aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/intdiv.v
diff options
context:
space:
mode:
authorEnrico2018-03-03 10:30:33 +0100
committerGitHub2018-03-03 10:30:33 +0100
commit6f075b64b936de9ee4fa79ea4dc1d2fb9b9cf2c8 (patch)
tree59cc350ed0be586e871e56e41b48939b08032929 /mathcomp/algebra/intdiv.v
parent22692863c2b51cb6b3220e9601d7c237b1830f18 (diff)
parentfe058c3300cf2385f1079fa906cbd13cd2349286 (diff)
Merge pull request #179 from jashug/deprecate-implicit-arguments
Remove Implicit Arguments command in favor of Arguments
Diffstat (limited to 'mathcomp/algebra/intdiv.v')
-rw-r--r--mathcomp/algebra/intdiv.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v
index a85b3ec..e043561 100644
--- a/mathcomp/algebra/intdiv.v
+++ b/mathcomp/algebra/intdiv.v
@@ -186,11 +186,11 @@ rewrite {1}(divz_eq m d) mulrDr mulrCA divzMDl ?mulf_neq0 ?gtr_eqF // addrC.
rewrite divz_small ?add0r // PoszM pmulr_rge0 ?modz_ge0 ?gtr_eqF //=.
by rewrite ltr_pmul2l ?ltz_pmod.
Qed.
-Implicit Arguments divzMpl [p m d].
+Arguments divzMpl [p m d].
Lemma divzMpr p m d : p > 0 -> (m * p %/ (d * p) = m %/ d)%Z.
Proof. by move=> p_gt0; rewrite -!(mulrC p) divzMpl. Qed.
-Implicit Arguments divzMpr [p m d].
+Arguments divzMpr [p m d].
Lemma lez_floor m d : d != 0 -> (m %/ d)%Z * d <= m.
Proof. by rewrite -subr_ge0; apply: modz_ge0. Qed.
@@ -340,14 +340,14 @@ apply: (iffP dvdnP) => [] [q Dm]; last by exists `|q|%N; rewrite Dm abszM.
exists ((-1) ^+ (m < 0)%R * q%:Z * (-1) ^+ (d < 0)%R).
by rewrite -!mulrA -abszEsign -PoszM -Dm -intEsign.
Qed.
-Implicit Arguments dvdzP [d m].
+Arguments dvdzP [d m].
Lemma dvdz_mod0P d m : reflect (m %% d = 0)%Z (d %| m)%Z.
Proof.
apply: (iffP dvdzP) => [[q ->] | md0]; first by rewrite modzMl.
by rewrite (divz_eq m d) md0 addr0; exists (m %/ d)%Z.
Qed.
-Implicit Arguments dvdz_mod0P [d m].
+Arguments dvdz_mod0P [d m].
Lemma dvdz_eq d m : (d %| m)%Z = ((m %/ d)%Z * d == m).
Proof. by rewrite (sameP dvdz_mod0P eqP) subr_eq0 eq_sym. Qed.
@@ -408,11 +408,11 @@ Proof. by rewrite -!(mulrC p); apply: divzMl. Qed.
Lemma dvdz_mul2l p d m : p != 0 -> (p * d %| p * m)%Z = (d %| m)%Z.
Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2l. Qed.
-Implicit Arguments dvdz_mul2l [p m d].
+Arguments dvdz_mul2l [p d m].
Lemma dvdz_mul2r p d m : p != 0 -> (d * p %| m * p)%Z = (d %| m)%Z.
Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2r. Qed.
-Implicit Arguments dvdz_mul2r [p m d].
+Arguments dvdz_mul2r [p d m].
Lemma dvdz_exp2l p m n : (m <= n)%N -> (p ^+ m %| p ^+ n)%Z.
Proof. by rewrite dvdzE !abszX; apply: dvdn_exp2l. Qed.