diff options
| author | Cyril Cohen | 2019-10-16 11:26:43 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2019-10-16 11:26:43 +0200 |
| commit | 6b59540a2460633df4e3d8347cb4dfe2fb3a3afb (patch) | |
| tree | 1239c1d5553d51a7d73f2f8b465f6a23178ff8a0 /docs/htmldoc/index_global_P.html | |
| parent | dd82aaeae7e9478efc178ce8430986649555b032 (diff) | |
removing everything but index which redirects to the new page
Diffstat (limited to 'docs/htmldoc/index_global_P.html')
| -rw-r--r-- | docs/htmldoc/index_global_P.html | 2760 |
1 files changed, 0 insertions, 2760 deletions
diff --git a/docs/htmldoc/index_global_P.html b/docs/htmldoc/index_global_P.html deleted file mode 100644 index 1233911..0000000 --- a/docs/htmldoc/index_global_P.html +++ /dev/null @@ -1,2760 +0,0 @@ -<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" -"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> -<html xmlns="http://www.w3.org/1999/xhtml"> -<head> -<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> -<link href="coqdoc.css" rel="stylesheet" type="text/css" /> -<title>mathcomp.test_suite.hierarchy_test</title> -</head> - -<body> - -<div id="page"> - -<div id="header"> -</div> - -<div id="main"> - -<table> -<tr> -<td>Global Index</td> -<td><a href="index_global_A.html">A</a></td> -<td><a href="index_global_B.html">B</a></td> -<td><a href="index_global_C.html">C</a></td> -<td><a href="index_global_D.html">D</a></td> -<td><a href="index_global_E.html">E</a></td> -<td><a href="index_global_F.html">F</a></td> -<td><a href="index_global_G.html">G</a></td> -<td><a href="index_global_H.html">H</a></td> -<td><a href="index_global_I.html">I</a></td> -<td><a href="index_global_J.html">J</a></td> -<td><a href="index_global_K.html">K</a></td> -<td><a href="index_global_L.html">L</a></td> -<td><a href="index_global_M.html">M</a></td> -<td><a href="index_global_N.html">N</a></td> -<td><a href="index_global_O.html">O</a></td> -<td><a href="index_global_P.html">P</a></td> -<td><a href="index_global_Q.html">Q</a></td> -<td><a href="index_global_R.html">R</a></td> -<td><a href="index_global_S.html">S</a></td> -<td><a href="index_global_T.html">T</a></td> -<td><a href="index_global_U.html">U</a></td> -<td><a href="index_global_V.html">V</a></td> -<td><a href="index_global_W.html">W</a></td> -<td><a href="index_global_X.html">X</a></td> -<td>Y</td> -<td><a href="index_global_Z.html">Z</a></td> -<td>_</td> -<td><a href="index_global_*.html">other</a></td> -<td>(23836 entries)</td> -</tr> -<tr> -<td>Notation Index</td> -<td><a href="index_notation_A.html">A</a></td> -<td><a href="index_notation_B.html">B</a></td> -<td><a href="index_notation_C.html">C</a></td> -<td><a href="index_notation_D.html">D</a></td> -<td><a href="index_notation_E.html">E</a></td> -<td><a href="index_notation_F.html">F</a></td> -<td><a href="index_notation_G.html">G</a></td> -<td>H</td> -<td><a href="index_notation_I.html">I</a></td> -<td>J</td> -<td><a href="index_notation_K.html">K</a></td> -<td><a href="index_notation_L.html">L</a></td> -<td><a href="index_notation_M.html">M</a></td> -<td><a href="index_notation_N.html">N</a></td> -<td>O</td> -<td><a href="index_notation_P.html">P</a></td> -<td><a href="index_notation_Q.html">Q</a></td> -<td><a href="index_notation_R.html">R</a></td> -<td><a href="index_notation_S.html">S</a></td> -<td>T</td> -<td><a href="index_notation_U.html">U</a></td> -<td><a href="index_notation_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_notation_Z.html">Z</a></td> -<td>_</td> -<td><a href="index_notation_*.html">other</a></td> -<td>(1409 entries)</td> -</tr> -<tr> -<td>Module Index</td> -<td><a href="index_module_A.html">A</a></td> -<td><a href="index_module_B.html">B</a></td> -<td><a href="index_module_C.html">C</a></td> -<td><a href="index_module_D.html">D</a></td> -<td><a href="index_module_E.html">E</a></td> -<td><a href="index_module_F.html">F</a></td> -<td><a href="index_module_G.html">G</a></td> -<td>H</td> -<td><a href="index_module_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td><a href="index_module_M.html">M</a></td> -<td><a href="index_module_N.html">N</a></td> -<td>O</td> -<td><a href="index_module_P.html">P</a></td> -<td><a href="index_module_Q.html">Q</a></td> -<td><a href="index_module_R.html">R</a></td> -<td><a href="index_module_S.html">S</a></td> -<td>T</td> -<td><a href="index_module_U.html">U</a></td> -<td><a href="index_module_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td>Z</td> -<td>_</td> -<td>other</td> -<td>(221 entries)</td> -</tr> -<tr> -<td>Variable Index</td> -<td><a href="index_variable_A.html">A</a></td> -<td><a href="index_variable_B.html">B</a></td> -<td><a href="index_variable_C.html">C</a></td> -<td><a href="index_variable_D.html">D</a></td> -<td><a href="index_variable_E.html">E</a></td> -<td><a href="index_variable_F.html">F</a></td> -<td><a href="index_variable_G.html">G</a></td> -<td><a href="index_variable_H.html">H</a></td> -<td><a href="index_variable_I.html">I</a></td> -<td>J</td> -<td><a href="index_variable_K.html">K</a></td> -<td><a href="index_variable_L.html">L</a></td> -<td><a href="index_variable_M.html">M</a></td> -<td><a href="index_variable_N.html">N</a></td> -<td><a href="index_variable_O.html">O</a></td> -<td><a href="index_variable_P.html">P</a></td> -<td><a href="index_variable_Q.html">Q</a></td> -<td><a href="index_variable_R.html">R</a></td> -<td><a href="index_variable_S.html">S</a></td> -<td><a href="index_variable_T.html">T</a></td> -<td><a href="index_variable_U.html">U</a></td> -<td><a href="index_variable_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_variable_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(3574 entries)</td> -</tr> -<tr> -<td>Library Index</td> -<td><a href="index_library_A.html">A</a></td> -<td><a