diff options
| author | Cyril Cohen | 2019-10-16 11:26:43 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2019-10-16 11:26:43 +0200 |
| commit | 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb (patch) | |
| tree | 1239c1d5553d51a7d73f2f8b465f6a23178ff8a0 /docs/htmldoc/mathcomp.character.mxabelem.html | |
| parent | dd82aaeae7e9478efc178ce8430986649555b032 (diff) | |
removing everything but index which redirects to the new page
Diffstat (limited to 'docs/htmldoc/mathcomp.character.mxabelem.html')
| -rw-r--r-- | docs/htmldoc/mathcomp.character.mxabelem.html | 721 |
1 files changed, 0 insertions, 721 deletions
diff --git a/docs/htmldoc/mathcomp.character.mxabelem.html b/docs/htmldoc/mathcomp.character.mxabelem.html deleted file mode 100644 index ffff5d8..0000000 --- a/docs/htmldoc/mathcomp.character.mxabelem.html +++ /dev/null @@ -1,721 +0,0 @@ -<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" -"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> -<html xmlns="http://www.w3.org/1999/xhtml"> -<head> -<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> -<link href="coqdoc.css" rel="stylesheet" type="text/css" /> -<title>mathcomp.character.mxabelem</title> -</head> - -<body> - -<div id="page"> - -<div id="header"> -</div> - -<div id="main"> - -<h1 class="libtitle">Library mathcomp.character.mxabelem</h1> - -<div class="code"> -<span class="comment">(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. <br/> - Distributed under the terms of CeCILL-B. *)</span><br/> - -<br/> -</div> - -<div class="doc"> - This file completes the theory developed in mxrepresentation.v with the - construction and properties of linear representations over finite fields, - and in particular the correspondance between internal action on a (normal) - elementary abelian p-subgroup and a linear representation on an Fp-module. - We provide the following next constructions for a finite field F: - 'Zm%act == the action of {unit F} on 'M[F]</i>(m, n). - rowg A == the additive group of 'rV[F]_n spanned by the row space - of the matrix A. - rowg_mx L == the partial inverse to rowg; for any 'Zm-stable group L - of 'rV[F]_n we have rowg (rowg_mx L) = L. - GLrepr F n == the natural, faithful representation of 'GL_n[F]. - reprGLm rG == the morphism G >-> 'GL_n[F] equivalent to the - representation r of G (with rG : mx_repr r G). - ('MR rG)%act == the action of G on 'rV[F]_n equivalent to the - representation r of G (with rG : mx_repr r G). - The second set of constructions defines the interpretation of a normal - non-trivial elementary abelian p-subgroup as an 'F_p module. We assume - abelE : p.-abelem E and ntE : E != 1, throughout, as these are needed to - build the isomorphism between E and a nontrivial 'rV['F_p]_n. - 'rV(E) == the type of row vectors of the 'F_p module equivalent - to E when E is a non-trivial p.-abelem group. - 'M(E) == the type of matrices corresponding to E. - 'dim E == the width of vectors/matrices in 'rV(E) / 'M(E). - abelem_rV abelE ntE == the one-to-one injection of E onto 'rV(E). - rVabelem abelE ntE == the one-to-one projection of 'rV(E) onto E. - abelem_repr abelE ntE nEG == the representation of G on 'rV(E) that is - equivalent to conjugation by G in E; here abelE, ntE are - as above, and G \subset 'N(E). - This file end with basic results on p-modular representations of p-groups, - and theorems giving the structure of the representation of extraspecial - groups; these results use somewhat more advanced group theory than the - rest of mxrepresentation, in particular, results of sylow.v and maximal.v. -</div> -<div class="code"> - -<br/> -<span class="id" title="keyword">Set Implicit Arguments</span>.<br/> - -<br/> -<span class="id" title="keyword">Import</span> <span class="id" title="var">GroupScope</span> <span class="id" title="var">GRing.Theory</span> <span class="id" title="var">FinRing.Theory</span>.<br/> -<span class="id" title="keyword">Local Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/> - -<br/> -</div> - -<div class="doc"> - Special results for representations on a finite field. In this case, the - representation is equivalent to a morphism into the general linear group - 'GL_n[F]. It is furthermore equivalent to a group action on the finite - additive group of the corresponding row space 'rV_n. In addition, row - spaces of matrices in 'M[F]_n correspond to subgroups of that vector group - (this is only surjective when F is a prime field 'F_p), with moduleules - corresponding to subgroups stabilized by the external action. -</div> -<div class="code"> - -<br/> -<span class="id" title="keyword">Section</span> <a name="FinRingRepr"><span class="id" title="section">FinRingRepr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variable</span> (<a name="FinRingRepr.R"><span class="id" title="variable">R</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.ComUnitRing.Exports.finComUnitRingType"><span class="id" title="abbreviation">finComUnitRingType</span></a>) (<a name="FinRingRepr.gT"><span class="id" title="variable">gT</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>).<br/> -<span class="id" title="keyword">Variables</span> (<a name="FinRingRepr.G"><span class="id" title="variable">G</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) (<a name="FinRingRepr.n"><span class="id" title="variable">n</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>) (<a name="FinRingRepr.rG"><span class="id" title="variable">rG</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_representation"><span class="id" title="record">mx_representation</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="mx_repr_act"><span class="id" title="definition">mx_repr_act</span></a> (<span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.matrix.html#2f65cfd766dcf020894d753750ad1a23"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#2f65cfd766dcf020894d753750ad1a23"><span class="id" title="notation">rV_n</span></a>) <span class="id" title="var">x</span> := <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.rG"><span class="id" title="variable">rG</span></a> (<a class="idref" href="mathcomp.ssreflect.eqtype.html#val"><span class="id" title="projection">val</span></a> (<a class="idref" href="mathcomp.fingroup.fingroup.html#subg"><span class="id" title="definition">subg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>)).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mx_repr_actE"><span class="id" title="lemma">mx_repr_actE</span></a> <span class="id" title="var">u</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#mx_repr_act"><span class="id" title="definition">mx_repr_act</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Fact</span> <a name="mx_repr_is_action"><span class="id" title="lemma">mx_repr_is_action</span></a> : <a class="idref" href="mathcomp.fingroup.action.html#is_action"><span class="id" title="definition">is_action</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#mx_repr_act"><span class="id" title="definition">mx_repr_act</span></a>.<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="keyword">Structure</span> <span class="id" title="var">mx_repr_action</span> := <a class="idref" href="mathcomp.fingroup.action.html#Action"><span class="id" title="constructor">Action</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#mx_repr_is_action"><span class="id" title="lemma">mx_repr_is_action</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Fact</span> <a name="mx_repr_is_groupAction"><span class="id" title="lemma">mx_repr_is_groupAction</span></a> : <a class="idref" href="mathcomp.fingroup.action.html#is_groupAction"><span class="id" title="definition">is_groupAction</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">rV</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">_n</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#mx_repr_action"><span class="id" title="definition">mx_repr_action</span></a>.<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="keyword">Structure</span> <span class="id" title="var">mx_repr_groupAction</span> := <a class="idref" href="mathcomp.fingroup.action.html#GroupAction"><span class="id" title="constructor">GroupAction</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#mx_repr_is_groupAction"><span class="id" title="lemma">mx_repr_is_groupAction</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#FinRingRepr"><span class="id" title="section">FinRingRepr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Notation</span> <a name="e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">"</span></a>''MR' rG" := (<a class="idref" href="mathcomp.character.mxabelem.html#mx_repr_action"><span class="id" title="definition">mx_repr_action</span></a> <span class="id" title="var">rG</span>)<br/> - (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 10, <span class="id" title="var">rG</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8) : <span class="id" title="var">action_scope</span>.<br/> -<span class="id" title="keyword">Notation</span> <a name="5b4f3f61cc7fb2cbd572e6f13ff0aa15"><span class="id" title="notation">"</span></a>''MR' rG" := (<a class="idref" href="mathcomp.character.mxabelem.html#mx_repr_groupAction"><span class="id" title="definition">mx_repr_groupAction</span></a> <span class="id" title="var">rG</span>) : <span class="id" title="var">groupAction_scope</span>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="FinFieldRepr"><span class="id" title="section">FinFieldRepr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variable</span> <a name="FinFieldRepr.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a>.<br/> - -<br/> -</div> - -<div class="doc"> - The external group action (by scaling) of the multiplicative unit group - of the finite field, and the correspondence between additive subgroups - of row vectors that are stable by this action, and the matrix row spaces. -</div> -<div class="code"> -<span class="id" title="keyword">Section</span> <a name="FinFieldRepr.ScaleAction"><span class="id" title="section">ScaleAction</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> <a name="FinFieldRepr.ScaleAction.m"><span class="id" title="variable">m</span></a> <a name="FinFieldRepr.ScaleAction.n"><span class="id" title="variable">n</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="scale_act"><span class="id" title="definition">scale_act</span></a> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.ScaleAction.m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.ScaleAction.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a>) (<span class="id" title="var">a</span> : <a class="idref" href="mathcomp.algebra.finalg.html#18d0918a160c839bc9f32d8e64dd406d"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.finalg.html#18d0918a160c839bc9f32d8e64dd406d"><span class="id" title="notation">unit</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.finalg.html#18d0918a160c839bc9f32d8e64dd406d"><span class="id" title="notation">}</span></a>) := <a class="idref" href="mathcomp.ssreflect.eqtype.html#val"><span class="id" title="projection">val</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#3b05480e39db306e67fadbc79d394529"><span class="id" title="notation">*:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>.<br/> -<span class="id" title="keyword">Lemma</span> <a name="scale_actE"><span class="id" title="lemma">scale_actE</span></a> <span class="id" title="var">A</span> <span class="id" title="var">a</span> : <a class="idref" href="mathcomp.character.mxabelem.html#scale_act"><span class="id" title="definition">scale_act</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#val"><span class="id" title="projection">val</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#3b05480e39db306e67fadbc79d394529"><span class="id" title="notation">*:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>. <br/> -<span class="id" title="keyword">Fact</span> <a name="scale_is_action"><span class="id" title="lemma">scale_is_action</span></a> : <a class="idref" href="mathcomp.fingroup.action.html#is_action"><span class="id" title="definition">is_action</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#scale_act"><span class="id" title="definition">scale_act</span></a>.<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">scale_action</span> := <a class="idref" href="mathcomp.fingroup.action.html#Action"><span class="id" title="constructor">Action</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#scale_is_action"><span class="id" title="lemma">scale_is_action</span></a>.<br/> -<span class="id" title="keyword">Fact</span> <a name="scale_is_groupAction"><span class="id" title="lemma">scale_is_groupAction</span></a> : <a class="idref" href="mathcomp.fingroup.action.html#is_groupAction"><span class="id" title="definition">is_groupAction</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#scale_action"><span class="id" title="definition">scale_action</span></a>.