \in Interval bl br) =
(le_boundl bl (BClose x)) && (le_boundr (BClose x) br).
-Proof. by case: bl br => [? ? |] []. Qed.
+Proof. by case: bl br => [? ?|][]. Qed.
Lemma le_boundl_refl : reflexive le_boundl.
Proof. by move=> [[] b|]; rewrite /le_boundl /= ?lerr. Qed.
-Hint Resolve le_boundl_refl : core.
-
Lemma le_boundr_refl : reflexive le_boundr.
Proof. by move=> [[] b|]; rewrite /le_boundr /= ?lerr. Qed.
-Hint Resolve le_boundr_refl : core.
+Hint Resolve le_boundl_refl le_boundr_refl : core.
+
+Lemma le_boundl_anti : antisymmetric le_boundl.
+Proof. by case=> [[]?|][[]?|] //=; case: comparableP => // ->. Qed.
+
+Lemma le_boundl_converse_anti : antisymmetric (fun b => le_boundl ^~ b).
+Proof. by move=> ? ? /le_boundl_anti. Qed.
+
+Lemma le_boundr_anti : antisymmetric le_boundr.
+Proof. by case=> [[]?|][[]?|] //=; case: comparableP => // ->. Qed.
Lemma le_boundl_trans : transitive le_boundl.
Proof.
-by move=> [[] x|] [[] y|] [[] z|] lexy leyz //;
- apply: (lersif_imply _ (lersif_trans lexy leyz)).
+by move=> [[] x|][[] y|][[] z|] lexy leyz //;
+ apply: (lteif_imply _ (lteif_trans lexy leyz)).
Qed.
+Lemma le_boundl_converse_trans : transitive (fun b => le_boundl ^~ b).
+Proof. move=> ? ? ? ? /le_boundl_trans; exact. Qed.
+
Lemma le_boundr_trans : transitive le_boundr.
Proof.
-by move=> [[] x|] [[] y|] [[] z|] lexy leyz //;
- apply: (lersif_imply _ (lersif_trans lexy leyz)).
+by move=> [[] x|][[] y|][[] z|] lexy leyz //;
+ apply: (lteif_imply _ (lteif_trans lexy leyz)).
Qed.
Lemma le_boundl_bb x b1 b2 :
- le_boundl (BOpen_if b1 x) (BOpen_if b2 x) = (b1 ==> b2).
-Proof. by rewrite /le_boundl lersifxx andbC negb_and negbK implybE. Qed.
+ le_boundl (BClose_if b1 x) (BClose_if b2 x) = (b2 ==> b1).
+Proof. by rewrite /le_boundl lteifxx. Qed.
Lemma le_boundr_bb x b1 b2 :
- le_boundr (BOpen_if b1 x) (BOpen_if b2 x) = (b2 ==> b1).
-Proof. by rewrite /le_boundr lersifxx andbC negb_and negbK implybE. Qed.
-
-Lemma le_boundl_anti b1 b2 : (le_boundl b1 b2 && le_boundl b2 b1) = (b1 == b2).
-Proof. by case: b1 b2 => [[] lr1 |] [[] lr2 |] //; rewrite lersif_anti. Qed.
-
-Lemma le_boundr_anti b1 b2 : (le_boundr b1 b2 && le_boundr b2 b1) = (b1 == b2).
-Proof. by case: b1 b2 => [[] lr1 |] [[] lr2 |] //; rewrite lersif_anti. Qed.
+ le_boundr (BClose_if b1 x) (BClose_if b2 x) = (b1 ==> b2).
+Proof. by rewrite /le_boundr lteifxx. Qed.
Lemma itv_xx x bl br :
- Interval (BOpen_if bl x) (BOpen_if br x) =i
- if ~~ (bl || br) then pred1 x else pred0.
-Proof. by move: bl br => [] [] y /=; rewrite !inE lersif_anti. Qed.
+ Interval (BClose_if bl x) (BClose_if br x) =i
+ if bl && br then pred1 x else pred0.
+Proof. by move: bl br => [][] y /=; rewrite !inE lteif_anti /=. Qed.
-Lemma itv_gte ba xa bb xb : xb <= xa ?< if ~~ (ba || bb)
- -> Interval (BOpen_if ba xa) (BOpen_if bb xb) =i pred0.
+Lemma itv_gte ba xa bb xb :
+ xb < xa ?<= if ~~ (ba && bb) ->
+ Interval (BClose_if ba xa) (BClose_if bb xb) =i pred0.
Proof.
move=> ? y; rewrite itv_boundlr inE /=.
-by apply/negP => /andP [] lexay /(lersif_trans lexay); rewrite lersifNF.
+by apply/negP => /andP [] lexay /(lteif_trans lexay); rewrite lteifNF.
Qed.
Lemma boundl_in_itv : forall ba xa b,
- xa \in Interval (BOpen_if ba xa) b =
- if ba then false else le_boundr (BClose xa) b.
-Proof. by move=> [] xa [b xb|]; rewrite inE lersifxx. Qed.
+ xa \in Interval (BClose_if ba xa) b =
+ if ba then le_boundr (BClose xa) b else false.
+Proof. by move=> [] xa [b xb|]; rewrite inE lteifxx. Qed.
Lemma boundr_in_itv : forall bb xb a,
- xb \in Interval a (BOpen_if bb xb) =
- if bb then false else le_boundl a (BClose xb).
-Proof. by move=> [] xb [b xa|]; rewrite inE lersifxx /= ?andbT ?andbF. Qed.
+ xb \in Interval a (BClose_if bb xb) =
+ if bb then le_boundl a (BClose xb) else false.
+Proof. by move=> [] xb [b xa|]; rewrite inE lteifxx /= ?andbT ?andbF. Qed.
Definition bound_in_itv := (boundl_in_itv, boundr_in_itv).
-Lemma itvP : forall (x : R) (i : interval R), x \in i -> itv_rewrite i x.
+Lemma itvP : forall x i, x \in i -> itv_rewrite i x.
Proof.
-move=> x [[[] a|] [[] b|]] /itv_dec [ha hb]; do !split;
+move=> x [[[] a|][[] b|]] /itv_dec [ha hb]; do !split;
rewrite ?bound_in_itv //=; do 1?[apply/negbTE; rewrite (le_gtF, lt_geF)];
- by [ | apply: ltW | move: (lersif_trans ha hb) => //=; exact: ltW ].
+ by [| apply: ltW | move: (lteif_trans ha hb) => //=; exact: ltW].
Qed.
Arguments itvP [x i].
-Definition itv_intersection (x y : interval R) : interval R :=
- let: Interval x x' := x in
- let: Interval y y' := y in
- Interval
- (if le_boundl x y then y else x)
- (if le_boundr x' y' then x' else y').
-
-Definition itv_intersection1i : left_id `]-oo, +oo[ itv_intersection.
-Proof. by case=> i []. Qed.
+Definition itv_boundl_porderMixin :=
+ @LePOrderMixin
+ (itv_boundl_eqType T) (fun b => le_boundl^~ b) _ (fun _ _ => erefl)
+ le_boundl_refl le_boundl_converse_anti le_boundl_converse_trans.
+Canonical itv_boundl_porderType :=
+ POrderType (itv_boundl_display disp) (itv_boundl T) itv_boundl_porderMixin.
-Definition itv_intersectioni1 : right_id `]-oo, +oo[ itv_intersection.
-Proof. by case=> [[lb lr |] [ub ur |]]. Qed.
+Definition itv_boundr_porderMixin :=
+ LePOrderMixin (fun _ _ => erefl)
+ le_boundr_refl le_boundr_anti le_boundr_trans.
+Canonical itv_boundr_porderType :=
+ POrderType (itv_boundr_display disp) (itv_boundr T) itv_boundr_porderMixin.
-Lemma itv_intersectionii : idempotent itv_intersection.
-Proof. by case=> [[[] lr |] [[] ur |]] //=; rewrite !lexx. Qed.
-
-Definition subitv (i1 i2 : interval R) :=
+Definition subitv i1 i2 :=
match i1, i2 with
- | Interval a1 b1, Interval a2 b2 => le_boundl a2 a1 && le_boundr b1 b2
+ | Interval a1 b1, Interval a2 b2 => (a1 <= a2) && (b1 <= b2)
end.
-Lemma subitvP : forall (i2 i1 : interval R), subitv i1 i2 -> {subset i1 <= i2}.
+Lemma subitv_refl : reflexive subitv.
+Proof. by case=> /= ? ?; rewrite !lexx. Qed.
+
+Lemma subitv_anti : antisymmetric subitv.
+Proof.
+by case=> [? ?][? ?]; rewrite andbACA => /andP[] /le_anti -> /le_anti ->.
+Qed.
+
+Lemma subitv_trans : transitive subitv.
Proof.
-by move=> [[b2 l2|] [b2' u2|]] [[b1 l1|] [b1' u1|]]
+case=> [yl yr][xl xr][zl zr] /andP [Hl Hr] /andP [Hl' Hr'] /=.
+by rewrite (le_trans Hl Hl') (le_trans Hr Hr').
+Qed.
+
+Definition interval_porderMixin :=
+ LePOrderMixin (fun _ _ => erefl) subitv_refl subitv_anti subitv_trans.