href="index_library_B.html">B</a></td> -<td><a href="index_library_C.html">C</a></td> -<td><a href="index_library_D.html">D</a></td> -<td><a href="index_library_E.html">E</a></td> -<td><a href="index_library_F.html">F</a></td> -<td><a href="index_library_G.html">G</a></td> -<td><a href="index_library_H.html">H</a></td> -<td><a href="index_library_I.html">I</a></td> -<td><a href="index_library_J.html">J</a></td> -<td>K</td> -<td>L</td> -<td><a href="index_library_M.html">M</a></td> -<td><a href="index_library_N.html">N</a></td> -<td>O</td> -<td><a href="index_library_P.html">P</a></td> -<td><a href="index_library_Q.html">Q</a></td> -<td><a href="index_library_R.html">R</a></td> -<td><a href="index_library_S.html">S</a></td> -<td><a href="index_library_T.html">T</a></td> -<td>U</td> -<td><a href="index_library_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_library_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(90 entries)</td> -</tr> -<tr> -<td>Lemma Index</td> -<td><a href="index_lemma_A.html">A</a></td> -<td><a href="index_lemma_B.html">B</a></td> -<td><a href="index_lemma_C.html">C</a></td> -<td><a href="index_lemma_D.html">D</a></td> -<td><a href="index_lemma_E.html">E</a></td> -<td><a href="index_lemma_F.html">F</a></td> -<td><a href="index_lemma_G.html">G</a></td> -<td><a href="index_lemma_H.html">H</a></td> -<td><a href="index_lemma_I.html">I</a></td> -<td><a href="index_lemma_J.html">J</a></td> -<td><a href="index_lemma_K.html">K</a></td> -<td><a href="index_lemma_L.html">L</a></td> -<td><a href="index_lemma_M.html">M</a></td> -<td><a href="index_lemma_N.html">N</a></td> -<td><a href="index_lemma_O.html">O</a></td> -<td><a href="index_lemma_P.html">P</a></td> -<td><a href="index_lemma_Q.html">Q</a></td> -<td><a href="index_lemma_R.html">R</a></td> -<td><a href="index_lemma_S.html">S</a></td> -<td><a href="index_lemma_T.html">T</a></td> -<td><a href="index_lemma_U.html">U</a></td> -<td><a href="index_lemma_V.html">V</a></td> -<td><a href="index_lemma_W.html">W</a></td> -<td><a href="index_lemma_X.html">X</a></td> -<td>Y</td> -<td><a href="index_lemma_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(12096 entries)</td> -</tr> -<tr> -<td>Constructor Index</td> -<td><a href="index_constructor_A.html">A</a></td> -<td><a href="index_constructor_B.html">B</a></td> -<td><a href="index_constructor_C.html">C</a></td> -<td><a href="index_constructor_D.html">D</a></td> -<td><a href="index_constructor_E.html">E</a></td> -<td><a href="index_constructor_F.html">F</a></td> -<td><a href="index_constructor_G.html">G</a></td> -<td><a href="index_constructor_H.html">H</a></td> -<td><a href="index_constructor_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td><a href="index_constructor_L.html">L</a></td> -<td><a href="index_constructor_M.html">M</a></td> -<td><a href="index_constructor_N.html">N</a></td> -<td><a href="index_constructor_O.html">O</a></td> -<td><a href="index_constructor_P.html">P</a></td> -<td><a href="index_constructor_Q.html">Q</a></td> -<td><a href="index_constructor_R.html">R</a></td> -<td><a href="index_constructor_S.html">S</a></td> -<td><a href="index_constructor_T.html">T</a></td> -<td><a href="index_constructor_U.html">U</a></td> -<td><a href="index_constructor_V.html">V</a></td> -<td>W</td> -<td><a href="index_constructor_X.html">X</a></td> -<td>Y</td> -<td><a href="index_constructor_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(368 entries)</td> -</tr> -<tr> -<td>Axiom Index</td> -<td><a href="index_axiom_A.html">A</a></td> -<td><a href="index_axiom_B.html">B</a></td> -<td><a href="index_axiom_C.html">C</a></td> -<td>D</td> -<td><a href="index_axiom_E.html">E</a></td> -<td><a href="index_axiom_F.html">F</a></td> -<td>G</td> -<td>H</td> -<td><a href="index_axiom_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td>M</td> -<td>N</td> -<td>O</td> -<td><a href="index_axiom_P.html">P</a></td> -<td>Q</td> -<td><a href="index_axiom_R.html">R</a></td> -<td><a href="index_axiom_S.html">S</a></td> -<td>T</td> -<td>U</td> -<td>V</td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td>Z</td> -<td>_</td> -<td>other</td> -<td>(45 entries)</td> -</tr> -<tr> -<td>Inductive Index</td> -<td><a href="index_inductive_A.html">A</a></td> -<td><a href="index_inductive_B.html">B</a></td> -<td><a href="index_inductive_C.html">C</a></td> -<td><a href="index_inductive_D.html">D</a></td> -<td><a href="index_inductive_E.html">E</a></td> -<td><a href="index_inductive_F.html">F</a></td> -<td><a href="index_inductive_G.html">G</a></td> -<td><a href="index_inductive_H.html">H</a></td> -<td><a href="index_inductive_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td><a href="index_inductive_L.html">L</a></td> -<td><a href="index_inductive_M.html">M</a></td> -<td><a href="index_inductive_N.html">N</a></td> -<td><a href="index_inductive_O.html">O</a></td> -<td><a href="index_inductive_P.html">P</a></td> -<td>Q</td> -<td><a href="index_inductive_R.html">R</a></td> -<td><a href="index_inductive_S.html">S</a></td> -<td><a href="index_inductive_T.html">T</a></td> -<td><a href="index_inductive_U.html">U</a></td> -<td><a href="index_inductive_V.html">V</a></td> -<td>W</td> -<td><a href="index_inductive_X.html">X</a></td> -<td>Y</td> -<td>Z</td> -<td>_</td> -<td>other</td> -<td>(107 entries)</td> -</tr> -<tr> -<td>Projection Index</td> -<td><a href="index_projection_A.html">A</a></td> -<td><a href="index_projection_B.html">B</a></td> -<td><a href="index_projection_C.html">C</a></td> -<td><a href="index_projection_D.html">D</a></td> -<td><a href="index_projection_E.html">E</a></td> -<td><a href="index_projection_F.html">F</a></td> -<td><a href="index_projection_G.html">G</a></td> -<td>H</td> -<td><a href="index_projection_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td><a