<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">scale_groupAction</span> := <a class="idref" href="mathcomp.fingroup.action.html#GroupAction"><span class="id" title="constructor">GroupAction</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#scale_is_groupAction"><span class="id" title="lemma">scale_is_groupAction</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="astab1_scale_act"><span class="id" title="lemma">astab1_scale_act</span></a> <span class="id" title="var">A</span> : <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.fingroup.action.html#0bfe9e510ff7d53177796cf76ba5dbc3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.action.html#0bfe9e510ff7d53177796cf76ba5dbc3"><span class="id" title="notation">C</span></a><a class="idref" href="mathcomp.fingroup.action.html#0bfe9e510ff7d53177796cf76ba5dbc3"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.action.html#0bfe9e510ff7d53177796cf76ba5dbc3"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#scale_action"><span class="id" title="definition">scale_action</span></a><a class="idref" href="mathcomp.fingroup.action.html#0bfe9e510ff7d53177796cf76ba5dbc3"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1%<span class="id" title="var">g</span>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.ScaleAction"><span class="id" title="section">ScaleAction</span></a>.<br/> - -<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="FinFieldRepr.RowGroup"><span class="id" title="section">RowGroup</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variable</span> <a name="FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="rowg"><span class="id" title="definition">rowg</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a> := <a class="idref" href="mathcomp.ssreflect.finset.html#9e3f1d0cf47c39e3927b1f03a0797327"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#9e3f1d0cf47c39e3927b1f03a0797327"><span class="id" title="notation">set</span></a> <span class="id" title="var">u</span> <a class="idref" href="mathcomp.ssreflect.finset.html#9e3f1d0cf47c39e3927b1f03a0797327"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#09a21fbfc35503eeecaca8720742f7ab"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#9e3f1d0cf47c39e3927b1f03a0797327"><span class="id" title="notation">]</span></a>%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mem_rowg"><span class="id" title="lemma">mem_rowg</span></a> <span class="id" title="var">m</span> <span class="id" title="var">A</span> <span class="id" title="var">v</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> @<a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#09a21fbfc35503eeecaca8720742f7ab"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>)%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Fact</span> <a name="rowg_group_set"><span class="id" title="lemma">rowg_group_set</span></a> <span class="id" title="var">m</span> <span class="id" title="var">A</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#group_set"><span class="id" title="definition">group_set</span></a> (@<a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>).<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rowg_group</span> <span class="id" title="var">m</span> <span class="id" title="var">A</span> := <a class="idref" href="mathcomp.fingroup.fingroup.html#Group"><span class="id" title="constructor">Group</span></a> (@<a class="idref" href="mathcomp.character.mxabelem.html#rowg_group_set"><span class="id" title="lemma">rowg_group_set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg_stable"><span class="id" title="lemma">rowg_stable</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">acts</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">on</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#4e8ce2ff912cfeb67343e97564bc5001"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#4e8ce2ff912cfeb67343e97564bc5001"><span class="id" title="notation">Zm</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">]</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowgS"><span class="id" title="lemma">rowgS</span></a> <span class="id" title="var">m1</span> <span class="id" title="var">m2</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m1"><span class="id" title="variable">m1</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m2"><span class="id" title="variable">m2</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) :<br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#09a21fbfc35503eeecaca8720742f7ab"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="eq_rowg"><span class="id" title="lemma">eq_rowg</span></a> <span class="id" title="var">m1</span> <span class="id" title="var">m2</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m1"><span class="id" title="variable">m1</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m2"><span class="id" title="variable">m2</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) :<br/> - (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#f769dda5dbc6895d666659cb6e305422"><span class="id" title="notation">:=:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg0"><span class="id" title="lemma">rowg0</span></a> <span class="id" title="var">m</span> : <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1%<span class="id" title="var">g</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg1"><span class="id" title="lemma">rowg1</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> 1<a class="idref" href="mathcomp.algebra.matrix.html#850c060d75891e97ece38bfec139b8ea"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.matrix.html#850c060d75891e97ece38bfec139b8ea"><span class="id" title="notation">M</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="trivg_rowg"><span class="id" title="lemma">trivg_rowg</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 1%<span class="id" title="var">g</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="rowg_mx"><span class="id" title="definition">rowg_mx</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) := <a class="idref" href="mathcomp.algebra.mxalgebra.html#3962b76563fd8a8f45948950a775860e"><span class="id" title="notation"><<</span></a><a class="idref" href="mathcomp.algebra.matrix.html#8741a4b06f31c1d83a8c7654b1254f7b"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.matrix.html#8741a4b06f31c1d83a8c7654b1254f7b"><span class="id" title="notation">matrix_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#8741a4b06f31c1d83a8c7654b1254f7b"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.algebra.matrix.html#8741a4b06f31c1d83a8c7654b1254f7b"><span class="id" title="notation"><</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.matrix.html#8741a4b06f31c1d83a8c7654b1254f7b"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#3962b76563fd8a8f45948950a775860e"><span class="id" title="notation">>></span></a>%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowgK"><span class="id" title="lemma">rowgK</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>) <a class="idref" href="mathcomp.algebra.mxalgebra.html#f769dda5dbc6895d666659cb6e305422"><span class="id" title="notation">:=:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>)%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg_mxS"><span class="id" title="lemma">rowg_mxS</span></a> (<span class="id" title="var">L</span> <span class="id" title="var">M</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">rV</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">_n</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#09a21fbfc35503eeecaca8720742f7ab"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a>)%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="sub_rowg_mx"><span class="id" title="lemma">sub_rowg_mx</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) : <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="stable_rowg_mxK"><span class="id" title="lemma">stable_rowg_mxK</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">acts</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">on</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#4e8ce2ff912cfeb67343e97564bc5001"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#4e8ce2ff912cfeb67343e97564bc5001"><span class="id" title="notation">Zm</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg_mx1"><span class="id" title="lemma">rowg_mx1</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> 1%<span class="id" title="var">g</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 0.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg_mx_eq0"><span class="id" title="lemma">rowg_mx_eq0</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#b91223a7636398c530555b2312d1e79b"><span class="id" title="notation">:==:</span></a> 1%<span class="id" title="var">g</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowgI"><span class="id" title="lemma">rowgI</span></a> <span class="id" title="var">m1</span> <span class="id" title="var">m2</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m1"><span class="id" title="variable">m1</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m2"><span class="id" title="variable">m2</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#92683a3ca3b0c0704351ce117beaffe3"><span class="id" title="notation">:&:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#b9596739b058766532fc6517a36fef9f"><span class="id" title="notation">:&:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="card_rowg"><span class="id" title="lemma">card_rowg</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#81fd94e251a61ee523cdd7855774ae7c"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">rank</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>)%<span class="id" title="var">N</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowgD"><span class="id" title="lemma">rowgD</span></a> <span class="id" title="var">m1</span> <span class="id" title="var">m2</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m1"><span class="id" title="variable">m1</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m2"><span class="id" title="variable">m2</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#b116c353d9d5a3e6e54e78df2da7c80e"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#8b8794efbfbae1b793d9cb62ce802285"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">g</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="cprod_rowg"><span class="id" title="lemma">cprod_rowg</span></a> <span class="id" title="var">m1</span> <span class="id" title="var">m2</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m1"><span class="id" title="variable">m1</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m2"><span class="id" title="variable">m2</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.gproduct.html#1c2e0971edf6e9b6c6dd4a5951d04f36"><span class="id" title="notation">\*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#b116c353d9d5a3e6e54e78df2da7c80e"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="dprod_rowg"><span class="id" title="lemma">dprod_rowg</span></a> <span class="id" title="var">m1</span> <span class="id" title="var">m2</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m1"><span class="id" title="variable">m1</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a>) (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m2"><span class="id" title="variable">m2</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a>) :<br/> - <a class="idref" href="mathcomp.algebra.mxalgebra.html#mxdirect"><span class="id" title="abbreviation">mxdirect</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#b116c353d9d5a3e6e54e78df2da7c80e"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.gproduct.html#191b5570f070a51bd5c860222c206828"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.gproduct.html#191b5570f070a51bd5c860222c206828"><span class="id" title="notation">x</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#b116c353d9d5a3e6e54e78df2da7c80e"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="bigcprod_rowg"><span class="id" title="lemma">bigcprod_rowg</span></a> <span class="id" title="var">m</span> <span class="id" title="var">I</span> <span class="id" title="var">r</span> (<span class="id" title="var">P</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#pred"><span class="id" title="definition">pred</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#I"><span class="id" title="variable">I</span></a>) (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.character.mxabelem.html#I"><span class="id" title="variable">I</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">_n</span></a>) (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a>) :<br/> - (<a class="idref" href="mathcomp.algebra.mxalgebra.html#994c9f44fcb3e626f86425e0ec6ef6f1"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#994c9f44fcb3e626f86425e0ec6ef6f1"><span class="id" title="notation">sum_</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#994c9f44fcb3e626f86425e0ec6ef6f1"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.algebra.mxalgebra.html#994c9f44fcb3e626f86425e0ec6ef6f1"><span class="id" title="notation"><-</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#r"><span class="id" title="variable">r</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#994c9f44fcb3e626f86425e0ec6ef6f1"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#994c9f44fcb3e626f86425e0ec6ef6f1"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#f769dda5dbc6895d666659cb6e305422"><span class="id" title="notation">:=:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a><br/> - <a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">big</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.gproduct.html#cprod"><span class="id" title="abbreviation">cprod</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">/</span></a>1%<span