+Canonical interval_porderType :=
+ POrderType (interval_display disp) (interval T) interval_porderMixin.
+
+Lemma subitvP i1 i2 : i1 <= i2 -> {subset i1 <= i2}.
+Proof.
+by case: i1 i2 => [[b2 l2|][b2' u2|]][[b1 l1|][b1' u1|]]
/andP [] /= ha hb x /andP [ha' hb']; apply/andP; split => //;
- (apply/lersif_imply: (lersif_trans ha ha'); case: b1 b2 ha ha' => [] []) ||
- (apply/lersif_imply: (lersif_trans hb' hb); case: b1' b2' hb hb' => [] []).
+ (apply/lteif_imply: (lteif_trans ha ha'); case: b1 b2 ha ha' => [][]) ||
+ (apply/lteif_imply: (lteif_trans hb' hb); case: b1' b2' hb hb' => [][]).
Qed.
-Lemma subitvPr (a b1 b2 : itv_bound R) :
+Lemma subitvPr (a : itv_boundl T) (b1 b2 : itv_boundr T) :
le_boundr b1 b2 -> {subset (Interval a b1) <= (Interval a b2)}.
-Proof. by move=> leb; apply: subitvP; rewrite /= leb andbT. Qed.
+Proof. by move=> leb; apply: subitvP; rewrite /<=%O /= lexx. Qed.
-Lemma subitvPl (a1 a2 b : itv_bound R) :
+Lemma subitvPl (a1 a2 : itv_boundl T) (b : itv_boundr T) :
le_boundl a2 a1 -> {subset (Interval a1 b) <= (Interval a2 b)}.
-Proof. by move=> lea; apply: subitvP; rewrite /= lea /=. Qed.
+Proof. by move=> lea; apply: subitvP; rewrite /<=%O /= lexx andbT. Qed.
-Lemma lersif_in_itv ba bb xa xb x :
- x \in Interval (BOpen_if ba xa) (BOpen_if bb xb) ->
- xa <= xb ?< if ba || bb.
-Proof. by case: ba bb => [] [] /itvP /= ->. Qed.
+Lemma inEsubitv x i : (x \in i) = (`[x, x] <= i).
+Proof. by rewrite inE /=; case: i => [[[]?|][[]?|]]. Qed.
+
+Lemma lteif_in_itv ba bb xa xb x :
+ x \in Interval (BClose_if ba xa) (BClose_if bb xb) ->
+ xa < xb ?<= if ba && bb.
+Proof. by case: ba bb => [][] /itvP /= ->. Qed.
Lemma ltr_in_itv ba bb xa xb x :
- ba || bb -> x \in Interval (BOpen_if ba xa) (BOpen_if bb xb) -> xa < xb.
-Proof. by move=> bab /lersif_in_itv; rewrite bab. Qed.
+ ~~ (ba && bb) -> x \in Interval (BClose_if ba xa) (BClose_if bb xb) ->
+ xa < xb.
+Proof. by move=> /negbTE bab /lteif_in_itv; rewrite bab. Qed.
Lemma ler_in_itv ba bb xa xb x :
- x \in Interval (BOpen_if ba xa) (BOpen_if bb xb) -> xa <= xb.
-Proof. by move/lersif_in_itv/lersifW. Qed.
+ x \in Interval (BClose_if ba xa) (BClose_if bb xb) -> xa <= xb.
+Proof. by move/lteif_in_itv/lteifW. Qed.
-Lemma mem0_itvcc_xNx x : (0 \in `[-x, x]) = (0 <= x).
-Proof. by rewrite !inE /= oppr_le0 andbb. Qed.
+End IntervalPOrder.
-Lemma mem0_itvoo_xNx x : 0 \in `](-x), x[ = (0 < x).
-Proof. by rewrite !inE /= oppr_lt0 andbb. Qed.
+Section IntervalLattice.
-Lemma itv_splitI : forall a b x,
- x \in Interval a b =
- (x \in Interval a (BInfty _)) && (x \in Interval (BInfty _) b).
-Proof. by move=> [? ?|] [? ?|] ?; rewrite !inE ?andbT. Qed.
+Variable (disp : unit) (T : latticeType disp).
+Implicit Types (x y z : T) (i : interval T).
-Lemma oppr_itv ba bb (xa xb x : R) :
- (-x \in Interval (BOpen_if ba xa) (BOpen_if bb xb)) =
- (x \in Interval (BOpen_if bb (-xb)) (BOpen_if ba (-xa))).
-Proof. by rewrite !inE lersif_oppr andbC lersif_oppl. Qed.
+Definition itv_boundl_meet (bl br : itv_boundl T) : itv_boundl T :=
+ match bl, br with
+ | BInfty, _ => br | _, BInfty => bl
+ | BClose_if xb x, BClose_if yb y =>
+ BClose_if ((~~ (x <= y) || yb) && (~~ (y <= x) || xb)) (x `|` y)
+ end.
-Lemma oppr_itvoo (a b x : R) : (-x \in `]a, b[) = (x \in `](-b), (-a)[).
-Proof. exact: oppr_itv. Qed.
+Definition itv_boundr_meet (bl br : itv_boundr T) : itv_boundr T :=
+ match bl, br with
+ | BInfty, _ => br | _, BInfty => bl
+ | BClose_if xb x, BClose_if yb y =>
+ BClose_if ((~~ (x <= y) || xb) && (~~ (y <= x) || yb)) (x `&` y)
+ end.
-Lemma oppr_itvco (a b x : R) : (-x \in `[a, b[) = (x \in `](-b), (-a)]).
-Proof. exact: oppr_itv. Qed.
+Definition itv_boundl_join (bl br : itv_boundl T) : itv_bound T :=
+ match bl, br with
+ | BInfty, _ | _, BInfty => BInfty _
+ | BClose_if xb x, BClose_if yb y =>
+ BClose_if ((x <= y) && xb || (y <= x) && yb) (x `&` y)
+ end.
-Lemma oppr_itvoc (a b x : R) : (-x \in `]a, b]) = (x \in `[(-b), (-a)[).
-Proof. exact: oppr_itv. Qed.
+Definition itv_boundr_join (bl br : itv_boundr T) : itv_bound T :=
+ match bl, br with
+ | BInfty, _ | _, BInfty => BInfty _
+ | BClose_if xb x, BClose_if yb y =>
+ BClose_if ((x <= y) && yb || (y <= x) && xb) (x `|` y)
+ end.
-Lemma oppr_itvcc (a b x : R) : (-x \in `[a, b]) = (x \in `[(-b), (-a)]).
-Proof. exact: oppr_itv. Qed.
+Lemma itv_boundl_meetC : commutative itv_boundl_meet.
+Proof.
+by case=> [? ?|][? ?|] //=; rewrite joinC; congr BClose_if;
+ case: lcomparableP; rewrite ?andbT // 1?andbC.
+Qed.
-End IntervalPo.
+Lemma itv_boundr_meetC : commutative itv_boundr_meet.
+Proof.
+by case=> [? ?|][? ?|] //=; rewrite meetC; congr BClose_if;
+ case: lcomparableP; rewrite ?andbT // 1?andbC.
+Qed.
+
+Lemma itv_boundl_joinC : commutative itv_boundl_join.
+Proof.
+by case=> [? ?|][? ?|] //=; rewrite meetC; congr BClose_if;
+ case: lcomparableP; rewrite ?orbF // 1?orbC.
+Qed.
+
+Lemma itv_boundr_joinC : commutative itv_boundr_join.
+Proof.
+by case=> [? ?|][? ?|] //=; rewrite joinC; congr BClose_if;
+ case: lcomparableP; rewrite ?orbF // 1?orbC.
+Qed.
+
+Lemma itv_boundl_meetA : associative itv_boundl_meet.
+Proof.
+case=> [? x|][? y|][? z|]//; congr BClose_if; rewrite ?leUx ?joinA //.
+by case: (lcomparableP x y) => [|||->]; case: (lcomparableP y z) => [|||->];
+ case: (lcomparableP x z) => [|||//<-] //=;
+ case: (lcomparableP x y) => //=; case: (lcomparableP y z) => //=;
+ rewrite ?orbT ?andbT ?lexx ?andbA.
+Qed.
+
+Lemma itv_boundr_meetA : associative itv_boundr_meet.
+Proof.
+case=> [? x|][? y|][? z|]//; congr BClose_if; rewrite ?lexI ?meetA //.
+by case: (lcomparableP x y) => [|||->]; case: (lcomparableP y z) => [|||->];
+ case: (lcomparableP x z) => [|||//<-] //=;
+ case: (lcomparableP x y) => //=; case: (lcomparableP y z) => //=;
+ rewrite ?orbT ?andbT ?lexx ?andbA.
+Qed.
+
+Lemma itv_boundl_joinA : associative itv_boundl_join.
+Proof.
+case=> [? x|][? y|][? z|]//; congr BClose_if; rewrite ?lexI ?meetA //.
+by case: (lcomparableP x y) => [|||->]; case: (lcomparableP y z) => [|||->];
+ case: (lcomparableP x z) => [|||//<-] //=;
+ case: (lcomparableP x y) => //=; case: (lcomparableP y z) => //=;
+ rewrite ?andbF ?orbF ?lexx ?orbA.
+Qed.
+
+Lemma itv_boundr_joinA : associative itv_boundr_join.