href="index_projection_M.html">M</a></td> -<td><a href="index_projection_N.html">N</a></td> -<td>O</td> -<td><a href="index_projection_P.html">P</a></td> -<td><a href="index_projection_Q.html">Q</a></td> -<td><a href="index_projection_R.html">R</a></td> -<td><a href="index_projection_S.html">S</a></td> -<td><a href="index_projection_T.html">T</a></td> -<td><a href="index_projection_U.html">U</a></td> -<td><a href="index_projection_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_projection_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(273 entries)</td> -</tr> -<tr> -<td>Section Index</td> -<td><a href="index_section_A.html">A</a></td> -<td><a href="index_section_B.html">B</a></td> -<td><a href="index_section_C.html">C</a></td> -<td><a href="index_section_D.html">D</a></td> -<td><a href="index_section_E.html">E</a></td> -<td><a href="index_section_F.html">F</a></td> -<td><a href="index_section_G.html">G</a></td> -<td><a href="index_section_H.html">H</a></td> -<td><a href="index_section_I.html">I</a></td> -<td>J</td> -<td><a href="index_section_K.html">K</a></td> -<td><a href="index_section_L.html">L</a></td> -<td><a href="index_section_M.html">M</a></td> -<td><a href="index_section_N.html">N</a></td> -<td><a href="index_section_O.html">O</a></td> -<td><a href="index_section_P.html">P</a></td> -<td><a href="index_section_Q.html">Q</a></td> -<td><a href="index_section_R.html">R</a></td> -<td><a href="index_section_S.html">S</a></td> -<td><a href="index_section_T.html">T</a></td> -<td><a href="index_section_U.html">U</a></td> -<td><a href="index_section_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_section_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(1140 entries)</td> -</tr> -<tr> -<td>Abbreviation Index</td> -<td><a href="index_abbreviation_A.html">A</a></td> -<td><a href="index_abbreviation_B.html">B</a></td> -<td><a href="index_abbreviation_C.html">C</a></td> -<td><a href="index_abbreviation_D.html">D</a></td> -<td><a href="index_abbreviation_E.html">E</a></td> -<td><a href="index_abbreviation_F.html">F</a></td> -<td><a href="index_abbreviation_G.html">G</a></td> -<td><a href="index_abbreviation_H.html">H</a></td> -<td><a href="index_abbreviation_I.html">I</a></td> -<td><a href="index_abbreviation_J.html">J</a></td> -<td><a href="index_abbreviation_K.html">K</a></td> -<td><a href="index_abbreviation_L.html">L</a></td> -<td><a href="index_abbreviation_M.html">M</a></td> -<td><a href="index_abbreviation_N.html">N</a></td> -<td><a href="index_abbreviation_O.html">O</a></td> -<td><a href="index_abbreviation_P.html">P</a></td> -<td><a href="index_abbreviation_Q.html">Q</a></td> -<td><a href="index_abbreviation_R.html">R</a></td> -<td><a href="index_abbreviation_S.html">S</a></td> -<td><a href="index_abbreviation_T.html">T</a></td> -<td><a href="index_abbreviation_U.html">U</a></td> -<td><a href="index_abbreviation_V.html">V</a></td> -<td><a href="index_abbreviation_W.html">W</a></td> -<td><a href="index_abbreviation_X.html">X</a></td> -<td>Y</td> -<td><a href="index_abbreviation_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(728 entries)</td> -</tr> -<tr> -<td>Definition Index</td> -<td><a href="index_definition_A.html">A</a></td> -<td><a href="index_definition_B.html">B</a></td> -<td><a href="index_definition_C.html">C</a></td> -<td><a href="index_definition_D.html">D</a></td> -<td><a href="index_definition_E.html">E</a></td> -<td><a href="index_definition_F.html">F</a></td> -<td><a href="index_definition_G.html">G</a></td> -<td><a href="index_definition_H.html">H</a></td> -<td><a href="index_definition_I.html">I</a></td> -<td><a href="index_definition_J.html">J</a></td> -<td><a href="index_definition_K.html">K</a></td> -<td><a href="index_definition_L.html">L</a></td> -<td><a href="index_definition_M.html">M</a></td> -<td><a href="index_definition_N.html">N</a></td> -<td><a href="index_definition_O.html">O</a></td> -<td><a href="index_definition_P.html">P</a></td> -<td><a href="index_definition_Q.html">Q</a></td> -<td><a href="index_definition_R.html">R</a></td> -<td><a href="index_definition_S.html">S</a></td> -<td><a href="index_definition_T.html">T</a></td> -<td><a href="index_definition_U.html">U</a></td> -<td><a href="index_definition_V.html">V</a></td> -<td><a href="index_definition_W.html">W</a></td> -<td><a href="index_definition_X.html">X</a></td> -<td>Y</td> -<td><a href="index_definition_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(3596 entries)</td> -</tr> -<tr> -<td>Record Index</td> -<td><a href="index_record_A.html">A</a></td> -<td>B</td> -<td><a href="index_record_C.html">C</a></td> -<td><a href="index_record_D.html">D</a></td> -<td><a href="index_record_E.html">E</a></td> -<td><a href="index_record_F.html">F</a></td> -<td><a href="index_record_G.html">G</a></td> -<td>H</td> -<td><a href="index_record_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td><a href="index_record_M.html">M</a></td> -<td><a href="index_record_N.html">N</a></td> -<td>O</td> -<td><a href="index_record_P.html">P</a></td> -<td><a href="index_record_Q.html">Q</a></td> -<td><a href="index_record_R.html">R</a></td> -<td><a href="index_record_S.html">S</a></td> -<td><a href="index_record_T.html">T</a></td> -<td><a href="index_record_U.html">U</a></td> -<td><a href="index_record_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_record_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(189 entries)</td> -</tr> -</table> -<hr/><a name="global_P"></a><h2>P </h2> -<a href="mathcomp.algebra.zmodp.html#p">p</a> [abbreviation, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/> -<a