class="id" title="var">g</span><a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation"><-</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#r"><span class="id" title="variable">r</span></a> <a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#60e57ff387b8a0840e944d0d03f215e2"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="bigdprod_rowg"><span class="id" title="lemma">bigdprod_rowg</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">I</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#Finite.Exports.finType"><span class="id" title="abbreviation">finType</span></a>) (<span class="id" title="var">P</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#pred"><span class="id" title="definition">pred</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#I"><span class="id" title="variable">I</span></a>) <span class="id" title="var">A</span> (<span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a>) :<br/> - <span class="id" title="keyword">let</span> <span class="id" title="var">S</span> := (<a class="idref" href="mathcomp.algebra.mxalgebra.html#ba43ca3989a0bfce795ffb9f5d1783ba"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#ba43ca3989a0bfce795ffb9f5d1783ba"><span class="id" title="notation">sum_</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#ba43ca3989a0bfce795ffb9f5d1783ba"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.algebra.mxalgebra.html#ba43ca3989a0bfce795ffb9f5d1783ba"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#ba43ca3989a0bfce795ffb9f5d1783ba"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a>)%<span class="id" title="var">MS</span> <span class="id" title="tactic">in</span> (<a class="idref" href="mathcomp.character.mxabelem.html#S"><span class="id" title="variable">S</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#f769dda5dbc6895d666659cb6e305422"><span class="id" title="notation">:=:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#mxdirect"><span class="id" title="abbreviation">mxdirect</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#S"><span class="id" title="variable">S</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a><br/> - <a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">big</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.gproduct.html#dprod"><span class="id" title="abbreviation">dprod</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">/</span></a>1%<span class="id" title="var">g</span><a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#1871917561e26284874cb982a8cc32df"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#B"><span class="id" title="variable">B</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.RowGroup"><span class="id" title="section">RowGroup</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> (<a name="FinFieldRepr.gT"><span class="id" title="variable">gT</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<a name="FinFieldRepr.G"><span class="id" title="variable">G</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) (<a name="FinFieldRepr.n'"><span class="id" title="variable">n'</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>).<br/> -<span class="id" title="keyword">Variable</span> (<a name="FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_representation"><span class="id" title="record">mx_representation</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Fact</span> <a name="GL_mx_repr"><span class="id" title="lemma">GL_mx_repr</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_repr"><span class="id" title="definition">mx_repr</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#e4fbb9440521cdeb861c5b6e5cc78252"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#e4fbb9440521cdeb861c5b6e5cc78252"><span class="id" title="notation">GL_n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#e4fbb9440521cdeb861c5b6e5cc78252"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#e4fbb9440521cdeb861c5b6e5cc78252"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#GLval"><span class="id" title="definition">GLval</span></a>. <br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">GLrepr</span> := <a class="idref" href="mathcomp.character.mxrepresentation.html#MxRepresentation"><span class="id" title="constructor">MxRepresentation</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#GL_mx_repr"><span class="id" title="lemma">GL_mx_repr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="GLmx_faithful"><span class="id" title="lemma">GLmx_faithful</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_faithful"><span class="id" title="definition">mx_faithful</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#GLrepr"><span class="id" title="definition">GLrepr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="reprGLm"><span class="id" title="definition">reprGLm</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">{'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">GL_n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">]}</span></a> := <a class="idref" href="mathcomp.ssreflect.eqtype.html#insubd"><span class="id" title="definition">insubd</span></a> (1%<span class="id" title="var">g</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">{'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">GL_n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1dc03143d863b1081a0593eaa1cba94b"><span class="id" title="notation">]}</span></a>) (<a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="val_reprGLm"><span class="id" title="lemma">val_reprGLm</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#val"><span class="id" title="projection">val</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#reprGLm"><span class="id" title="definition">reprGLm</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="comp_reprGLm"><span class="id" title="lemma">comp_reprGLm</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#GLval"><span class="id" title="definition">GLval</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8b4742e3f67816503ce4ab2f3b81c27e"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8b4742e3f67816503ce4ab2f3b81c27e"><span class="id" title="notation">o</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#reprGLm"><span class="id" title="definition">reprGLm</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#876aa133fb3472bffd492f74ff496035"><span class="id" title="notation">=1</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="reprGLmM"><span class="id" title="lemma">reprGLmM</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">&,</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e69c60b553f06d3463460a9f4cee3c01"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e69c60b553f06d3463460a9f4cee3c01"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#reprGLm"><span class="id" title="definition">reprGLm</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e69c60b553f06d3463460a9f4cee3c01"><span class="id" title="notation">:</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e69c60b553f06d3463460a9f4cee3c01"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#8b8794efbfbae1b793d9cb62ce802285"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e69c60b553f06d3463460a9f4cee3c01"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">}</span></a>%<span class="id" title="var">g</span>.<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">reprGL_morphism</span> := <a class="idref" href="mathcomp.fingroup.morphism.html#Morphism"><span class="id" title="constructor">Morphism</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#reprGLmM"><span class="id" title="lemma">reprGLmM</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="ker_reprGLm"><span class="id" title="lemma">ker_reprGLm</span></a> : <a class="idref" href="mathcomp.fingroup.morphism.html#7ef99623452370540bbc44fd30b0bc94"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#7ef99623452370540bbc44fd30b0bc94"><span class="id" title="notation">ker</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#reprGLm"><span class="id" title="definition">reprGLm</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rker"><span class="id" title="definition">rker</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="astab_rowg_repr"><span class="id" title="lemma">astab_rowg_repr</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">C</span></a><a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">MR</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rstab"><span class="id" title="definition">rstab</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="astabs_rowg_repr"><span class="id" title="lemma">astabs_rowg_repr</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.fingroup.action.html#c0af106a0ada6310ccb2e8e8c7766282"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.action.html#c0af106a0ada6310ccb2e8e8c7766282"><span class="id" title="notation">N</span></a><a class="idref" href="mathcomp.fingroup.action.html#c0af106a0ada6310ccb2e8e8c7766282"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.action.html#c0af106a0ada6310ccb2e8e8c7766282"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">MR</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="mathcomp.fingroup.action.html#c0af106a0ada6310ccb2e8e8c7766282"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rstabs"><span class="id" title="definition">rstabs</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="acts_rowg"><span class="id" title="lemma">acts_rowg</span></a> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#2a5412586d59ba16d2c60c55e120c7ee"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#2a5412586d59ba16d2c60c55e120c7ee"><span class="id" title="notation">M_n</span></a>) : <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">acts</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">on</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">MR</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mxmodule"><span class="id" title="definition">mxmodule</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="astab_setT_repr"><span class="id" title="lemma">astab_setT_repr</span></a> : <a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">C</span></a><a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a> <a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">MR</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="mathcomp.fingroup.action.html#563ec7f167b9e19c804c7f8a07d81e1d"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rker"><span class="id" title="definition">rker</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mx_repr_action_faithful"><span class="id" title="lemma">mx_repr_action_faithful</span></a> :<br/> - <a class="idref" href="mathcomp.fingroup.action.html#b33bbd7f4609361a5f6c220c33141a0c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.action.html#b33bbd7f4609361a5f6c220c33141a0c"><span class="id" title="notation">faithful</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.fingroup.action.html#b33bbd7f4609361a5f6c220c33141a0c"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.action.html#b33bbd7f4609361a5f6c220c33141a0c"><span class="id" title="notation">on</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a> <a class="idref" href="mathcomp.fingroup.action.html#b33bbd7f4609361a5f6c220c33141a0c"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">MR</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="mathcomp.fingroup.action.html#b33bbd7f4609361a5f6c220c33141a0c"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_faithful"><span class="id" title="definition">mx_faithful</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="afix_repr"><span class="id" title="lemma">afix_repr</span></a> (<span class="id" title="var">H</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.fingroup.action.html#6bf2e649062877caeedf56407c974b94"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.action.html#6bf2e649062877caeedf56407c974b94"><span class="id" title="notation">Fix_</span></a><a class="idref" href="mathcomp.fingroup.action.html#6bf2e649062877caeedf56407c974b94"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#e4fdd907ffd4647f181e35a31708ad62"><span class="id" title="notation">MR</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="mathcomp.fingroup.action.html#6bf2e649062877caeedf56407c974b94"><span class="id" title="notation">)(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="mathcomp.fingroup.action.html#6bf2e649062877caeedf56407c974b94"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxrepresentation.html#rfix_mx"><span class="id" title="definition">rfix_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="gacent_repr"><span class="id" title="lemma">gacent_repr</span></a> (<span class="id" title="var">H</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.fingroup.action.html#759306ed561fe32883e7922c4926d86c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.action.html#759306ed561fe32883e7922c4926d86c"><span class="id" title="notation">C_</span></a><a class="idref" href="mathcomp.fingroup.action.html#759306ed561fe32883e7922c4926d86c"><span class="id" title="notation">(|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#5b4f3f61cc7fb2cbd572e6f13ff0aa15"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#5b4f3f61cc7fb2cbd572e6f13ff0aa15"><span class="id" title="notation">MR</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a><a class="idref" href="mathcomp.fingroup.action.html#759306ed561fe32883e7922c4926d86c"><span class="id" title="notation">)(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="mathcomp.fingroup.action.html#759306ed561fe32883e7922c4926d86c"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxrepresentation.html#rfix_mx"><span class="id" title="definition">rfix_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a>).