+Proof.
+case=> [? x|][? y|][? z|]//; congr BClose_if; rewrite ?leUx ?joinA //.
+by case: (lcomparableP x y) => [|||->]; case: (lcomparableP y z) => [|||->];
+ case: (lcomparableP x z) => [|||//<-] //=;
+ case: (lcomparableP x y) => //=; case: (lcomparableP y z) => //=;
+ rewrite ?andbF ?orbF ?lexx ?orbA.
+Qed.
+
+Lemma itv_boundl_meetKU b2 b1 : itv_boundl_join b1 (itv_boundl_meet b1 b2) = b1.
+Proof.
+case: b1 b2 => [? ?|][? ?|] //=; congr BClose_if;
+ rewrite ?joinKI ?meetxx ?leUl ?leUx ?lexx ?orbb //=.
+by case: lcomparableP; rewrite ?orbb ?orbF ?andKb.
+Qed.
+
+Lemma itv_boundr_meetKU b2 b1 : itv_boundr_join b1 (itv_boundr_meet b1 b2) = b1.
+Proof.
+case: b1 b2 => [? ?|][? ?|] //=; congr BClose_if;
+ rewrite ?meetKU ?joinxx ?leIl ?lexI ?lexx ?orbb //.
+by case: lcomparableP; rewrite ?andbT /= ?orbb ?andbK.
+Qed.
+
+Lemma itv_boundl_joinKI b2 b1 : itv_boundl_meet b1 (itv_boundl_join b1 b2) = b1.
+Proof.
+case: b1 b2 => [? ?|][? ?|] //=; congr BClose_if;
+ rewrite ?meetKU // leIl lexI lexx.
+by case: lcomparableP; rewrite ?orbF ?andbb /= ?orbK.
+Qed.
+
+Lemma itv_boundr_joinKI b2 b1 : itv_boundr_meet b1 (itv_boundr_join b1 b2) = b1.
+Proof.
+case: b1 b2 => [? ?|][? ?|] //=; congr BClose_if;
+ rewrite ?joinKI // leUl leUx lexx.
+by case: lcomparableP; rewrite ?andbT ?andbb ?orKb.
+Qed.
+
+Lemma itv_boundl_leEmeet b1 b2 :
+ le_boundl b2 b1 = (itv_boundl_meet b1 b2 == b1).
+Proof.
+by case: b1 b2 => [[]?|][[]?|] //=;
+ rewrite /eq_op /= ?eqxx // eq_joinl; case: lcomparableP.
+Qed.
+
+Lemma itv_boundr_leEmeet b1 b2 :
+ le_boundr b1 b2 = (itv_boundr_meet b1 b2 == b1).
+Proof.
+by case: b1 b2 => [[]?|][[]?|] //=;
+ rewrite /eq_op /= ?eqxx //= -leEmeet; case: lcomparableP.
+Qed.
+
+Definition itv_boundl_latticeMixin :=
+ LatticeMixin itv_boundl_meetC itv_boundl_joinC
+ itv_boundl_meetA itv_boundl_joinA
+ itv_boundl_joinKI itv_boundl_meetKU itv_boundl_leEmeet.
+Canonical itv_boundl_latticeType :=
+ LatticeType (itv_boundl T) itv_boundl_latticeMixin.
-Section IntervalOrdered.
+Definition itv_boundr_latticeMixin :=
+ LatticeMixin itv_boundr_meetC itv_boundr_joinC
+ itv_boundr_meetA itv_boundr_joinA
+ itv_boundr_joinKI itv_boundr_meetKU itv_boundr_leEmeet.
+Canonical itv_boundr_latticeType :=
+ LatticeType (itv_boundr T) itv_boundr_latticeMixin.
-Variable R : realDomainType.
+Definition itv_meet i1 i2 : interval T :=
+ let: Interval b1l b1r := i1 in
+ let: Interval b2l b2r := i2 in Interval (b1l `&` b2l) (b1r `&` b2r).
-Lemma le_boundl_total : total (@le_boundl R).
-Proof. by move=> [[] l |] [[] r |] //=; case: (ltrgtP l r). Qed.
+Definition itv_join i1 i2 : interval T :=
+ let: Interval b1l b1r := i1 in
+ let: Interval b2l b2r := i2 in Interval (b1l `|` b2l) (b1r `|` b2r).
-Lemma le_boundr_total : total (@le_boundr R).
-Proof. by move=> [[] l |] [[] r |] //=; case: (ltrgtP l r). Qed.
+Lemma itv_meetC : commutative itv_meet.
+Proof. by case=> [? ?][? ?]; congr Interval; rewrite meetC. Qed.
-Lemma itv_splitU (xc : R) bc a b : xc \in Interval a b ->
+Lemma itv_joinC : commutative itv_join.
+Proof. by case=> [? ?][? ?]; congr Interval; rewrite joinC. Qed.
+
+Lemma itv_meetA : associative itv_meet.
+Proof. by case=> [? ?][? ?][? ?]; rewrite /= !meetA. Qed.
+
+Lemma itv_joinA : associative itv_join.
+Proof. by case=> [? ?][? ?][? ?]; rewrite /= !joinA. Qed.
+
+Lemma itv_meetKU i2 i1 : itv_join i1 (itv_meet i1 i2) = i1.
+Proof. by case: i1 i2 => [? ?][? ?]; rewrite /= !meetKU. Qed.
+
+Lemma itv_joinKI i2 i1 : itv_meet i1 (itv_join i1 i2) = i1.
+Proof. by case: i1 i2 => [? ?][? ?]; rewrite /= !joinKI. Qed.
+
+Lemma itv_leEmeet i1 i2 : (i1 <= i2) = (itv_meet i1 i2 == i1).
+Proof. by case: i1 i2 => [? ?][? ?]; rewrite /<=%O /eq_op /= !leEmeet. Qed.
+
+Definition interval_latticeMixin :=
+ LatticeMixin itv_meetC itv_joinC itv_meetA itv_joinA
+ itv_joinKI itv_meetKU itv_leEmeet.
+Canonical interval_latticeType :=
+ LatticeType (interval T) interval_latticeMixin.
+
+Definition itv_meet1i : left_id `]-oo, +oo[ Order.meet.
+Proof. by case=> i []. Qed.
+
+Definition itv_meeti1 : right_id `]-oo, +oo[ Order.meet.
+Proof. by case=> [[? ?|][? ?|]]. Qed.
+
+Canonical itv_intersection_monoid := Monoid.Law itv_meetA itv_meet1i itv_meeti1.
+Canonical itv_intersection_comoid := Monoid.ComLaw itv_meetC.
+
+Lemma in_itv_meet x i1 i2 : x \in i1 `&` i2 = (x \in i1) && (x \in i2).
+Proof. by rewrite !inEsubitv lexI. Qed.
+
+End IntervalLattice.
+
+Section IntervalTotal.
+
+Variable (disp : unit) (T : orderType disp).
+Implicit Types (x y z : T) (i : interval T).
+
+Lemma le_boundl_total : total (@le_boundl _ T).
+Proof. by move=> [[]l|] [[]r|] //=; case: (ltgtP l r). Qed.
+
+Lemma le_boundr_total : total (@le_boundr _ T).
+Proof. by move=> [[]l|] [[]r|] //=; case: (ltgtP l r). Qed.
+
+Definition itv_boundl_totalMixin : totalLatticeMixin _ :=
+ fun b1 b2 => le_boundl_total b2 b1.
+
+Canonical itv_boundl_distrLatticeType :=
+ DistrLatticeType (itv_boundl T) itv_boundl_totalMixin.
+Canonical itv_boundl_orderType :=
+ OrderType (itv_boundl T) itv_boundl_totalMixin.
+
+Canonical itv_boundr_distrLatticeType :=
+ DistrLatticeType (itv_boundr T) (le_boundr_total : totalLatticeMixin _).
+Canonical itv_boundr_orderType := OrderType (itv_boundr T) le_boundr_total.
+
+Lemma itv_meetUl : @left_distributive (interval T) _ Order.meet Order.join.
+Proof.
+by move=> [? ?][? ?][? ?]; rewrite /Order.meet /Order.join /= !meetUl.
+Qed.
+
+Canonical interval_distrLatticeType :=
+ DistrLatticeType (interval T) (DistrLatticeMixin itv_meetUl).
+
+Lemma itv_splitU (xc : T) bc a b : xc \in Interval a b ->
forall y, y \in Interval a b =
- (y \in Interval a (BOpen_if (~~ bc) xc))
- || (y \in Interval (BOpen_if bc xc) b).
+ (y \in Interval a (BClose_if (~~ bc) xc))
+ || (y \in Interval (BClose_if bc xc) b).
Proof.
move=> xc_in y; move: xc_in.
-rewrite !itv_boundlr [le_boundr (BClose _) (BOpen_if _ _)]/=
- [le_boundr]lock /= lersifN -lock.
+rewrite !itv_boundlr [le_boundr (BClose _) (BClose_if _ _)]/=
+ [le_boundr]lock /= lteifN -lock.
case/andP => leaxc lexcb;
case: (boolP (le_boundl a _)) => leay; case: (boolP (le_boundr _ b)) => leyb;
rewrite /= (andbT, andbF) ?orbF ?orNb //=;
[apply/esym/negbF | apply/esym/negbTE].