href="mathcomp.algebra.zmodp.html#p">p</a> [abbreviation, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#P">P</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#PackSocle">PackSocle</a> [constructor, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#PackSocleK">PackSocleK</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pack_subCountType">pack_subCountType</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pack_subFinType">pack_subFinType</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairAlg">PairAlg</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairAlg.A1">PairAlg.A1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairAlg.A2">PairAlg.A2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairAlg.R">PairAlg.R</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairComRing">PairComRing</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairComRing.R1">PairComRing.R1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairComRing.R2">PairComRing.R2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pairg1">pairg1</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pairg1_morphM">pairg1_morphM</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLalg">PairLalg</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLalg.A1">PairLalg.A1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLalg.A2">PairLalg.A2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLalg.R">PairLalg.R</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLmod">PairLmod</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLmod.R">PairLmod.R</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLmod.V1">PairLmod.V1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairLmod.V2">PairLmod.V2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pairmap">pairmap</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pairmapK">pairmapK</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.tuple.html#pairmap_tupleP">pairmap_tupleP</a> [lemma, in <a href="mathcomp.ssreflect.tuple.html">mathcomp.ssreflect.tuple</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pairmap_cat">pairmap_cat</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairRing">PairRing</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairRing.R1">PairRing.R1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairRing.R2">PairRing.R2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairUnitRing">PairUnitRing</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairUnitRing.R1">PairUnitRing.R1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairUnitRing.R2">PairUnitRing.R2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.character.classfun.html#pairwise_orthogonal_cat">pairwise_orthogonal_cat</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.character.classfun.html#pairwise_orthogonalP">pairwise_orthogonalP</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.character.classfun.html#pairwise_orthogonal">pairwise_orthogonal</a> [definition, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairZmod">PairZmod</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairZmod.M1">PairZmod.M1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#PairZmod.M2">PairZmod.M2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_unitRingMixin">pair_unitRingMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_invr_out">pair_invr_out</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_unitP">pair_unitP</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mulVr">pair_mulVr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mulVl">pair_mulVl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_invr">pair_invr</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_unitr">pair_unitr</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_scaleAr">pair_scaleAr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_scaleAl">pair_scaleAl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_lmodMixin">pair_lmodMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_scaleDl">pair_scaleDl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_scaleDr">pair_scaleDr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_scale1">pair_scale1</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_scaleA">pair_scaleA</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mulC">pair_mulC</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_ringMixin">pair_ringMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_one_neq0">pair_one_neq0</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mulDr">pair_mulDr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mulDl">pair_mulDl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mul1r">pair_mul1r</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mul1l">pair_mul1l</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_mulA">pair_mulA</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_zmodMixin">pair_zmodMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_addN">pair_addN</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_add0">pair_add0</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_addC">pair_addC</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.ssralg.html#pair_addA">pair_addA</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/> -<a