<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#FinFieldRepr"><span class="id" title="section">FinFieldRepr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Notation</span> <a name="90dbe2ca36ee769a7c84669dd6f15898"><span class="id" title="notation">"</span></a>''Zm'" := (<a class="idref" href="mathcomp.character.mxabelem.html#scale_action"><span class="id" title="definition">scale_action</span></a> <span class="id" title="var">_</span> <span class="id" title="var">_</span> <span class="id" title="var">_</span>) (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8) : <span class="id" title="var">action_scope</span>.<br/> -<span class="id" title="keyword">Notation</span> <a name="048e137651f57aba7ed7d5a3aec9aa2f"><span class="id" title="notation">"</span></a>''Zm'" := (<a class="idref" href="mathcomp.character.mxabelem.html#scale_groupAction"><span class="id" title="definition">scale_groupAction</span></a> <span class="id" title="var">_</span> <span class="id" title="var">_</span> <span class="id" title="var">_</span>) : <span class="id" title="var">groupAction_scope</span>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="MatrixGroups"><span class="id" title="section">MatrixGroups</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> <span class="id" title="var">m</span> <span class="id" title="var">n</span> <span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="exponent_mx_group"><span class="id" title="lemma">exponent_mx_group</span></a> <span class="id" title="var">m</span> <span class="id" title="var">n</span> <span class="id" title="var">q</span> :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#7f2a7ef2c63af7359b22787a9daf336e"><span class="id" title="notation">></span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#7f2a7ef2c63af7359b22787a9daf336e"><span class="id" title="notation">></span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#7f2a7ef2c63af7359b22787a9daf336e"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.abelian.html#exponent"><span class="id" title="definition">exponent</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">Z_q</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#q"><span class="id" title="variable">q</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rank_mx_group"><span class="id" title="lemma">rank_mx_group</span></a> <span class="id" title="var">m</span> <span class="id" title="var">n</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.solvable.abelian.html#89384e246d9189b85a2e3f87a816b040"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.abelian.html#89384e246d9189b85a2e3f87a816b040"><span class="id" title="notation">r</span></a><a class="idref" href="mathcomp.solvable.abelian.html#89384e246d9189b85a2e3f87a816b040"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">Z_q</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.solvable.abelian.html#89384e246d9189b85a2e3f87a816b040"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#ea2ff3d561159081cea6fb2e8113cc54"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a>)%<span class="id" title="var">N</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mx_group_homocyclic"><span class="id" title="lemma">mx_group_homocyclic</span></a> <span class="id" title="var">m</span> <span class="id" title="var">n</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.solvable.abelian.html#homocyclic"><span class="id" title="definition">homocyclic</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">Z_q</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">]</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelian_type_mx_group"><span class="id" title="lemma">abelian_type_mx_group</span></a> <span class="id" title="var">m</span> <span class="id" title="var">n</span> <span class="id" title="var">q</span> :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#7f2a7ef2c63af7359b22787a9daf336e"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.abelian.html#abelian_type"><span class="id" title="definition">abelian_type</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#fdcfc8589237bc0c67b9484f75e68729"><span class="id" title="notation">Z_q</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#nseq"><span class="id" title="definition">nseq</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#ea2ff3d561159081cea6fb2e8113cc54"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a>) <a class="idref" href="mathcomp.character.mxabelem.html#q"><span class="id" title="variable">q</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#MatrixGroups"><span class="id" title="section">MatrixGroups</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Delimit</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">abelem_scope</span> <span class="id" title="keyword">with</span> <span class="id" title="var">Mg</span>.<br/> -<span class="id" title="keyword">Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">abelem_scope</span>.<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="abelem_dim'"><span class="id" title="definition">abelem_dim'</span></a> (<span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">E</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :=<br/> - <a class="idref" href="mathcomp.ssreflect.ssrnat.html#f953bf7095e0da1cb644443fd0e17d6d"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.prime.html#logn"><span class="id" title="definition">logn</span></a> (<a class="idref" href="mathcomp.ssreflect.prime.html#pdiv"><span class="id" title="definition">pdiv</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a>) <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f953bf7095e0da1cb644443fd0e17d6d"><span class="id" title="notation">).-1</span></a>.<br/> -<span class="id" title="keyword">Notation</span> <a name="cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">"</span></a>''dim' E" := <a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#abelem_dim'"><span class="id" title="definition">abelem_dim'</span></a> <span class="id" title="var">E</span><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">).+1</span></a><br/> - (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 10, <span class="id" title="var">E</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">format</span> "''dim' E") : <span class="id" title="var">abelem_scope</span>.<br/> - -<br/> -<span class="id" title="keyword">Notation</span> <a name="84431c9b64cdaac1f335749337088ab6"><span class="id" title="notation">"</span></a>''rV' ( E )" := <a class="idref" href="mathcomp.algebra.matrix.html#2f65cfd766dcf020894d753750ad1a23"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#2f65cfd766dcf020894d753750ad1a23"><span class="id" title="notation">rV_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#2f65cfd766dcf020894d753750ad1a23"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">dim</span></a> <span class="id" title="var">E</span><a class="idref" href="mathcomp.algebra.matrix.html#2f65cfd766dcf020894d753750ad1a23"><span class="id" title="notation">)</span></a><br/> - (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">format</span> "''rV' ( E )") : <span class="id" title="var">abelem_scope</span>.<br/> -<span class="id" title="keyword">Notation</span> <a name="9665345c3bc9b44a0cb8e4c72af6cc6c"><span class="id" title="notation">"</span></a>''M' ( E )" := <a class="idref" href="mathcomp.algebra.matrix.html#283a109f76687dcbe7a5adc8e90b6b9e"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#283a109f76687dcbe7a5adc8e90b6b9e"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#283a109f76687dcbe7a5adc8e90b6b9e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">dim</span></a> <span class="id" title="var">E</span><a class="idref" href="mathcomp.algebra.matrix.html#283a109f76687dcbe7a5adc8e90b6b9e"><span class="id" title="notation">)</span></a><br/> - (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">format</span> "''M' ( E )") : <span class="id" title="var">abelem_scope</span>.<br/> -<span class="id" title="keyword">Notation</span> <a name="941450433ece774bb3ea8a6913faf83d"><span class="id" title="notation">"</span></a>''rV[' F ] ( E )" := <a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">rV</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">[</span></a><span class="id" title="var">F</span><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">dim</span></a> <span class="id" title="var">E</span><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">)</span></a><br/> - (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">only</span> <span class="id" title="var">parsing</span>) : <span class="id" title="var">abelem_scope</span>.<br/> -<span class="id" title="keyword">Notation</span> <a name="c696f622a6793c7f95d7cd2bb9201e6d"><span class="id" title="notation">"</span></a>''M[' F ] ( E )" := <a class="idref" href="mathcomp.algebra.matrix.html#1a8719a2ddc3d5ba380d052dba75ec31"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1a8719a2ddc3d5ba380d052dba75ec31"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1a8719a2ddc3d5ba380d052dba75ec31"><span class="id" title="notation">[</span></a><span class="id" title="var">F</span><a class="idref" href="mathcomp.algebra.matrix.html#1a8719a2ddc3d5ba380d052dba75ec31"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1a8719a2ddc3d5ba380d052dba75ec31"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#1a8719a2ddc3d5ba380d052dba75ec31"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#cca4f12d8385edcf369c9bea6a4d6325"><span class="id" title="notation">dim</span></a> <span class="id" title="var">E</span><a class="idref" href="mathcomp.algebra.matrix.html#1a8719a2ddc3d5ba380d052dba75ec31"><span class="id" title="notation">)</span></a><br/> - (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">only</span> <span class="id" title="var">parsing</span>) : <span class="id" title="var">abelem_scope</span>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="AbelemRepr"><span class="id" title="section">AbelemRepr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="AbelemRepr.FpMatrix"><span class="id" title="section">FpMatrix</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> <a name="AbelemRepr.FpMatrix.p"><span class="id" title="variable">p</span></a> <a name="AbelemRepr.FpMatrix.m"><span class="id" title="variable">m</span></a> <a name="AbelemRepr.FpMatrix.n"><span class="id" title="variable">n</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mx_Fp_abelem"><span class="id" title="lemma">mx_Fp_abelem</span></a> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.FpMatrix.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.FpMatrix.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.abelian.html#9926250b7ba3fd427de487631b06d875"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.abelian.html#9926250b7ba3fd427de487631b06d875"><span class="id" title="notation">abelem</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Mmn"><span class="id" title="abbreviation">Mmn</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">]</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mx_Fp_stable"><span class="id" title="lemma">mx_Fp_stable</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Mmn"><span class="id" title="abbreviation">Mmn</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) : <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">acts</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">on</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#90dbe2ca36ee769a7c84669dd6f15898"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.mxabelem.html#90dbe2ca36ee769a7c84669dd6f15898"><span class="id" title="notation">Zm</span></a><a class="idref" href="mathcomp.fingroup.action.html#915e8fb7bcea89ddadab4deff6ea659e"><span class="id" title="notation">]</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.FpMatrix"><span class="id" title="section">FpMatrix</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="AbelemRepr.FpRow"><span class="id" title="section">FpRow</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> <a name="AbelemRepr.FpRow.p"><span class="id" title="variable">p</span></a> <a name="AbelemRepr.FpRow.n"><span class="id" title="variable">n</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg_mxK"><span class="id" title="lemma">rowg_mxK</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) : <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rowg_mxSK"><span class="id" title="lemma">rowg_mxSK</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">M</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) :<br/> - (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#09a21fbfc35503eeecaca8720742f7ab"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mxrank_rowg"><span class="id" title="lemma">mxrank_rowg</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.FpRow.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">rank</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.prime.html#logn"><span class="id" title="definition">logn</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.FpRow.