-- by case: b lexcb leyb => //= bb b; rewrite -lersifN => lexcb leyb;
- apply/lersif_imply: (lersif_trans lexcb leyb); rewrite orbN implybT.
-- by case: a leaxc leay => //= ab a leaxc;
- apply/contra => /(lersif_trans leaxc);
- apply/lersif_imply; rewrite implybE orbA orNb.
+- by case: b lexcb leyb => //= bb b; rewrite -lteifN => lexcb leyb;
+ apply/lteif_imply: (lteif_trans lexcb leyb); rewrite andbN.
+- case: a leaxc leay => //= ab a leaxc;
+ apply/contra => /(lteif_trans leaxc); apply/lteif_imply.
+ by rewrite implybE negb_and orbC orbA orbN.
Qed.
-Lemma itv_splitU2 (x : R) a b : x \in Interval a b ->
+Lemma itv_splitU2 x a b : x \in Interval a b ->
forall y, y \in Interval a b =
[|| (y \in Interval a (BOpen x)), (y == x)
| (y \in Interval (BOpen x) b)].
Proof.
-move=> xab y; rewrite (itv_splitU false xab y); congr (_ || _).
-rewrite (@itv_splitU x true _ _ _ y); first by rewrite itv_xx inE.
+move=> xab y; rewrite (itv_splitU true xab y); congr (_ || _).
+rewrite (@itv_splitU x false _ _ _ y); first by rewrite itv_xx inE.
by move: xab; rewrite boundl_in_itv itv_boundlr => /andP [].
Qed.
-Lemma itv_intersectionC : commutative (@itv_intersection R).
+Lemma itv_total_meet3E i1 i2 i3 :
+ i1 `&` i2 `&` i3 \in [:: i1 `&` i2; i1 `&` i3; i2 `&` i3].
Proof.
-move=> [x x'] [y y'] /=; congr Interval; do 2 case: ifP => //=.
-- by move=> leyx lexy; apply/eqP; rewrite -le_boundl_anti leyx lexy.
-- by case/orP: (le_boundl_total x y) => ->.
-- by move=> leyx' lexy'; apply/eqP; rewrite -le_boundr_anti leyx' lexy'.
-- by case/orP: (le_boundr_total x' y') => ->.
+rewrite !inE /eq_op; case: i1 i2 i3 => [b1l b1r] [b2l b2r] [b3l b3r] /=.
+case: (leP b2l b1l); case: (leP b3l b2l); case: (leP b3l b1l);
+ case: (leP b1r b2r); case: (leP b2r b3r); case: (leP b1r b3r);
+ rewrite ?eqxx ?andbT ?orbT //= => b13r b23r b12r b31l b32l b21l.
+- by case: leP b31l (le_trans b32l b21l).
+- by case: leP b31l (le_trans b32l b21l).
+- by case: leP b31l (le_trans b32l b21l).
+- by case: leP b13r (le_trans b12r b23r).
+- by case: leP b13r (le_trans b12r b23r).
+- by case: leP b13r (lt_trans b23r b12r).
+- by case: leP b31l (lt_trans b21l b32l).
+- by case: leP b31l (lt_trans b21l b32l).
+- by case: leP b31l (lt_trans b21l b32l).
+- by case: leP b13r (lt_trans b23r b12r).
Qed.
-Lemma itv_intersectionA : associative (@itv_intersection R).
+Lemma itv_total_join3E i1 i2 i3 :
+ i1 `|` i2 `|` i3 \in [:: i1 `|` i2; i1 `|` i3; i2 `|` i3].
Proof.
-move=> [x x'] [y y'] [z z'] /=; congr Interval;
- do !case: ifP => //=; do 1?congruence.
-- by move=> lexy leyz; rewrite (le_boundl_trans lexy leyz).
-- move=> gtxy lexz gtyz _; apply/eqP; rewrite -le_boundl_anti lexz /=.
- move: (le_boundl_total y z) (le_boundl_total x y).
- by rewrite gtxy gtyz; apply: le_boundl_trans.
-- by move=> lexy' gtxz' leyz'; rewrite (le_boundr_trans lexy' leyz') in gtxz'.
-- move=> gtxy' gtyz' _ lexz'; apply/eqP; rewrite -le_boundr_anti lexz' /=.
- move: (le_boundr_total y' z') (le_boundr_total x' y').
- by rewrite gtxy' gtyz'; apply: le_boundr_trans.
+rewrite !inE /eq_op; case: i1 i2 i3 => [b1l b1r] [b2l b2r] [b3l b3r] /=.
+case: (leP b2l b1l); case: (leP b3l b2l); case: (leP b3l b1l);
+ case: (leP b1r b2r); case: (leP b2r b3r); case: (leP b1r b3r);
+ rewrite ?eqxx ?andbT ?orbT //= => b13r b23r b12r b31l b32l b21l.
+- by case: leP b13r (le_trans b12r b23r).
+- by case: leP b31l (le_trans b32l b21l).
+- by case: leP b31l (le_trans b32l b21l).
+- by case: leP b31l (le_trans b32l b21l).
+- by case: leP b13r (le_trans b12r b23r).
+- by case: leP b13r (lt_trans b23r b12r).
+- by case: leP b13r (lt_trans b23r b12r).
+- by case: leP b31l (lt_trans b21l b32l).
+- by case: leP b31l (lt_trans b21l b32l).
+- by case: leP b31l (lt_trans b21l b32l).
Qed.
-Canonical itv_intersection_monoid :=
- Monoid.Law itv_intersectionA (@itv_intersection1i R) (@itv_intersectioni1 R).
+End IntervalTotal.
+
+Local Open Scope ring_scope.
+Import GRing.Theory Num.Theory.
+
+Section LteifNumDomain.
+
+Variable R : numDomainType.
+Implicit Types (b : bool) (x y z : R).
+
+Local Notation "x < y ?<= 'if' b" := (@lteif _ R x y b)
+ (at level 70, y at next level,
+ format "x '[hv' < y '/' ?<= 'if' b ']'") : ring_scope.
+
+Lemma subr_lteifr0 b (x y : R) : (y - x < 0 ?<= if b) = (y < x ?<= if b).
+Proof. by case: b => /=; rewrite subr_lte0. Qed.
+
+Lemma subr_lteif0r b (x y : R) : (0 < y - x ?<= if b) = (x < y ?<= if b).
+Proof. by case: b => /=; rewrite subr_gte0. Qed.
+
+Definition subr_lteif0 := (subr_lteifr0, subr_lteif0r).
+
+Lemma lteif01 b : 0 < 1 ?<= if b.
+Proof. by case: b; rewrite /= lter01. Qed.
+
+Lemma lteif_oppl b x y : - x < y ?<= if b = (- y < x ?<= if b).
+Proof. by case: b; rewrite /= lter_oppl. Qed.
+
+Lemma lteif_oppr b x y : x < - y ?<= if b = (y < - x ?<= if b).
+Proof. by case: b; rewrite /= lter_oppr. Qed.
-Canonical itv_intersection_comoid := Monoid.ComLaw itv_intersectionC.
+Lemma lteif_0oppr b x : 0 < - x ?<= if b = (x < 0 ?<= if b).
+Proof. by case: b; rewrite /= (oppr_ge0, oppr_gt0). Qed.
-End IntervalOrdered.
+Lemma lteif_oppr0 b x : - x < 0 ?<= if b = (0 < x ?<= if b).
+Proof. by case: b; rewrite /= (oppr_le0, oppr_lt0). Qed.
+
+Lemma lteif_opp2 b : {mono -%R : x y /~ x < y ?<= if b}.
+Proof. by case: b => ? ?; rewrite /= lter_opp2. Qed.
+
+Definition lteif_oppE := (lteif_0oppr, lteif_oppr0, lteif_opp2).
+
+Lemma lteif_add2l b x : {mono +%R x : y z / y < z ?<= if b}.
+Proof. by case: b => ? ?; rewrite /= lter_add2. Qed.
+
+Lemma lteif_add2r b x : {mono +%R^~ x : y z / y < z ?<= if b}.
+Proof. by case: b => ? ?; rewrite /= lter_add2. Qed.
+
+Definition lteif_add2 := (lteif_add2l, lteif_add2r).
+
+Lemma lteif_subl_addr b x y z : (x - y < z ?<= if b) = (x < z + y ?<= if b).
+Proof. by case: b; rewrite /= lter_sub_addr. Qed.
+
+Lemma lteif_subr_addr b x y z : (x < y - z ?<= if b) = (x + z < y ?<= if b).
+Proof. by case: b; rewrite /= lter_sub_addr. Qed.
+
+Definition lteif_sub_addr := (lteif_subl_addr, lteif_subr_addr).
+
+Lemma lteif_subl_addl b x y z : (x - y < z ?<= if b) = (x < y + z ?<= if b).
+Proof. by case: b; rewrite /= lter_sub_addl. Qed.
+
+Lemma lteif_subr_addl b x y z : (x < y - z ?<= if b) = (z + x < y ?<= if b).
+Proof. by case: b; rewrite /= lter_sub_addl. Qed.
+
+Definition lteif_sub_addl := (lteif_subl_addl, lteif_subr_addl).