href="mathcomp.algebra.vector.html#pair_vectMixin">pair_vectMixin</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#pair_vect_iso">pair_vect_iso</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pair_of_tagK">pair_of_tagK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pair_of_tag">pair_of_tag</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.character.classfun.html#pair_ortho_rec">pair_ortho_rec</a> [definition, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#pair_bigA">pair_bigA</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#pair_big">pair_big</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#pair_big_dep">pair_big_dep</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pair_eq2">pair_eq2</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pair_eq1">pair_eq1</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pair_eqE">pair_eqE</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pair_eqP">pair_eqP</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pair_eq">pair_eq</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pair1g">pair1g</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pair1g_morphM">pair1g_morphM</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#partG_eq1">partG_eq1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction">PartialAction</a> [section, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.aT">PartialAction.aT</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.D">PartialAction.D</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer">PartialAction.OrbitStabilizer</a> [section, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.G">PartialAction.OrbitStabilizer.G</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.sGD">PartialAction.OrbitStabilizer.sGD</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.ssGD">PartialAction.OrbitStabilizer.ssGD</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.x">PartialAction.OrbitStabilizer.x</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.rT">PartialAction.rT</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PartialAction.to">PartialAction.to</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory">PartialFunctorTheory</a> [section, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.BasicTheory">PartialFunctorTheory.BasicTheory</a> [section, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.BasicTheory.F">PartialFunctorTheory.BasicTheory.F</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.F1">PartialFunctorTheory.F1</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.F2">PartialFunctorTheory.F2</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.Modulo">PartialFunctorTheory.Modulo</a> [section, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.Modulo.F1">PartialFunctorTheory.Modulo.F1</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.Modulo.F2">PartialFunctorTheory.Modulo.F2</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#partial_product">partial_product</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#partition">partition</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions">Partitions</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps">Partitions.BigOps</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.idx">Partitions.BigOps.idx</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.op">Partitions.BigOps.op</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.R">Partitions.BigOps.R</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.rhs">Partitions.BigOps.rhs</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.rhs_cond">Partitions.BigOps.rhs_cond</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence">Partitions.Equivalence</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.D">Partitions.Equivalence.D</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.eqiR">Partitions.Equivalence.eqiR</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.PPx">Partitions.Equivalence.PPx</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.Px">Partitions.Equivalence.Px</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.Pxx">Partitions.Equivalence.Pxx</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.R">Partitions.Equivalence.R</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.I">Partitions.I</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Preim">Partitions.Preim</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Preim.f">Partitions.Preim.f</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Preim.rT">Partitions.Preim.rT</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.T">Partitions.T</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals">Partitions.Transversals</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.D">Partitions.Transversals.D</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.P">Partitions.Transversals.P</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.sXP">Partitions.Transversals.sXP</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.tiP">Partitions.Transversals.tiP</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.trPX">Partitions.Transversals.trPX</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.trX">Partitions.Transversals.trX</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.X">Partitions.Transversals.X</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.solvable.frobenius.html#partition_normedTI">partition_normedTI</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/> -<a href="mathcomp.solvable.frobenius.html#partition_class_support">partition_class_support</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#partition_big">partition_big</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#partition_partition">partition_partition</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#partition_disjoint_bigcup">partition_disjoint_bigcup</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#partition_big_imset">partition_big_imset</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn">partn</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partnC">partnC</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partnI">partnI</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partnM">partnM</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partnNK">partnNK</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partnT">partnT</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partnX">partnX</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_part