diff options
| author | Enrico | 2018-03-03 10:30:33 +0100 |
|---|---|---|
| committer | GitHub | 2018-03-03 10:30:33 +0100 |
| commit | 6f075b64b936de9ee4fa79ea4dc1d2fb9b9cf2c8 (patch) | |
| tree | 59cc350ed0be586e871e56e41b48939b08032929 /mathcomp/algebra/intdiv.v | |
| parent | 22692863c2b51cb6b3220e9601d7c237b1830f18 (diff) | |
| parent | fe058c3300cf2385f1079fa906cbd13cd2349286 (diff) | |
Merge pull request #179 from jashug/deprecate-implicit-arguments
Remove Implicit Arguments command in favor of Arguments
Diffstat (limited to 'mathcomp/algebra/intdiv.v')
| -rw-r--r-- | mathcomp/algebra/intdiv.v | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v index a85b3ec..e043561 100644 --- a/mathcomp/algebra/intdiv.v +++ b/mathcomp/algebra/intdiv.v @@ -186,11 +186,11 @@ rewrite {1}(divz_eq m d) mulrDr mulrCA divzMDl ?mulf_neq0 ?gtr_eqF // addrC. rewrite divz_small ?add0r // PoszM pmulr_rge0 ?modz_ge0 ?gtr_eqF //=. by rewrite ltr_pmul2l ?ltz_pmod. Qed. -Implicit Arguments divzMpl [p m d]. +Arguments divzMpl [p m d]. Lemma divzMpr p m d : p > 0 -> (m * p %/ (d * p) = m %/ d)%Z. Proof. by move=> p_gt0; rewrite -!(mulrC p) divzMpl. Qed. -Implicit Arguments divzMpr [p m d]. +Arguments divzMpr [p m d]. Lemma lez_floor m d : d != 0 -> (m %/ d)%Z * d <= m. Proof. by rewrite -subr_ge0; apply: modz_ge0. Qed. @@ -340,14 +340,14 @@ apply: (iffP dvdnP) => [] [q Dm]; last by exists `|q|%N; rewrite Dm abszM. exists ((-1) ^+ (m < 0)%R * q%:Z * (-1) ^+ (d < 0)%R). by rewrite -!mulrA -abszEsign -PoszM -Dm -intEsign. Qed. -Implicit Arguments dvdzP [d m]. +Arguments dvdzP [d m]. Lemma dvdz_mod0P d m : reflect (m %% d = 0)%Z (d %| m)%Z. Proof. apply: (iffP dvdzP) => [[q ->] | md0]; first by rewrite modzMl. by rewrite (divz_eq m d) md0 addr0; exists (m %/ d)%Z. Qed. -Implicit Arguments dvdz_mod0P [d m]. +Arguments dvdz_mod0P [d m]. Lemma dvdz_eq d m : (d %| m)%Z = ((m %/ d)%Z * d == m). Proof. by rewrite (sameP dvdz_mod0P eqP) subr_eq0 eq_sym. Qed. @@ -408,11 +408,11 @@ Proof. by rewrite -!(mulrC p); apply: divzMl. Qed. Lemma dvdz_mul2l p d m : p != 0 -> (p * d %| p * m)%Z = (d %| m)%Z. Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2l. Qed. -Implicit Arguments dvdz_mul2l [p m d]. +Arguments dvdz_mul2l [p d m]. Lemma dvdz_mul2r p d m : p != 0 -> (d * p %| m * p)%Z = (d %| m)%Z. Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2r. Qed. -Implicit Arguments dvdz_mul2r [p m d]. +Arguments dvdz_mul2r [p d m]. Lemma dvdz_exp2l p m n : (m <= n)%N -> (p ^+ m %| p ^+ n)%Z. Proof. by rewrite dvdzE !abszX; apply: dvdn_exp2l. Qed. |