+
+Lemma lteif_pmul2l b x : 0 < x -> {mono *%R x : y z / y < z ?<= if b}.
+Proof. by case: b => ? ? ?; rewrite /= lter_pmul2l. Qed.
+
+Lemma lteif_pmul2r b x : 0 < x -> {mono *%R^~ x : y z / y < z ?<= if b}.
+Proof. by case: b => ? ? ?; rewrite /= lter_pmul2r. Qed.
+
+Lemma lteif_nmul2l b x : x < 0 -> {mono *%R x : y z /~ y < z ?<= if b}.
+Proof. by case: b => ? ? ?; rewrite /= lter_nmul2l. Qed.
+
+Lemma lteif_nmul2r b x : x < 0 -> {mono *%R^~ x : y z /~ y < z ?<= if b}.
+Proof. by case: b => ? ? ?; rewrite /= lter_nmul2r. Qed.
+
+Lemma real_lteifN x y b : x \is Num.real -> y \is Num.real ->
+ x < y ?<= if ~~b = ~~ (y < x ?<= if b).
+Proof. by move=> ? ?; rewrite comparable_lteifN ?real_comparable. Qed.
+
+Lemma real_lteif_norml b x y :
+ x \is Num.real ->
+ (`|x| < y ?<= if b) = ((- y < x ?<= if b) && (x < y ?<= if b)).
+Proof. by case: b => ?; rewrite /= real_lter_norml. Qed.
+
+Lemma real_lteif_normr b x y :
+ y \is Num.real ->
+ (x < `|y| ?<= if b) = ((x < y ?<= if b) || (x < - y ?<= if b)).
+Proof. by case: b => ?; rewrite /= real_lter_normr. Qed.
+
+Lemma lteif_nnormr b x y : y < 0 ?<= if ~~ b -> (`|x| < y ?<= if b) = false.
+Proof. by case: b => ?; rewrite /= lter_nnormr. Qed.
+
+End LteifNumDomain.
+
+Section LteifRealDomain.
+
+Variable (R : realDomainType) (b : bool) (x y z e : R).
+
+Lemma lteif_norml :
+ (`|x| < y ?<= if b) = (- y < x ?<= if b) && (x < y ?<= if b).
+Proof. by case: b; rewrite /= lter_norml. Qed.
+
+Lemma lteif_normr :
+ (x < `|y| ?<= if b) = (x < y ?<= if b) || (x < - y ?<= if b).
+Proof. by case: b; rewrite /= lter_normr. Qed.
+
+Lemma lteif_distl :
+ (`|x - y| < e ?<= if b) = (y - e < x ?<= if b) && (x < y + e ?<= if b).
+Proof. by case: b; rewrite /= lter_distl. Qed.
+
+End LteifRealDomain.
+
+Section LteifField.
+
+Variable (F : numFieldType) (b : bool) (z x y : F).
+
+Lemma lteif_pdivl_mulr : 0 < z -> x < y / z ?<= if b = (x * z < y ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_pdivl_mulr. Qed.
+
+Lemma lteif_pdivr_mulr : 0 < z -> y / z < x ?<= if b = (y < x * z ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_pdivr_mulr. Qed.
+
+Lemma lteif_pdivl_mull : 0 < z -> x < z^-1 * y ?<= if b = (z * x < y ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_pdivl_mull. Qed.
+
+Lemma lteif_pdivr_mull : 0 < z -> z^-1 * y < x ?<= if b = (y < z * x ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_pdivr_mull. Qed.
+
+Lemma lteif_ndivl_mulr : z < 0 -> x < y / z ?<= if b = (y < x * z ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_ndivl_mulr. Qed.
+
+Lemma lteif_ndivr_mulr : z < 0 -> y / z < x ?<= if b = (x * z < y ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_ndivr_mulr. Qed.
+
+Lemma lteif_ndivl_mull : z < 0 -> x < z^-1 * y ?<= if b = (y < z * x ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_ndivl_mull. Qed.
+
+Lemma lteif_ndivr_mull : z < 0 -> z^-1 * y < x ?<= if b = (z * x < y ?<= if b).
+Proof. by case: b => ? /=; rewrite lter_ndivr_mull. Qed.
+
+End LteifField.
+
+Section IntervalNumDomain.
+
+Variable R : numFieldType.
+Implicit Types x : R.
+
+Lemma mem0_itvcc_xNx x : (0 \in `[-x, x]) = (0 <= x).
+Proof. by rewrite !inE /= oppr_le0 andbb. Qed.
+
+Lemma mem0_itvoo_xNx x : 0 \in `](-x), x[ = (0 < x).
+Proof. by rewrite !inE /= oppr_lt0 andbb. Qed.
+
+Lemma itv_splitI : forall a b x,
+ x \in Interval a b =
+ (x \in Interval a (BInfty _)) && (x \in Interval (BInfty _) b).
+Proof. by move=> [? ?|] [? ?|] ?; rewrite !inE ?andbT. Qed.
+
+Lemma oppr_itv ba bb (xa xb x : R) :
+ (-x \in Interval (BClose_if ba xa) (BClose_if bb xb)) =
+ (x \in Interval (BClose_if bb (-xb)) (BClose_if ba (-xa))).
+Proof. by rewrite !inE lteif_oppr andbC lteif_oppl. Qed.
+
+Lemma oppr_itvoo (a b x : R) : (-x \in `]a, b[) = (x \in `](-b), (-a)[).
+Proof. exact: oppr_itv. Qed.
+
+Lemma oppr_itvco (a b x : R) : (-x \in `[a, b[) = (x \in `](-b), (-a)]).
+Proof. exact: oppr_itv. Qed.
+
+Lemma oppr_itvoc (a b x : R) : (-x \in `]a, b]) = (x \in `[(-b), (-a)[).
+Proof. exact: oppr_itv. Qed.
+
+Lemma oppr_itvcc (a b x : R) : (-x \in `[a, b]) = (x \in `[(-b), (-a)]).
+Proof. exact: oppr_itv. Qed.
+
+End IntervalNumDomain.
Section IntervalField.
Variable R : realFieldType.
-Lemma mid_in_itv : forall ba bb (xa xb : R), xa <= xb ?< if ba || bb
- -> mid xa xb \in Interval (BOpen_if ba xa) (BOpen_if bb xb).
+Local Notation mid x y := ((x + y) / 2%:R).
+
+Lemma mid_in_itv : forall ba bb (xa xb : R), xa < xb ?<= if ba && bb
+ -> mid xa xb \in Interval (BClose_if ba xa) (BClose_if bb xb).
Proof.
by move=> [] [] xa xb /= ?; apply/itv_dec=> /=; rewrite ?midf_lte // ?ltW.
Qed.
@@ -634,3 +995,643 @@ Lemma mid_in_itvcc : forall (xa xb : R), xa <= xb -> mid xa xb \in `[xa, xb].
Proof. by move=> xa xb ?; apply: mid_in_itv. Qed.
End IntervalField.
+
+(******************************************************************************)
+(* Compatibility layer *)
+(******************************************************************************)
+
+Module mc_1_11.
+
+Local Notation lersif x y b := (lteif x y (~~ b)) (only parsing).
+
+Local Notation "x <= y ?< 'if' b" := (x < y ?<= if ~~ b)
+ (at level 70, y at next level, only parsing) : ring_scope.
+
+Section LersifPo.
+
+Variable R : numDomainType.
+Implicit Types (b : bool) (x y z : R).
+
+Lemma subr_lersifr0 b (x y : R) : (y - x <= 0 ?< if b) = (y <= x ?< if b).
+Proof. exact: subr_lteifr0. Qed.
+
+Lemma subr_lersif0r b (x y : R) : (0 <= y - x ?< if b) = (x <= y ?< if b).
+Proof. exact: subr_lteif0r. Qed.
+
+Definition subr_lersif0 := (subr_lersifr0, subr_lersif0r).
+
+Lemma lersif_trans x y z b1 b2 :
+ x <= y ?< if b1 -> y <= z ?< if b2 -> x <= z ?< if b1 || b2.
+Proof. by rewrite negb_or; exact: lteif_trans. Qed.
+
+Lemma lersif01 b : (0 : R) <= 1 ?< if b. Proof. exact: lteif01. Qed.
+
+Lemma lersif_anti b1 b2 x y :
+ (x <= y ?< if b1) && (y <= x ?< if b2) =
+ if b1 || b2 then false else x == y.
+Proof. by rewrite lteif_anti -negb_or; case: orb. Qed.
+
+Lemma lersifxx x b : (x <= x ?< if b) = ~~ b. Proof. exact: lteifxx. Qed.
+
+Lemma lersifNF x y b : y <= x ?< if ~~ b -> x <= y ?< if b = false.
+Proof. exact: lteifNF. Qed.
+
+Lemma lersifS x y b : x < y -> x <= y ?< if b.
+Proof. exact: lteifS. Qed.
+
+Lemma lersifT x y : x <= y ?< if true = (x < y). Proof. by []. Qed.
+
+Lemma lersifF x y : x <= y ?< if false = (x <= y). Proof. by []. Qed.
+
+Lemma lersif_oppl b x y : - x <= y ?< if b = (- y <= x ?< if b).
+Proof. exact: lteif_oppl. Qed.
+
+Lemma lersif_oppr b x y : x <= - y ?< if b = (y <= - x ?< if b).