">partn_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_eq1">partn_eq1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_biggcd">partn_biggcd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_biglcm">partn_biglcm</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_gcd">partn_gcd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_lcm">partn_lcm</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_pi">partn_pi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn_dvd">partn_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.solvable.abelian.html#partn_exponentS">partn_exponentS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn0">partn0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#partn1">partn1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#part_p'nat">part_p'nat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#part_pnat_id">part_pnat_id</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#part_pnat">part_pnat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#part_gt0">part_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.binomial.html#Pascal">Pascal</a> [lemma, in <a href="mathcomp.ssreflect.binomial.html">mathcomp.ssreflect.binomial</a>]<br/> -<a href="mathcomp.ssreflect.path.html#path">path</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html">path</a> [library]<br/> -<a href="mathcomp.ssreflect.path.html#pathP">pathP</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#Paths">Paths</a> [section, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#Paths.n0">Paths.n0</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#Paths.Path">Paths.Path</a> [section, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#Paths.Path.e">Paths.Path.e</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#Paths.Path.x0_cycle">Paths.Path.x0_cycle</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#Paths.T">Paths.T</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#path_min_sorted">path_min_sorted</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#path_sorted">path_sorted</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.fingraph.html#path_connect">path_connect</a> [lemma, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pblock">pblock</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pblockK">pblockK</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pblock_transversal">pblock_transversal</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pblock_inj">pblock_inj</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pblock_equivalence">pblock_equivalence</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pblock_equivalence_partition">pblock_equivalence_partition</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pblock_mem">pblock_mem</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#PcanChoiceMixin">PcanChoiceMixin</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#PcanCountMixin">PcanCountMixin</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#PcanEqMixin">PcanEqMixin</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#PcanFinMixin">PcanFinMixin</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pcan_pickleK">pcan_pickleK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pcan_enumP">pcan_enumP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore">pcore</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PcoreDef">PcoreDef</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PcoreDef.A">PcoreDef.A</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PcoreDef.gT">PcoreDef.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PcoreDef.pi">PcoreDef.pi</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcoreI">pcoreI</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcoreJ">pcoreJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcoreNK">pcoreNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PCoreProps">PCoreProps</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PCoreProps.gT">PCoreProps.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PCoreProps.pi">PCoreProps.pi</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcoreS">pcoreS</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_setI_normal">pcore_setI_normal</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_modp">pcore_modp</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_mod1">pcore_mod1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_mod_res">pcore_mod_res</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_mod_sub">pcore_mod_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_char">pcore_char</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_normal">pcore_normal</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_pgroup_id">pcore_pgroup_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_max">pcore_max</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_sub_Hall">pcore_sub_Hall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_sub">pcore_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_pgroup">pcore_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_psubgroup">pcore_psubgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pcore_mod">pcore_mod</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.maximal.html#pcore_Fitting">pcore_Fitting</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.character.mxabelem.html#pcore_faithful_mx_irr">pcore_faithful_mx_irr</a> [lemma, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/> -<a href="mathcomp.character.mxabelem.html#pcore_sub_rker_mx_irr">pcore_sub_rker_mx_irr</a> [lemma, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/> -<a href="mathcomp.character.mxabelem.html#pcore_sub_rstab_mxsimple">pcore_sub_rstab_mxsimple</a> [lemma, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/> -<a