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.FpRow"><span class="id" title="section">FpRow</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> (<a name="AbelemRepr.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>) (<a name="AbelemRepr.gT"><span class="id" title="variable">gT</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<a name="AbelemRepr.E"><span class="id" title="variable">E</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>).<br/> -<span class="id" title="keyword">Hypotheses</span> (<a name="AbelemRepr.abelE"><span class="id" title="variable">abelE</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.abelian.html#9926250b7ba3fd427de487631b06d875"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.abelian.html#9926250b7ba3fd427de487631b06d875"><span class="id" title="notation">abelem</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a>) (<a name="AbelemRepr.ntE"><span class="id" title="variable">ntE</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#be2f022a539ec6d4d51932b5ea998e57"><span class="id" title="notation">:!=:</span></a> 1%<span class="id" title="var">g</span>).<br/> - -<br/> -<span class="id" title="keyword">Let</span> <a name="AbelemRepr.pE"><span class="id" title="variable">pE</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> := <a class="idref" href="mathcomp.solvable.abelian.html#abelem_pgroup"><span class="id" title="lemma">abelem_pgroup</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.abelE"><span class="id" title="variable">abelE</span></a>.<br/> -<span class="id" title="keyword">Let</span> <a name="AbelemRepr.p_pr"><span class="id" title="variable">p_pr</span></a> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.p"><span class="id" title="variable">p</span></a>. <br/> - -<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="dim_abelemE"><span class="id" title="lemma">dim_abelemE</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.prime.html#logn"><span class="id" title="definition">logn</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="card_abelem_rV"><span class="id" title="lemma">card_abelem_rV</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="isog_abelem_rV"><span class="id" title="lemma">isog_abelem_rV</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#13d63916ddaa339df3fcf04363ae7cde"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#13d63916ddaa339df3fcf04363ae7cde"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d1cce020b4b43370087fd70de1477ab6"><span class="id" title="notation">]</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="abelem_rV"><span class="id" title="definition">abelem_rV</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a> := <a class="idref" href="mathcomp.ssreflect.choice.html#xchoose"><span class="id" title="definition">xchoose</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ab_rV_P"><span class="id" title="abbreviation">ab_rV_P</span></a>.<br/> - -<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_M"><span class="id" title="lemma">abelem_rV_M</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">&,</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">:</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">/</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#8b8794efbfbae1b793d9cb62ce802285"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#y"><span class="id" title="variable">y</span></a>)%<span class="id" title="var">g</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">>-></span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#c7f78cf1f6a5e4f664654f7d671ca752"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">abelem_rV_morphism</span> := <a class="idref" href="mathcomp.fingroup.morphism.html#Morphism"><span class="id" title="constructor">Morphism</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#abelem_rV_M"><span class="id" title="lemma">abelem_rV_M</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_isom"><span class="id" title="lemma">abelem_rV_isom</span></a> : <a class="idref" href="mathcomp.fingroup.morphism.html#isom"><span class="id" title="definition">isom</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_injm"><span class="id" title="lemma">abelem_rV_injm</span></a> : <a class="idref" href="mathcomp.fingroup.morphism.html#3a01b501aff42699ca141d6279e9102f"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#3a01b501aff42699ca141d6279e9102f"><span class="id" title="notation">injm</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_inj"><span class="id" title="lemma">abelem_rV_inj</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">&,</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#injective"><span class="id" title="definition">injective</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b4f176550f5b849a7fbba2ee164934d3"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="im_abelem_rV"><span class="id" title="lemma">im_abelem_rV</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mem_im_abelem_rV"><span class="id" title="lemma">mem_im_abelem_rV</span></a> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="sub_im_abelem_rV"><span class="id" title="lemma">sub_im_abelem_rV</span></a> <span class="id" title="var">mA</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#SubsetDef.subset"><span class="id" title="axiom">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#mA"><span class="id" title="variable">mA</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#mem"><span class="id" title="definition">mem</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a>)).<br/> - <span class="id" title="keyword">Hint Resolve</span> <span class="id" title="var">mem_im_abelem_rV</span> <span class="id" title="var">sub_im_abelem_rV</span> : <span class="id" title="var">core</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_1"><span class="id" title="lemma">abelem_rV_1</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 0%<span class="id" title="var">R</span>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_X"><span class="id" title="lemma">abelem_rV_X</span></a> <span class="id" title="var">x</span> <span class="id" title="var">i</span> : <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#06cdd2633d7788bac7abeac13b2dd91e"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#3b05480e39db306e67fadbc79d394529"><span class="id" title="notation">*:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_V"><span class="id" title="lemma">abelem_rV_V</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#766fd55608aa0e125ed6f55c83bcc09a"><span class="id" title="notation">^-1</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Definition</span> <a name="rVabelem"><span class="id" title="definition">rVabelem</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#rVn"><span class="id" title="abbreviation">rVn</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a> := <a class="idref" href="mathcomp.fingroup.morphism.html#invm"><span class="id" title="definition">invm</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#abelem_rV_injm"><span class="id" title="lemma">abelem_rV_injm</span></a>.<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rVabelem_morphism</span> := <a class="idref" href="mathcomp.fingroup.morphism.html#d22b43813ec744a6a8786f15c9267991"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#d22b43813ec744a6a8786f15c9267991"><span class="id" title="notation">morphism</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#d22b43813ec744a6a8786f15c9267991"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rVabelem"><span class="id" title="definition">rVabelem</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#d22b43813ec744a6a8786f15c9267991"><span class="id" title="notation">]</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelem0"><span class="id" title="lemma">rVabelem0</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1%<span class="id" title="var">g</span>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelemD"><span class="id" title="lemma">rVabelemD</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">:</span></a> <span class="id" title="var">u</span> <span class="id" title="var">v</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#c7f78cf1f6a5e4f664654f7d671ca752"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">>-></span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#8b8794efbfbae1b793d9cb62ce802285"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a>)%<span class="id" title="var">g</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelemN"><span class="id" title="lemma">rVabelemN</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">:</span></a> <span class="id" title="var">u</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">>-></span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#766fd55608aa0e125ed6f55c83bcc09a"><span class="id" title="notation">^-1</span></a>)%<span class="id" title="var">g</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelemZ"><span class="id" title="lemma">rVabelemZ</span></a> (<span class="id" title="var">m</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">F_p</span></a>) : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">:</span></a> <span class="id" title="var">u</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#3b05480e39db306e67fadbc79d394529"><span class="id" title="notation">*:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">>-></span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#06cdd2633d7788bac7abeac13b2dd91e"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a>)%<span class="id" title="var">g</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_K"><span class="id" title="lemma">abelem_rV_K</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">,</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#cancel"><span class="id" title="definition">cancel</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">}</span></a>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelemK"><span class="id" title="lemma">rVabelemK</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#cancel"><span class="id" title="definition">cancel</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelem_inj"><span class="id" title="lemma">rVabelem_inj</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#injective"><span class="id" title="definition">injective</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelem_injm"><span class="id" title="lemma">rVabelem_injm</span></a> : <a class="idref" href="mathcomp.fingroup.morphism.html#3a01b501aff42699ca141d6279e9102f"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#3a01b501aff42699ca141d6279e9102f"><span class="id" title="notation">injm</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a>. <br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="im_rVabelem"><span class="id" title="lemma">im_rVabelem</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mem_rVabelem"><span class="id" title="lemma">mem_rVabelem</span></a> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="sub_rVabelem"><span class="id" title="lemma">sub_rVabelem</span></a> <span class="id" title="var">L</span> : <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a>.<br/> - <span class="id" title="keyword">Hint Resolve</span> <span class="id" title="var">mem_rVabelem</span> <span class="id" title="var">sub_rVabelem</span> : <span class="id" title="var">core</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="card_rVabelem"><span class="id" title="lemma">card_rVabelem</span></a> <span class="id" title="var">L</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_mK"><span class="id" title="lemma">abelem_rV_mK</span></a> (<span class="id" title="var">H</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) : <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelem_mK"><span class="id" title="lemma">rVabelem_mK</span></a> <span class="id" title="var">L</span> : <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelem_minj"><span class="id" title="lemma">rVabelem_minj</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#injective"><span class="id" title="definition">injective</span></a> (<a class="idref" href="mathcomp.fingroup.morphism.html#morphim"><span class="id" title="definition">morphim</span></a> (<a class="idref" href="mathcomp.fingroup.morphism.html#MorPhantom"><span class="id" title="definition">MorPhantom</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a>)).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelemS"><span class="id" title="lemma">rVabelemS</span></a> <span class="id" title="var">L</span> <span class="id" title="var">M</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_S"><span class="id" title="lemma">abelem_rV_S</span></a> (<span class="id" title="var">H</span> <span class="id" title="var">K</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#K"><span class="id" title="variable">K</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#K"><span class="id" title="variable">K</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="sub_rVabelem_im"><span class="id" title="lemma">sub_rVabelem_im</span></a> <span class="id" title="var">L</span> (<span class="id" title="var">H</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="sub_abelem_rV_im"><span class="id" title="lemma">sub_abelem_rV_im</span></a> (<span class="id" title="var">H</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">rV</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#928a892a0c1438777aeb17535aec0378"><span class="id" title="notation">_n</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="AbelemRepr.OneGroup"><span class="id" title="section">OneGroup</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variable</span> <a name="AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>.