+Proof. exact: lteif_oppr. Qed.
+
+Lemma lersif_0oppr b x : 0 <= - x ?< if b = (x <= 0 ?< if b).
+Proof. exact: lteif_0oppr. Qed.
+
+Lemma lersif_oppr0 b x : - x <= 0 ?< if b = (0 <= x ?< if b).
+Proof. exact: lteif_oppr0. Qed.
+
+Lemma lersif_opp2 b : {mono (-%R : R -> R) : x y /~ x <= y ?< if b}.
+Proof. exact: lteif_opp2. Qed.
+
+Definition lersif_oppE := (lersif_0oppr, lersif_oppr0, lersif_opp2).
+
+Lemma lersif_add2l b x : {mono +%R x : y z / y <= z ?< if b}.
+Proof. exact: lteif_add2l. Qed.
+
+Lemma lersif_add2r b x : {mono +%R^~ x : y z / y <= z ?< if b}.
+Proof. exact: lteif_add2r. Qed.
+
+Definition lersif_add2 := (lersif_add2l, lersif_add2r).
+
+Lemma lersif_subl_addr b x y z : (x - y <= z ?< if b) = (x <= z + y ?< if b).
+Proof. exact: lteif_subl_addr. Qed.
+
+Lemma lersif_subr_addr b x y z : (x <= y - z ?< if b) = (x + z <= y ?< if b).
+Proof. exact: lteif_subr_addr. Qed.
+
+Definition lersif_sub_addr := (lersif_subl_addr, lersif_subr_addr).
+
+Lemma lersif_subl_addl b x y z : (x - y <= z ?< if b) = (x <= y + z ?< if b).
+Proof. exact: lteif_subl_addl. Qed.
+
+Lemma lersif_subr_addl b x y z : (x <= y - z ?< if b) = (z + x <= y ?< if b).
+Proof. exact: lteif_subr_addl. Qed.
+
+Definition lersif_sub_addl := (lersif_subl_addl, lersif_subr_addl).
+
+Lemma lersif_andb x y :
+ {morph (fun b => lersif x y b) : p q / p || q >-> p && q}.
+Proof. by move=> ? ?; rewrite negb_or lteif_andb. Qed.
+
+Lemma lersif_orb x y :
+ {morph (fun b => lersif x y b) : p q / p && q >-> p || q}.
+Proof. by move=> ? ?; rewrite negb_and lteif_orb. Qed.
+
+Lemma lersif_imply b1 b2 (r1 r2 : R) :
+ b2 ==> b1 -> r1 <= r2 ?< if b1 -> r1 <= r2 ?< if b2.
+Proof. by move=> ?; apply: lteif_imply; rewrite implybNN. Qed.
+
+Lemma lersifW b x y : x <= y ?< if b -> x <= y.
+Proof. exact: lteifW. Qed.
+
+Lemma ltrW_lersif b x y : x < y -> x <= y ?< if b.
+Proof. exact: ltrW_lteif. Qed.
+
+Lemma lersif_pmul2l b x : 0 < x -> {mono *%R x : y z / y <= z ?< if b}.
+Proof. exact: lteif_pmul2l. Qed.
+
+Lemma lersif_pmul2r b x : 0 < x -> {mono *%R^~ x : y z / y <= z ?< if b}.
+Proof. exact: lteif_pmul2r. Qed.
+
+Lemma lersif_nmul2l b x : x < 0 -> {mono *%R x : y z /~ y <= z ?< if b}.
+Proof. exact: lteif_nmul2l. Qed.
+
+Lemma lersif_nmul2r b x : x < 0 -> {mono *%R^~ x : y z /~ y <= z ?< if b}.
+Proof. exact: lteif_nmul2r. Qed.
+
+Lemma real_lersifN x y b : x \is Num.real -> y \is Num.real ->
+ x <= y ?< if ~~b = ~~ (y <= x ?< if b).
+Proof. exact: real_lteifN. Qed.
+
+Lemma real_lersif_norml b x y :
+ x \is Num.real ->
+ (`|x| <= y ?< if b) = ((- y <= x ?< if b) && (x <= y ?< if b)).
+Proof. exact: real_lteif_norml. Qed.
+
+Lemma real_lersif_normr b x y :
+ y \is Num.real ->
+ (x <= `|y| ?< if b) = ((x <= y ?< if b) || (x <= - y ?< if b)).
+Proof. exact: real_lteif_normr. Qed.
+
+Lemma lersif_nnormr b x y : y <= 0 ?< if ~~ b -> (`|x| <= y ?< if b) = false.
+Proof. exact: lteif_nnormr. Qed.
+
+End LersifPo.
+
+Section LersifOrdered.
+
+Variable (R : realDomainType) (b : bool) (x y z e : R).
+
+Lemma lersifN : (x <= y ?< if ~~ b) = ~~ (y <= x ?< if b).
+Proof. exact: lteifN. Qed.
+
+Lemma lersif_norml :
+ (`|x| <= y ?< if b) = (- y <= x ?< if b) && (x <= y ?< if b).
+Proof. exact: lteif_norml. Qed.
+
+Lemma lersif_normr :
+ (x <= `|y| ?< if b) = (x <= y ?< if b) || (x <= - y ?< if b).
+Proof. exact: lteif_normr. Qed.
+
+Lemma lersif_distl :
+ (`|x - y| <= e ?< if b) = (y - e <= x ?< if b) && (x <= y + e ?< if b).
+Proof. exact: lteif_distl. Qed.
+
+Lemma lersif_minr :
+ (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
+Proof. exact: lteif_minr. Qed.
+
+Lemma lersif_minl :
+ (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
+Proof. exact: lteif_minl. Qed.
+
+Lemma lersif_maxr :
+ (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
+Proof. exact: lteif_maxr. Qed.
+
+Lemma lersif_maxl :
+ (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
+Proof. exact: lteif_maxl. Qed.
+
+End LersifOrdered.
+
+Section LersifField.
+
+Variable (F : numFieldType) (b : bool) (z x y : F).
+
+Lemma lersif_pdivl_mulr : 0 < z -> x <= y / z ?< if b = (x * z <= y ?< if b).
+Proof. exact: lteif_pdivl_mulr. Qed.
+
+Lemma lersif_pdivr_mulr : 0 < z -> y / z <= x ?< if b = (y <= x * z ?< if b).
+Proof. exact: lteif_pdivr_mulr. Qed.
+
+Lemma lersif_pdivl_mull : 0 < z -> x <= z^-1 * y ?< if b = (z * x <= y ?< if b).
+Proof. exact: lteif_pdivl_mull. Qed.
+
+Lemma lersif_pdivr_mull : 0 < z -> z^-1 * y <= x ?< if b = (y <= z * x ?< if b).
+Proof. exact: lteif_pdivr_mull. Qed.
+
+Lemma lersif_ndivl_mulr : z < 0 -> x <= y / z ?< if b = (y <= x * z ?< if b).
+Proof. exact: lteif_ndivl_mulr. Qed.
+
+Lemma lersif_ndivr_mulr : z < 0 -> y / z <= x ?< if b = (x * z <= y ?< if b).
+Proof. exact: lteif_ndivr_mulr. Qed.
+
+Lemma lersif_ndivl_mull : z < 0 -> x <= z^-1 * y ?< if b = (y <=z * x ?< if b).
+Proof. exact: lteif_ndivl_mull. Qed.
+
+Lemma lersif_ndivr_mull : z < 0 -> z^-1 * y <= x ?< if b = (z * x <= y ?< if b).
+Proof. exact: lteif_ndivr_mull. Qed.
+
+End LersifField.
+
+Section IntervalPo.
+
+Variable R : numDomainType.
+
+Local Notation BOpen_if b x := (BClose_if (~~ b) x) (only parsing).
+
+Lemma lersif_in_itv ba bb (xa xb x : R) :
+ x \in Interval (BOpen_if ba xa) (BOpen_if bb xb) ->
+ xa <= xb ?< if ba || bb.
+Proof. by move/lteif_in_itv; rewrite negb_or. Qed.
+
+End IntervalPo.
+
+End mc_1_11.
+
+Notation "@ 'lersif'" :=
+ ((fun _ (R : numDomainType) x y b => @lteif _ R x y (~~ b))
+ (deprecate lersif lteif))
+ (at level 10, only parsing).
+
+Notation lersif := (@lersif _) (only parsing).
+
+Notation "x <= y ?< 'if' b" :=
+ ((fun _ => x < y ?<= if ~~ b) (deprecate lersif lteif))
+ (at level 70, y at next level, only parsing) : ring_scope.
+
+(* LersifPo *)
+
+Notation "@ 'subr_lersifr0'" :=
+ ((fun _ => @mc_1_11.subr_lersifr0) (deprecate subr_lersifr0 subr_lteifr0))
+ (at level 10, only parsing).
+
+Notation subr_lersifr0 := (@subr_lersifr0 _) (only parsing).
+
+Notation "@ 'subr_lersif0r'" :=
+ ((fun _ => @mc_1_11.subr_lersif0r) (deprecate subr_lersif0r subr_lteif0r))
+ (at level 10, only parsing).
+
+Notation subr_lersif0r := (@subr_lersif0r _) (only parsing).