<br/> -<span class="id" title="keyword">Definition</span> <a name="abelem_mx_fun"><span class="id" title="definition">abelem_mx_fun</span></a> (<span class="id" title="var">g</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#subg_of"><span class="id" title="inductive">subg_of</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a>) <span class="id" title="var">v</span> := <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> (<a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#val"><span class="id" title="projection">val</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#g"><span class="id" title="variable">g</span></a>).<br/> -<span class="id" title="keyword">Definition</span> <a name="abelem_mx"><span class="id" title="definition">abelem_mx</span></a> <span class="id" title="keyword">of</span> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">N</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">)</span></a> :=<br/> - <span class="id" title="keyword">fun</span> <span class="id" title="var">x</span> ⇒ <a class="idref" href="mathcomp.algebra.matrix.html#lin1_mx"><span class="id" title="definition">lin1_mx</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#abelem_mx_fun"><span class="id" title="definition">abelem_mx_fun</span></a> (<a class="idref" href="mathcomp.fingroup.fingroup.html#subg"><span class="id" title="definition">subg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>)).<br/> - -<br/> -<span class="id" title="keyword">Hypothesis</span> <a name="AbelemRepr.OneGroup.nEG"><span class="id" title="variable">nEG</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">N</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Fact</span> <a name="abelem_mx_linear_proof"><span class="id" title="lemma">abelem_mx_linear_proof</span></a> <span class="id" title="var">g</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Linear.Exports.linear"><span class="id" title="abbreviation">linear</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#abelem_mx_fun"><span class="id" title="definition">abelem_mx_fun</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#g"><span class="id" title="variable">g</span></a>).<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">abelem_mx_linear</span> <span class="id" title="var">g</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Linear.Exports.Linear"><span class="id" title="abbreviation">Linear</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#abelem_mx_linear_proof"><span class="id" title="lemma">abelem_mx_linear_proof</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#g"><span class="id" title="variable">g</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Let</span> <a name="AbelemRepr.OneGroup.rVabelemJmx"><span class="id" title="variable">rVabelemJmx</span></a> <span class="id" title="var">v</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#r"><span class="id" title="abbreviation">r</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Fact</span> <a name="abelem_mx_repr"><span class="id" title="lemma">abelem_mx_repr</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_repr"><span class="id" title="definition">mx_repr</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#r"><span class="id" title="abbreviation">r</span></a>.<br/> -<span class="id" title="keyword">Canonical</span> <span class="id" title="var">abelem_repr</span> := <a class="idref" href="mathcomp.character.mxrepresentation.html#MxRepresentation"><span class="id" title="constructor">MxRepresentation</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#abelem_mx_repr"><span class="id" title="lemma">abelem_mx_repr</span></a>.<br/> -<span class="id" title="keyword">Let</span> <a name="AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> := <a class="idref" href="mathcomp.character.mxabelem.html#abelem_repr"><span class="id" title="definition">abelem_repr</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rVabelemJ"><span class="id" title="lemma">rVabelemJ</span></a> <span class="id" title="var">v</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#v"><span class="id" title="variable">v</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rV_J"><span class="id" title="lemma">abelem_rV_J</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#5f76d9959f82823e4253cd67e7dc0e96"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#5f76d9959f82823e4253cd67e7dc0e96"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#5f76d9959f82823e4253cd67e7dc0e96"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#5f76d9959f82823e4253cd67e7dc0e96"><span class="id" title="notation">,</span></a> <span class="id" title="keyword">∀</span> <span class="id" title="var">x</span> <span class="id" title="var">y</span>, <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#746f7e4d3218aa2699eefc064b513fc2"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#y"><span class="id" title="variable">y</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#5f76d9959f82823e4253cd67e7dc0e96"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_rowgJ"><span class="id" title="lemma">abelem_rowgJ</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) <span class="id" title="var">x</span> :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#049e6d4210dc2b8af76facf30c9d4dd6"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#049e6d4210dc2b8af76facf30c9d4dd6"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#049e6d4210dc2b8af76facf30c9d4dd6"><span class="id" title="notation">:^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rV_abelem_sJ"><span class="id" title="lemma">rV_abelem_sJ</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) <span class="id" title="var">x</span> :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#049e6d4210dc2b8af76facf30c9d4dd6"><span class="id" title="notation">:^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>) <a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#b2b431de65e6c1e23c1ae3a60262ea15"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#x"><span class="id" title="variable">x</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rstab_abelem"><span class="id" title="lemma">rstab_abelem</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.character.mxrepresentation.html#rstab"><span class="id" title="definition">rstab</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">C_G</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rstabs_abelem"><span class="id" title="lemma">rstabs_abelem</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">A</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.character.mxrepresentation.html#rstabs"><span class="id" title="definition">rstabs</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">N_G</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rstabs_abelemG"><span class="id" title="lemma">rstabs_abelemG</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rstabs"><span class="id" title="definition">rstabs</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>)) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">N_G</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ee98cf35a816a182ecdf169a5f07c7f5"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mxmodule_abelem"><span class="id" title="lemma">mxmodule_abelem</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">U</span> : <a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c0a062cce31174bb4a1f05fb9cee844"><span class="id" title="notation">)</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxrepresentation.html#mxmodule"><span class="id" title="definition">mxmodule</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">N</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">)</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mxmodule_abelemG"><span class="id" title="lemma">mxmodule_abelemG</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mxmodule"><span class="id" title="definition">mxmodule</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>)) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">N</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">)</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mxsimple_abelemP"><span class="id" title="lemma">mxsimple_abelemP</span></a> (<span class="id" title="var">U</span> : <a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#3867d54b9d705d180f2100b53dccbd0a"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">_n</span></a>) :<br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#reflect"><span class="id" title="abbreviation">reflect</span></a> (<a class="idref" href="mathcomp.character.mxrepresentation.html#mxsimple"><span class="id" title="definition">mxsimple</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a>) (<a class="idref" href="mathcomp.solvable.gseries.html#minnormal"><span class="id" title="definition">minnormal</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rV_E"><span class="id" title="abbreviation">rV_E</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg"><span class="id" title="definition">rowg</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a>) <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mxsimple_abelemGP"><span class="id" title="lemma">mxsimple_abelemGP</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#reflect"><span class="id" title="abbreviation">reflect</span></a> (<a class="idref" href="mathcomp.character.mxrepresentation.html#mxsimple"><span class="id" title="definition">mxsimple</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a>))) (<a class="idref" href="mathcomp.solvable.gseries.html#minnormal"><span class="id" title="definition">minnormal</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#L"><span class="id" title="variable">L</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_mx_irrP"><span class="id" title="lemma">abelem_mx_irrP</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#reflect"><span class="id" title="abbreviation">reflect</span></a> (<a class="idref" href="mathcomp.character.mxrepresentation.html#mx_irreducible"><span class="id" title="definition">mx_irreducible</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a>) (<a class="idref" href="mathcomp.solvable.gseries.html#minnormal"><span class="id" title="definition">minnormal</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rfix_abelem"><span class="id" title="lemma">rfix_abelem</span></a> (<span class="id" title="var">H</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#d8708f36d374a98f4d683c7593d1ea6a"><span class="id" title="notation">}</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> (<a class="idref" href="mathcomp.character.mxrepresentation.html#rfix_mx"><span class="id" title="definition">rfix_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#f769dda5dbc6895d666659cb6e305422"><span class="id" title="notation">:=:</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rowg_mx"><span class="id" title="definition">rowg_mx</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#ErV"><span class="id" title="abbreviation">ErV</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#70b0a61e30f130888503421fd44e1802"><span class="id" title="notation">@*</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">C_E</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">)</span></a>%<span class="id" title="var">g</span>))%<span class="id" title="var">MS</span>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rker_abelem"><span class="id" title="lemma">rker_abelem</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#rker"><span class="id" title="definition">rker</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">C_G</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="abelem_mx_faithful"><span class="id" title="lemma">abelem_mx_faithful</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">C_G</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#04a5555c0db8685a27679a7e6af3f8c3"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1%<span class="id" title="var">g</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_faithful"><span class="id" title="definition">mx_faithful</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup.rG"><span class="id" title="variable">rG</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.OneGroup"><span class="id" title="section">OneGroup</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="AbelemRepr.SubGroup"><span class="id" title="section">SubGroup</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> <a name="AbelemRepr.SubGroup.G"><span class="id" title="variable">G</span></a> <a name="AbelemRepr.SubGroup.H"><span class="id" title="variable">H</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>.<br/> -<span class="id" title="keyword">Hypotheses</span> (<a name="AbelemRepr.SubGroup.nEG"><span class="id" title="variable">nEG</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.SubGroup.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">N</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#1ff9e060a8cc6098d64e42214fa57c96"><span class="id" title="notation">)</span></a>) (<a name="AbelemRepr.SubGroup.sHG"><span class="id" title="variable">sHG</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.SubGroup.H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.SubGroup.G"><span class="id" title="variable">G</span></a>).<br/> -<span class="id" title="keyword">Let</span> <a name="AbelemRepr.SubGroup.nEH"><span class="id" title="variable">nEH</span></a> := <a class="idref" href="mathcomp.ssreflect.fintype.html#subset_trans"><span class="id" title="lemma">subset_trans</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.SubGroup.sHG"><span class="id" title="variable">sHG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.SubGroup.nEG"><span class="id" title="variable">nEG</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="eq_abelem_subg_repr"><span class="id" title="lemma">eq_abelem_subg_repr</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.SubGroup.H"><span class="id" title="variable">H</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rHG"><span class="id" title="abbreviation">rHG</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#876aa133fb3472bffd492f74ff496035"><span class="id" title="notation">=1</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rH"><span class="id" title="abbreviation">rH</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="rsim_abelem_subg"><span class="id" title="lemma">rsim_abelem_subg</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_rsim"><span class="id" title="inductive">mx_rsim</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rHG"><span class="id" title="abbreviation">rHG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rH"><span class="id" title="abbreviation">rH</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mxmodule_abelem_subg"><span class="id" title="lemma">mxmodule_abelem_subg</span></a> <span class="id" title="var">m</span> (<span class="id" title="var">U</span> : <a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">M_</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="abbreviation">n</span></a><a class="idref" href="mathcomp.algebra.matrix.html#5402b0dfe2a7ea661b91256aeeaf93da"><span class="id" title="notation">)</span></a>) : <a class="idref" href="mathcomp.character.mxrepresentation.html#mxmodule"><span class="id" title="definition">mxmodule</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rHG"><span class="id" title="abbreviation">rHG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mxmodule"><span class="id" title="definition">mxmodule</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rH"><span class="id" title="abbreviation">rH</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="mxsimple_abelem_subg"><span class="id" title="lemma">mxsimple_abelem_subg</span></a> <span class="id" title="var">U</span> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mxsimple"><span class="id" title="definition">mxsimple</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rHG"><span class="id" title="abbreviation">rHG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#4bfb4f2d0721ba668e3a802ab1b745a1"><span class="id" title="notation">↔</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mxsimple"><span class="id" title="definition">mxsimple</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rH"><span class="id" title="abbreviation">rH</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#U"><span class="id" title="variable">U</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr.SubGroup"><span class="id" title="section">SubGroup</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#AbelemRepr"><span class="id" title="section">AbelemRepr</span></a>.<br/> - -<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="ModularRepresentation"><span class="id" title="section">ModularRepresentation</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> (<a name="ModularRepresentation.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.fieldType"><span class="id" title="abbreviation">fieldType</span></a>) (<a name="ModularRepresentation.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>) (<a name="ModularRepresentation.gT"><span class="id" title="variable">gT</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>).<br/> -<span class="id" title="keyword">Hypothesis</span> <a name="ModularRepresentation.charFp"><span class="id" title="variable">charFp</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#0928aaf0450c3a4c5521d7d3da15b6d8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0928aaf0450c3a4c5521d7d3da15b6d8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0928aaf0450c3a4c5521d7d3da15b6d8"><span class="id" title="notation">]</span></a>.<br/> -<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> <span class="id" title="var">G</span> <span class="id" title="var">H</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>.<br/> - -<br/> -</div> - -<div class="doc"> - This is Gorenstein, Lemma 2.6.3. -</div> -<div class="code"> -<span class="id" title="keyword">Lemma</span> <a name="rfix_pgroup_char"><span class="id" title="lemma">rfix_pgroup_char</span></a> <span class="id" title="var">G</span> <span class="id" title="var">H</span> <span class="id" title="var">n</span> (<span class="id" title="var">rG</span> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_representation"><span class="id" title="record">mx_representation</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a>) :<br/> - <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#7f2a7ef2c63af7359b22787a9daf336e"><span class="id" title="notation">></span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rfix_mx"><span class="id" title="definition">rfix_mx</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> (<a name="ModularRepresentation.G"><span class="id" title="variable">G</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) (<a name="ModularRepresentation.n"><span class="id" title="variable">n</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>) (<a name="ModularRepresentation.rG"><span class="id" title="variable">rG</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_representation"><span class="id" title="record">mx_representation</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#n"><span class="id" title="variable">n</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="pcore_sub_rstab_mxsimple"><span class="id" title="lemma">pcore_sub_rstab_mxsimple</span></a> <span class="id" title="var">M</span> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mxsimple"><span class="id" title="definition">mxsimple</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">O_p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rstab"><span class="id" title="definition">rstab</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#M"><span class="id" title="variable">M</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="pcore_sub_rker_mx_irr"><span class="id" title="lemma">pcore_sub_rker_mx_irr</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_irreducible"><span class="id" title="definition">mx_irreducible</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">O_p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#4102da6205bd8605932488256a8bd517"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#rker"><span class="id" title="definition">rker</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.rG"><span class="id" title="variable">rG</span></a>.<br/> - -<br/> -</div> - -<div class="doc"> - This is Gorenstein, Lemma 3.1.3. -</div> -<div class="code"> -<span class="id" title="keyword">Lemma</span> <a name="pcore_faithful_mx_irr"><span class="id" title="lemma">pcore_faithful_mx_irr</span></a> :<br/> - <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_irreducible"><span class="id" title="definition">mx_irreducible</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_faithful"><span class="id" title="definition">mx_faithful</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">O_p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#64e6c9ddce70097e2cb88e9baa3b5a39"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1%<span class="id" title="var">g</span>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#ModularRepresentation"><span class="id" title="section">ModularRepresentation</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Section</span> <a name="Extraspecial"><span class="id" title="section">Extraspecial</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Variables</span> (<a name="Extraspecial.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.fieldType"><span class="id" title="abbreviation">fieldType</span></a>) (<a name="Extraspecial.gT"><span class="id" title="variable">gT</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<a name="Extraspecial.S"><span class="id" title="variable">S</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#dd8cd2228f051940101d045bfdffe2d9"><span class="id" title="notation">}</span></a>) (<a name="Extraspecial.p"><span class="id" title="variable">p</span></a> <a name="Extraspecial.n"><span class="id" title="variable">n</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>).<br/> -<span class="id" title="keyword">Hypotheses</span> (<a name="Extraspecial.pS"><span class="id" title="variable">pS</span></a> : <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a>) (<a name="Extraspecial.esS"><span class="id" title="variable">esS</span></a> : <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a>).<br/> -<span class="id" title="keyword">Hypothesis</span> <a name="Extraspecial.oSpn"><span class="id" title="variable">oSpn</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#81fd94e251a61ee523cdd7855774ae7c"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bff172cdafaf4b86cefb300b16285e42"><span class="id" title="notation">.*2</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a>)%<span class="id" title="var">N</span>.<br/> -<span class="id" title="keyword">Hypotheses</span> (<a name="Extraspecial.splitF"><span class="id" title="variable">splitF</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#group_splitting_field"><span class="id" title="definition">group_splitting_field</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a>) (<a name="Extraspecial.F'S"><span class="id" title="variable">F'S</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#0928aaf0450c3a4c5521d7d3da15b6d8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0928aaf0450c3a4c5521d7d3da15b6d8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0928aaf0450c3a4c5521d7d3da15b6d8"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.ssreflect.prime.html#ca29ecf9a3780bf15fe608e2d2c00594"><span class="id" title="notation">^'</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#15605b2ce8a0bd336aafa96c5cc1afdc"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a>).<br/> - -<br/> -<span class="id" title="keyword">Let</span> <a name="Extraspecial.p_pr"><span class="id" title="variable">p_pr</span></a> := <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial_prime"><span class="id" title="lemma">extraspecial_prime</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.pS"><span class="id" title="variable">pS</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.esS"><span class="id" title="variable">esS</span></a>.<br/> -<span class="id" title="keyword">Let</span> <a name="Extraspecial.p_gt0"><span class="id" title="variable">p_gt0</span></a> := <a class="idref" href="mathcomp.ssreflect.prime.html#prime_gt0"><span class="id" title="lemma">prime_gt0</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p_pr"><span class="id" title="variable">p_pr</span></a>.<br/> -<span class="id" title="keyword">Let</span> <a name="Extraspecial.p_gt1"><span class="id" title="variable">p_gt1</span></a> := <a class="idref" href="mathcomp.ssreflect.prime.html#prime_gt1"><span class="id" title="lemma">prime_gt1</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p_pr"><span class="id" title="variable">p_pr</span></a>.<br/> -<span class="id" title="keyword">Let</span> <a name="Extraspecial.oZp"><span class="id" title="variable">oZp</span></a> := <a class="idref" href="mathcomp.solvable.maximal.html#card_center_extraspecial"><span class="id" title="lemma">card_center_extraspecial</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.pS"><span class="id" title="variable">pS</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.esS"><span class="id" title="variable">esS</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Let</span> <a name="Extraspecial.modIp'"><span class="id" title="variable">modIp'</span></a> (<span class="id" title="var">i</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#545d9d6249a673300f950a2a8b8a930b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#545d9d6249a673300f950a2a8b8a930b"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f953bf7095e0da1cb644443fd0e17d6d"><span class="id" title="notation">.-1</span></a>) : (<a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#e3d79e08e7e529cc9ef532e000103386"><span class="id" title="notation">%%</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a>)%<span class="id" title="var">N</span>.