+
+Notation subr_lersif0 :=
+ ((fun _ => @mc_1_11.subr_lersif0) (deprecate subr_lersif0 subr_lteif0))
+ (only parsing).
+
+Notation "@ 'lersif_trans'" :=
+ ((fun _ => @mc_1_11.lersif_trans) (deprecate lersif_trans lteif_trans))
+ (at level 10, only parsing).
+
+Notation lersif_trans := (@lersif_trans _ _ _ _ _ _) (only parsing).
+
+Notation lersif01 :=
+ ((fun _ => @mc_1_11.lersif01) (deprecate lersif01 lteif01)) (only parsing).
+
+Notation "@ 'lersif_anti'" :=
+ ((fun _ => @mc_1_11.lersif_anti) (deprecate lersif_anti lteif_anti))
+ (at level 10, only parsing).
+
+Notation lersif_anti := (@lersif_anti _) (only parsing).
+
+Notation "@ 'lersifxx'" :=
+ ((fun _ => @mc_1_11.lersifxx) (deprecate lersifxx lteifxx))
+ (at level 10, only parsing).
+
+Notation lersifxx := (@lersifxx _) (only parsing).
+
+Notation "@ 'lersifNF'" :=
+ ((fun _ => @mc_1_11.lersifNF) (deprecate lersifNF lteifNF))
+ (at level 10, only parsing).
+
+Notation lersifNF := (@lersifNF _ _ _ _) (only parsing).
+
+Notation "@ 'lersifS'" :=
+ ((fun _ => @mc_1_11.lersifS) (deprecate lersifS lteifS))
+ (at level 10, only parsing).
+
+Notation lersifS := (@lersifS _ _ _) (only parsing).
+
+Notation "@ 'lersifT'" :=
+ ((fun _ => @mc_1_11.lersifT) (deprecate lersifT lteifT))
+ (at level 10, only parsing).
+
+Notation lersifT := (@lersifT _) (only parsing).
+
+Notation "@ 'lersifF'" :=
+ ((fun _ => @mc_1_11.lersifF) (deprecate lersifF lteifF))
+ (at level 10, only parsing).
+
+Notation lersifF := (@lersifF _) (only parsing).
+
+Notation "@ 'lersif_oppl'" :=
+ ((fun _ => @mc_1_11.lersif_oppl) (deprecate lersif_oppl lteif_oppl))
+ (at level 10, only parsing).
+
+Notation lersif_oppl := (@lersif_oppl _) (only parsing).
+
+Notation "@ 'lersif_oppr'" :=
+ ((fun _ => @mc_1_11.lersif_oppr) (deprecate lersif_oppr lteif_oppr))
+ (at level 10, only parsing).
+
+Notation lersif_oppr := (@lersif_oppr _) (only parsing).
+
+Notation "@ 'lersif_0oppr'" :=
+ ((fun _ => @mc_1_11.lersif_0oppr) (deprecate lersif_0oppr lteif_0oppr))
+ (at level 10, only parsing).
+
+Notation lersif_0oppr := (@lersif_0oppr _) (only parsing).
+
+Notation "@ 'lersif_oppr0'" :=
+ ((fun _ => @mc_1_11.lersif_oppr0) (deprecate lersif_oppr0 lteif_oppr0))
+ (at level 10, only parsing).
+
+Notation lersif_oppr0 := (@lersif_oppr0 _) (only parsing).
+
+Notation "@ 'lersif_opp2'" :=
+ ((fun _ => @mc_1_11.lersif_opp2) (deprecate lersif_opp2 lteif_opp2))
+ (at level 10, only parsing).
+
+Notation lersif_opp2 := (@lersif_opp2 _) (only parsing).
+
+Notation lersif_oppE :=
+ ((fun _ => @mc_1_11.lersif_oppE) (deprecate lersif_oppE lteif_oppE))
+ (only parsing).
+
+Notation "@ 'lersif_add2l'" :=
+ ((fun _ => @mc_1_11.lersif_add2l) (deprecate lersif_add2l lteif_add2l))
+ (at level 10, only parsing).
+
+Notation lersif_add2l := (@lersif_add2l _) (only parsing).
+
+Notation "@ 'lersif_add2r'" :=
+ ((fun _ => @mc_1_11.lersif_add2r) (deprecate lersif_add2r lteif_add2r))
+ (at level 10, only parsing).
+
+Notation lersif_add2r := (@lersif_add2r _) (only parsing).
+
+Notation lersif_add2 :=
+ ((fun _ => @mc_1_11.lersif_add2) (deprecate lersif_add2 lteif_add2))
+ (only parsing).
+
+Notation "@ 'lersif_subl_addr'" :=
+ ((fun _ => @mc_1_11.lersif_subl_addr)
+ (deprecate lersif_subl_addr lteif_subl_addr))
+ (at level 10, only parsing).
+
+Notation lersif_subl_addr := (@lersif_subl_addr _) (only parsing).
+
+Notation "@ 'lersif_subr_addr'" :=
+ ((fun _ => @mc_1_11.lersif_subr_addr)
+ (deprecate lersif_subr_addr lteif_subr_addr))
+ (at level 10, only parsing).
+
+Notation lersif_subr_addr := (@lersif_subr_addr _) (only parsing).
+
+Notation lersif_sub_addr :=
+ ((fun _ => @mc_1_11.lersif_sub_addr)
+ (deprecate lersif_sub_addr lteif_sub_addr))
+ (only parsing).
+
+Notation "@ 'lersif_subl_addl'" :=
+ ((fun _ => @mc_1_11.lersif_subl_addl)
+ (deprecate lersif_subl_addl lteif_subl_addl))
+ (at level 10, only parsing).
+
+Notation lersif_subl_addl := (@lersif_subl_addl _) (only parsing).
+
+Notation "@ 'lersif_subr_addl'" :=
+ ((fun _ => @mc_1_11.lersif_subr_addl)
+ (deprecate lersif_subr_addl lteif_subr_addl))
+ (at level 10, only parsing).
+
+Notation lersif_subr_addl := (@lersif_subr_addl _) (only parsing).
+
+Notation lersif_sub_addl :=
+ ((fun _ => @mc_1_11.lersif_sub_addl)
+ (deprecate lersif_sub_addl lteif_sub_addl))
+ (only parsing).
+
+Notation "@ 'lersif_andb'" :=
+ ((fun _ => @mc_1_11.lersif_andb) (deprecate lersif_andb lteif_andb))
+ (at level 10, only parsing).
+
+Notation lersif_andb := (@lersif_andb _) (only parsing).
+
+Notation "@ 'lersif_orb'" :=
+ ((fun _ => @mc_1_11.lersif_orb) (deprecate lersif_orb lteif_orb))
+ (at level 10, only parsing).
+
+Notation lersif_orb := (@lersif_orb _) (only parsing).
+
+Notation "@ 'lersif_imply'" :=
+ ((fun _ => @mc_1_11.lersif_imply) (deprecate lersif_imply lteif_imply))
+ (at level 10, only parsing).
+
+Notation lersif_imply := (@lersif_imply _ _ _ _ _) (only parsing).
+
+Notation "@ 'lersifW'" :=
+ ((fun _ => @mc_1_11.lersifW) (deprecate lersifW lteifW))
+ (at level 10, only parsing).
+
+Notation lersifW := (@lersifW _ _ _ _) (only parsing).
+
+Notation "@ 'ltrW_lersif'" :=
+ ((fun _ => @mc_1_11.ltrW_lersif) (deprecate ltrW_lersif ltrW_lteif))
+ (at level 10, only parsing).
+
+Notation ltrW_lersif := (@ltrW_lersif _) (only parsing).
+
+Notation "@ 'lersif_pmul2l'" :=
+ ((fun _ => @mc_1_11.lersif_pmul2l) (deprecate lersif_pmul2l lteif_pmul2l))
+ (at level 10, only parsing).
+
+Notation lersif_pmul2l := (fun b => @lersif_pmul2l _ b _) (only parsing).
+
+Notation "@ 'lersif_pmul2r'" :=
+ ((fun _ => @mc_1_11.lersif_pmul2r) (deprecate lersif_pmul2r lteif_pmul2r))
+ (at level 10, only parsing).
+
+Notation lersif_pmul2r := (fun b => @lersif_pmul2r _ b _) (only parsing).
+
+Notation "@ 'lersif_nmul2l'" :=
+ ((fun _ => @mc_1_11.lersif_nmul2l) (deprecate lersif_nmul2l lteif_nmul2l))
+ (at level 10, only parsing).
+
+Notation lersif_nmul2l := (fun b => @lersif_nmul2l _ b _) (only parsing).
+
+Notation "@ 'lersif_nmul2r'" :=
+ ((fun _ => @mc_1_11.lersif_nmul2r) (deprecate lersif_nmul2r lteif_nmul2r))
+ (at level 10, only parsing).
+
+Notation lersif_nmul2r := (fun b => @lersif_nmul2r _ b _) (only parsing).
+
+Notation "@ 'real_lersifN'" :=
+ ((fun _ => @mc_1_11.real_lersifN) (deprecate real_lersifN real_lteifN))
+ (at level 10, only parsing).
+
+Notation real_lersifN := (@real_lersifN _ _ _) (only parsing).