<br/> - -<br/> -</div> - -<div class="doc"> - This is Aschbacher (34.9), parts (1)-(4). -</div> -<div class="code"> -<span class="id" title="keyword">Theorem</span> <a name="extraspecial_repr_structure"><span class="id" title="lemma">extraspecial_repr_structure</span></a> (<span class="id" title="var">sS</span> : <a class="idref" href="mathcomp.character.mxrepresentation.html#irrType"><span class="id" title="definition">irrType</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a>) :<br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#d7e433f5d2fe56f5b712860a9ff2a681"><span class="id" title="notation">[/\</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxrepresentation.html#linear_irr"><span class="id" title="definition">linear_irr</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#sS"><span class="id" title="variable">sS</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#81fd94e251a61ee523cdd7855774ae7c"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bff172cdafaf4b86cefb300b16285e42"><span class="id" title="notation">.*2</span></a>)%<span class="id" title="var">N</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#d7e433f5d2fe56f5b712860a9ff2a681"><span class="id" title="notation">,</span></a><br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#a883bdd010993579f99d60b3775bcf54"><span class="id" title="notation">∃</span></a> <span class="id" title="var">iphi</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#545d9d6249a673300f950a2a8b8a930b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#545d9d6249a673300f950a2a8b8a930b"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f953bf7095e0da1cb644443fd0e17d6d"><span class="id" title="notation">.-1</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#sS"><span class="id" title="variable">sS</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#a883bdd010993579f99d60b3775bcf54"><span class="id" title="notation">,</span></a> <span class="id" title="keyword">let</span> <span class="id" title="var">phi</span> <span class="id" title="var">i</span> := <a class="idref" href="mathcomp.character.mxrepresentation.html#irr_repr"><span class="id" title="definition">irr_repr</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#iphi"><span class="id" title="variable">iphi</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a>) <span class="id" title="tactic">in</span><br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b76985613d3b3ca583bb3217c76109bb"><span class="id" title="notation">[/\</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#injective"><span class="id" title="definition">injective</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#iphi"><span class="id" title="variable">iphi</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b76985613d3b3ca583bb3217c76109bb"><span class="id" title="notation">,</span></a><br/> - <a class="idref" href="mathcomp.ssreflect.fintype.html#codom"><span class="id" title="definition">codom</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#iphi"><span class="id" title="variable">iphi</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#1e6a438ff685c38fcd9034a94f271777"><span class="id" title="notation">=</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#1e6a438ff685c38fcd9034a94f271777"><span class="id" title="notation">i</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#b5b2e79e9aa4d1421d843544332af584"><span class="id" title="notation">~:</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#linear_irr"><span class="id" title="definition">linear_irr</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#sS"><span class="id" title="variable">sS</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b76985613d3b3ca583bb3217c76109bb"><span class="id" title="notation">,</span></a><br/> - <span class="id" title="keyword">∀</span> <span class="id" title="var">i</span>, <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_faithful"><span class="id" title="definition">mx_faithful</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#phi"><span class="id" title="variable">phi</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a>)<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b76985613d3b3ca583bb3217c76109bb"><span class="id" title="notation">,</span></a><br/> - <span class="id" title="keyword">∀</span> <span class="id" title="var">z</span>, <a class="idref" href="mathcomp.character.mxabelem.html#z"><span class="id" title="variable">z</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.solvable.center.html#e90cc03a62af307fc4e121114703663b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.center.html#e90cc03a62af307fc4e121114703663b"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.solvable.center.html#e90cc03a62af307fc4e121114703663b"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a><a class="idref" href="mathcomp.solvable.center.html#e90cc03a62af307fc4e121114703663b"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ca7f9c8131cd704a6703ad86f415c132"><span class="id" title="notation">^#</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a><br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#3df228c109f14f0423b4fccc967ee1ac"><span class="id" title="notation">exists2</span></a> <span class="id" title="var">w</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#3df228c109f14f0423b4fccc967ee1ac"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.poly.html#primitive_root_of_unity"><span class="id" title="definition">primitive_root_of_unity</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#w"><span class="id" title="variable">w</span></a><br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#3df228c109f14f0423b4fccc967ee1ac"><span class="id" title="notation">&</span></a> <span class="id" title="keyword">∀</span> <span class="id" title="var">i</span>, <a class="idref" href="mathcomp.character.mxabelem.html#phi"><span class="id" title="variable">phi</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#z"><span class="id" title="variable">z</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#850c060d75891e97ece38bfec139b8ea"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxabelem.html#w"><span class="id" title="variable">w</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a><a class="idref" href="mathcomp.algebra.matrix.html#850c060d75891e97ece38bfec139b8ea"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.matrix.html#850c060d75891e97ece38bfec139b8ea"><span class="id" title="notation">M</span></a><br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b76985613d3b3ca583bb3217c76109bb"><span class="id" title="notation">&</span></a> <span class="id" title="keyword">∀</span> <span class="id" title="var">i</span>, <a class="idref" href="mathcomp.character.mxrepresentation.html#irr_degree"><span class="id" title="definition">irr_degree</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#iphi"><span class="id" title="variable">iphi</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#i"><span class="id" title="variable">i</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#81fd94e251a61ee523cdd7855774ae7c"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.n"><span class="id" title="variable">n</span></a>)%<span class="id" title="var">N</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b76985613d3b3ca583bb3217c76109bb"><span class="id" title="notation">]</span></a><br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#d7e433f5d2fe56f5b712860a9ff2a681"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.mxabelem.html#sS"><span class="id" title="variable">sS</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#234f50e13366f794cd6877cf832a5935"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#81fd94e251a61ee523cdd7855774ae7c"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bff172cdafaf4b86cefb300b16285e42"><span class="id" title="notation">.*2</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#0dacc1786c5ba797d47dd85006231633"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f953bf7095e0da1cb644443fd0e17d6d"><span class="id" title="notation">.-1</span></a>)%<span class="id" title="var">N</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#d7e433f5d2fe56f5b712860a9ff2a681"><span class="id" title="notation">]</span></a>.<br/> - -<br/> -</div> - -<div class="doc"> - This is the corolloray of the above that is actually used in the proof of - B & G, Theorem 2.5. It encapsulates the dependency on a socle of the - regular representation. -</div> -<div class="code"> - -<br/> -<span class="id" title="keyword">Variables</span> (<a name="Extraspecial.m"><span class="id" title="variable">m</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>) (<a name="Extraspecial.rS"><span class="id" title="variable">rS</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_representation"><span class="id" title="record">mx_representation</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#m"><span class="id" title="variable">m</span></a>) (<a name="Extraspecial.U"><span class="id" title="variable">U</span></a> : <a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">M</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#60bd2bc9fb9187afe5d7f780c1576e3c"><span class="id" title="notation">_m</span></a>).<br/> -<span class="id" title="keyword">Hypotheses</span> (<a name="Extraspecial.simU"><span class="id" title="variable">simU</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mxsimple"><span class="id" title="definition">mxsimple</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.rS"><span class="id" title="variable">rS</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.U"><span class="id" title="variable">U</span></a>) (<a name="Extraspecial.ffulU"><span class="id" title="variable">ffulU</span></a> : <a class="idref" href="mathcomp.character.mxrepresentation.html#rstab"><span class="id" title="definition">rstab</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.rS"><span class="id" title="variable">rS</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.U"><span class="id" title="variable">U</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 1%<span class="id" title="var">g</span>).<br/> -<span class="id" title="keyword">Let</span> <a name="Extraspecial.sZS"><span class="id" title="variable">sZS</span></a> := <a class="idref" href="mathcomp.solvable.center.html#center_sub"><span class="id" title="lemma">center_sub</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.S"><span class="id" title="variable">S</span></a>.<br/> -<span class="id" title="keyword">Let</span> <a name="Extraspecial.rZ"><span class="id" title="variable">rZ</span></a> := <a class="idref" href="mathcomp.character.mxrepresentation.html#subg_repr"><span class="id" title="definition">subg_repr</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.rS"><span class="id" title="variable">rS</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.sZS"><span class="id" title="variable">sZS</span></a>.<br/> - -<br/> -<span class="id" title="keyword">Lemma</span> <a name="faithful_repr_extraspecial"><span class="id" title="lemma">faithful_repr_extraspecial</span></a> :<br/> - <a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#b8af73c258a533909a2acba13114d67c"><span class="id" title="notation">rank</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.U"><span class="id" title="variable">U</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#81fd94e251a61ee523cdd7855774ae7c"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.n"><span class="id" title="variable">n</span></a>)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#ba2b0e492d2b4675a0acf3ea92aabadd"><span class="id" title="notation">∧</span></a><br/> - <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#ba2b0e492d2b4675a0acf3ea92aabadd"><span class="id" title="notation">(</span></a><span class="id" title="keyword">∀</span> <span class="id" title="var">V</span>, <a class="idref" href="mathcomp.character.mxrepresentation.html#mxsimple"><span class="id" title="definition">mxsimple</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.rS"><span class="id" title="variable">rS</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#V"><span class="id" title="variable">V</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_iso"><span class="id" title="inductive">mx_iso</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.rZ"><span class="id" title="variable">rZ</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.U"><span class="id" title="variable">U</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#V"><span class="id" title="variable">V</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_iso"><span class="id" title="inductive">mx_iso</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.rS"><span class="id" title="variable">rS</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial.U"><span class="id" title="variable">U</span></a> <a class="idref" href="mathcomp.character.mxabelem.html#V"><span class="id" title="variable">V</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#ba2b0e492d2b4675a0acf3ea92aabadd"><span class="id" title="notation">)</span></a>.<br/> - -<br/> -<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.mxabelem.html#Extraspecial"><span class="id" title="section">Extraspecial</span></a>.<br/> -</div> -</div> - -<div id="footer"> -<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a> -</div> - -</div> - -</body> -</html>
\ No newline at end of file |