+
+Notation "@ 'real_lersif_norml'" :=
+ ((fun _ => @mc_1_11.real_lersif_norml)
+ (deprecate real_lersif_norml real_lteif_norml))
+ (at level 10, only parsing).
+
+Notation real_lersif_norml :=
+ (fun b => @real_lersif_norml _ b _) (only parsing).
+
+Notation "@ 'real_lersif_normr'" :=
+ ((fun _ => @mc_1_11.real_lersif_normr)
+ (deprecate real_lersif_normr real_lteif_normr))
+ (at level 10, only parsing).
+
+Notation real_lersif_normr :=
+ (fun b x => @real_lersif_normr _ b x _) (only parsing).
+
+Notation "@ 'lersif_nnormr'" :=
+ ((fun _ => @mc_1_11.lersif_nnormr) (deprecate lersif_nnormr lteif_nnormr))
+ (at level 10, only parsing).
+
+Notation lersif_nnormr := (fun x => @lersif_nnormr _ _ x _) (only parsing).
+
+(* LersifOrdered *)
+
+Notation "@ 'lersifN'" :=
+ ((fun _ => @mc_1_11.lersifN) (deprecate lersifN lteifN))
+ (at level 10, only parsing).
+
+Notation lersifN := (@lersifN _) (only parsing).
+
+Notation "@ 'lersif_norml'" :=
+ ((fun _ => @mc_1_11.lersif_norml) (deprecate lersif_norml lteif_norml))
+ (at level 10, only parsing).
+
+Notation lersif_norml := (@lersif_norml _) (only parsing).
+
+Notation "@ 'lersif_normr'" :=
+ ((fun _ => @mc_1_11.lersif_normr) (deprecate lersif_normr lteif_normr))
+ (at level 10, only parsing).
+
+Notation lersif_normr := (@lersif_normr _) (only parsing).
+
+Notation "@ 'lersif_distl'" :=
+ ((fun _ => @mc_1_11.lersif_distl) (deprecate lersif_distl lteif_distl))
+ (at level 10, only parsing).
+
+Notation lersif_distl := (@lersif_distl _) (only parsing).
+
+Notation "@ 'lersif_minr'" :=
+ ((fun _ => @mc_1_11.lersif_minr) (deprecate lersif_minr lteif_minr))
+ (at level 10, only parsing).
+
+Notation lersif_minr := (@lersif_minr _) (only parsing).
+
+Notation "@ 'lersif_minl'" :=
+ ((fun _ => @mc_1_11.lersif_minl) (deprecate lersif_minl lteif_minl))
+ (at level 10, only parsing).
+
+Notation lersif_minl := (@lersif_minl _) (only parsing).
+
+Notation "@ 'lersif_maxr'" :=
+ ((fun _ => @mc_1_11.lersif_maxr) (deprecate lersif_maxr lteif_maxr))
+ (at level 10, only parsing).
+
+Notation lersif_maxr := (@lersif_maxr _) (only parsing).
+
+Notation "@ 'lersif_maxl'" :=
+ ((fun _ => @mc_1_11.lersif_maxl) (deprecate lersif_maxl lteif_maxl))
+ (at level 10, only parsing).
+
+Notation lersif_maxl := (@lersif_maxl _) (only parsing).
+
+(* LersifField *)
+
+Notation "@ 'lersif_pdivl_mulr'" :=
+ ((fun _ => @mc_1_11.lersif_pdivl_mulr)
+ (deprecate lersif_pdivl_mulr lteif_pdivl_mulr))
+ (at level 10, only parsing).
+
+Notation lersif_pdivl_mulr :=
+ (fun b => @lersif_pdivl_mulr _ b _) (only parsing).
+
+Notation "@ 'lersif_pdivr_mulr'" :=
+ ((fun _ => @mc_1_11.lersif_pdivr_mulr)
+ (deprecate lersif_pdivr_mulr lteif_pdivr_mulr))
+ (at level 10, only parsing).
+
+Notation lersif_pdivr_mulr :=
+ (fun b => @lersif_pdivr_mulr _ b _) (only parsing).
+
+Notation "@ 'lersif_pdivl_mull'" :=
+ ((fun _ => @mc_1_11.lersif_pdivl_mull)
+ (deprecate lersif_pdivl_mull lteif_pdivl_mull))
+ (at level 10, only parsing).
+
+Notation lersif_pdivl_mull :=
+ (fun b => @lersif_pdivl_mull _ b _) (only parsing).
+
+Notation "@ 'lersif_pdivr_mull'" :=
+ ((fun _ => @mc_1_11.lersif_pdivr_mull)
+ (deprecate lersif_pdivr_mull lteif_pdivr_mull))
+ (at level 10, only parsing).
+
+Notation lersif_pdivr_mull :=
+ (fun b => @lersif_pdivr_mull _ b _) (only parsing).
+
+Notation "@ 'lersif_ndivl_mulr'" :=
+ ((fun _ => @mc_1_11.lersif_ndivl_mulr)
+ (deprecate lersif_ndivl_mulr lteif_ndivl_mulr))
+ (at level 10, only parsing).
+
+Notation lersif_ndivl_mulr :=
+ (fun b => @lersif_ndivl_mulr _ b _) (only parsing).
+
+Notation "@ 'lersif_ndivr_mulr'" :=
+ ((fun _ => @mc_1_11.lersif_ndivr_mulr)
+ (deprecate lersif_ndivr_mulr lteif_ndivr_mulr))
+ (at level 10, only parsing).
+
+Notation lersif_ndivr_mulr :=
+ (fun b => @lersif_ndivr_mulr _ b _) (only parsing).
+
+Notation "@ 'lersif_ndivl_mull'" :=
+ ((fun _ => @mc_1_11.lersif_ndivl_mull)
+ (deprecate lersif_ndivl_mull lteif_ndivl_mull))
+ (at level 10, only parsing).
+
+Notation lersif_ndivl_mull :=
+ (fun b => @lersif_ndivl_mull _ b _) (only parsing).
+
+Notation "@ 'lersif_ndivr_mull'" :=
+ ((fun _ => @mc_1_11.lersif_ndivr_mull)
+ (deprecate lersif_ndivr_mull lteif_ndivr_mull))
+ (at level 10, only parsing).
+
+Notation lersif_ndivr_mull :=
+ (fun b => @lersif_ndivr_mull _ b _) (only parsing).
+
+(* IntervalPo *)
+
+(* `BOpen_if` has been deprecated, but `deprecate` does not accept a *)
+(* constructor that takes arguments. *)
+Notation "@ 'BOpen_if'" := (fun T b x => @BClose_if T (~~ b) x)
+(* ((fun _ T b x => @BClose_if T (~~ b) x) (deprecate BOpen_if BClose_if)) *)
+ (at level 10, only parsing).
+
+Notation BOpen_if := (@BOpen_if _).
+
+Notation "@ 'lersif_in_itv'" :=
+ ((fun _ => @mc_1_11.lersif_in_itv) (deprecate lersif_in_itv lteif_in_itv))
+ (at level 10, only parsing).
+
+Notation lersif_in_itv := (@lersif_in_itv _ _ _ _ _ _) (only parsing).
+
+(* `itv_intersection` accepts any `numDomainType` but `Order.meet` accepts *)
+(* only `realDomainType`. Use `Order.meet` instead of `itv_meet`. *)
+(* (`deprecate` does not accept a qualified name.) *)
+Notation "@ 'itv_intersection'" :=
+ ((fun _ (R : realDomainType) => @Order.meet _ [latticeType of interval R])
+ (deprecate itv_intersection itv_meet))
+ (at level 10, only parsing) : fun_scope.
+
+Notation itv_intersection := (@itv_intersection _) (only parsing).
+
+Notation "@ 'itv_intersection1i'" :=
+ ((fun _ => @itv_meet1i _) (deprecate itv_intersection1i itv_meet1i))
+ (at level 10, only parsing) : fun_scope.
+
+Notation itv_intersection1i := (@itv_intersection1i _) (only parsing).
+
+Notation "@ 'itv_intersectioni1'" :=
+ ((fun _ => @itv_meeti1 _) (deprecate itv_intersectioni1 itv_meeti1))
+ (at level 10, only parsing) : fun_scope.
+
+Notation itv_intersectioni1 := (@itv_intersectioni1 _) (only parsing).
+
+Notation "@ 'itv_intersectionii'" :=
+ ((fun _ (R : realDomainType) => @meetxx _ [latticeType of interval R])
+ (deprecate itv_intersectionii meetxx))
+ (at level 10, only parsing) : fun_scope.
+
+Notation itv_intersectionii := (@itv_intersectionii _) (only parsing).
+
+(* IntervalOrdered *)
+
+Notation "@ 'itv_intersectionC'" :=
+ ((fun _ (R : realDomainType) => @meetC _ [latticeType of interval R])
+ (deprecate itv_intersectionC meetC))
+ (at level 10, only parsing) : fun_scope.
+
+Notation itv_intersectionC := (@itv_intersectionC _) (only parsing).
+
+Notation "@ 'itv_intersectionA'" :=
+ ((fun _ (R : realDomainType) => @meetA _ [latticeType of interval R])
+ (deprecate itv_intersectionA meetA))
+ (at level 10, only parsing) : fun_scope.
+
+Notation itv_intersectionA := (@itv_intersectionA _) (only parsing).