href="mathcomp.solvable.sylow.html#pcore_faithful_irr_act">pcore_faithful_irr_act</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/> -<a href="mathcomp.solvable.sylow.html#pcore_sub_astab_irr">pcore_sub_astab_irr</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pcycle">pcycle</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.action.html#pcycleE">pcycleE</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pcycles">pcycles</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pcycle_perm">pcycle_perm</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pcycle_sym">pcycle_sym</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pcycle_traject">pcycle_traject</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pcycle_id">pcycle_id</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.action.html#pcycle_actperm">pcycle_actperm</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv">pdiv</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv">Pdiv</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdivP">pdivP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv_pfactor">pdiv_pfactor</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv_id">pdiv_id</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv_min_dvd">pdiv_min_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv_gt0">pdiv_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv_leq">pdiv_leq</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv_dvd">pdiv_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pdiv_prime">pdiv_prime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pdiv_p_elt">pdiv_p_elt</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField">Pdiv.ClosedField</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.closed">Pdiv.ClosedField.closed</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.closed.F">Pdiv.ClosedField.closed.F</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.coprimepP">Pdiv.ClosedField.coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.root_coprimep">Pdiv.ClosedField.root_coprimep</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain">Pdiv.CommonIdomain</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.apply_irredp">Pdiv.CommonIdomain.apply_irredp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Bezoutp">Pdiv.CommonIdomain.Bezoutp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Bezout_coprimepPn">Pdiv.CommonIdomain.Bezout_coprimepPn</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Bezout_coprimepP">Pdiv.CommonIdomain.Bezout_coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep">Pdiv.CommonIdomain.coprimep</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepP">Pdiv.CommonIdomain.coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepp">Pdiv.CommonIdomain.coprimepp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepPn">Pdiv.CommonIdomain.coprimepPn</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepX">Pdiv.CommonIdomain.coprimepX</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_XsubC">Pdiv.CommonIdomain.coprimep_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_addl_mul">Pdiv.CommonIdomain.coprimep_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_comp_poly">Pdiv.CommonIdomain.coprimep_comp_poly</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_gdco">Pdiv.CommonIdomain.coprimep_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_div_gcd">Pdiv.CommonIdomain.coprimep_div_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_expr">Pdiv.CommonIdomain.coprimep_expr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_expl">Pdiv.CommonIdomain.coprimep_expl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_pexpr">Pdiv.CommonIdomain.coprimep_pexpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_pexpl">Pdiv.CommonIdomain.coprimep_pexpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_mull">Pdiv.CommonIdomain.coprimep_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_mulr">Pdiv.CommonIdomain.coprimep_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_root">Pdiv.CommonIdomain.coprimep_root</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_modr">Pdiv.CommonIdomain.coprimep_modr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_modl">Pdiv.CommonIdomain.coprimep_modl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_dvdr">Pdiv.CommonIdomain.coprimep_dvdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_dvdl">Pdiv.CommonIdomain.coprimep_dvdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_sym">Pdiv.CommonIdomain.coprimep_sym</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_scaler">Pdiv.CommonIdomain.coprimep_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_scalel">Pdiv.CommonIdomain.coprimep_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_def">Pdiv.CommonIdomain.coprimep_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_size_gcd">Pdiv.CommonIdomain.coprimep_size_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep0">Pdiv.CommonIdomain.coprimep0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep1">Pdiv.CommonIdomain.coprimep1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprime0p">Pdiv.CommonIdomain.coprime0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprime1p">Pdiv.CommonIdomain.coprime1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divpN0">Pdiv.CommonIdomain.divpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp_eq0">Pdiv.CommonIdomain.divp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp_dvd">Pdiv.CommonIdomain.divp_dvd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp_small">Pdiv.CommonIdomain.divp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp0">Pdiv.CommonIdomain.divp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp1">Pdiv.CommonIdomain.divp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.div0p">Pdiv.CommonIdomain.div0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdpN0">Pdiv.CommonIdomain.dvdpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdpp">Pdiv.CommonIdomain.dvdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_prod_XsubC">Pdiv.CommonIdomain.dvdp_prod_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul_XsubC">Pdiv.CommonIdomain.dvdp_mul_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_comp_poly">Pdiv.CommonIdomain.dvdp_comp_poly</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gdco">Pdiv.CommonIdomain.dvdp_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_pexp2r">Pdiv.CommonIdomain.dvdp_pexp2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_div_eq0">Pdiv.CommonIdomain.dvdp_div_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcd_idr">Pdiv.CommonIdomain.dvdp_gcd_idr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcd_idl">Pdiv.CommonIdomain.dvdp_gcd_idl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcd">Pdiv.CommonIdomain.dvdp_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcdr">Pdiv.CommonIdomain.dvdp_gcdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcdl">Pdiv.CommonIdomain.dvdp_gcdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcdlr">Pdiv.CommonIdomain.dvdp_gcdlr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_size_eqp">Pdiv.CommonIdomain.dvdp_size_eqp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_opp">Pdiv.CommonIdomain.dvdp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_scalel">Pdiv.CommonIdomain.dvdp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_scaler">Pdiv.CommonIdomain.dvdp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_eqp1">Pdiv.CommonIdomain.dvdp_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_XsubCl">Pdiv.CommonIdomain.dvdp_XsubCl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp_sub">Pdiv.CommonIdomain.dvdp_exp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp2r">Pdiv.CommonIdomain.dvdp_exp2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_Pexp2l">Pdiv.CommonIdomain.dvdp_Pexp2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp2l">Pdiv.CommonIdomain.dvdp_exp2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp">Pdiv.CommonIdomain.dvdp_exp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul2l">Pdiv.CommonIdomain.dvdp_mul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul2r">Pdiv.CommonIdomain.dvdp_mul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mulIr">Pdiv.CommonIdomain.dvdp_mulIr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mulIl">Pdiv.CommonIdomain.dvdp_mulIl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_trans">Pdiv.CommonIdomain.dvdp_trans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mod">Pdiv.CommonIdomain.dvdp_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_sub">Pdiv.CommonIdomain.dvdp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_subl">Pdiv.CommonIdomain.dvdp_subl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_subr">Pdiv.CommonIdomain.dvdp_subr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_add_eq">Pdiv.CommonIdomain.dvdp_add_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_add">Pdiv.CommonIdomain.dvdp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_addl">Pdiv.CommonIdomain.dvdp_addl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_addr">Pdiv.CommonIdomain.dvdp_addr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul">Pdiv.CommonIdomain.dvdp_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mulr">Pdiv.CommonIdomain.dvdp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mull">Pdiv.CommonIdomain.dvdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_leq">Pdiv.CommonIdomain.dvdp_leq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp0">Pdiv.CommonIdomain.dvdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp1">Pdiv.CommonIdomain.dvdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdUp">Pdiv.CommonIdomain.dvdUp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd_eqp_divl">Pdiv.CommonIdomain.dvd_eqp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd0p">Pdiv.CommonIdomain.dvd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd0pP">Pdiv.CommonIdomain.dvd0pP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd1p">Pdiv.CommonIdomain.dvd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp">Pdiv.CommonIdomain.egcdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdpE">Pdiv.CommonIdomain.egcdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdpP">Pdiv.CommonIdomain.egcdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp_recP">Pdiv.CommonIdomain.egcdp_recP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp_rec">Pdiv.CommonIdomain.egcdp_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp0">Pdiv.CommonIdomain.egcdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqpP">Pdiv.CommonIdomain.eqpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqpxx">Pdiv.CommonIdomain.eqpxx</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_monic">Pdiv.CommonIdomain.eqp_monic</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_coprimepl">Pdiv.CommonIdomain.eqp_coprimepl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_coprimepr">Pdiv.CommonIdomain.eqp_coprimepr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rgcd_gcd">Pdiv.CommonIdomain.eqp_rgcd_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_gcd">Pdiv.CommonIdomain.eqp_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_gcdl">Pdiv.CommonIdomain.eqp_gcdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_gcdr">Pdiv.CommonIdomain.eqp_gcdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rdiv_div">Pdiv.CommonIdomain.eqp_rdiv_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rmod_mod">Pdiv.CommonIdomain.eqp_rmod_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_root">Pdiv.CommonIdomain.eqp_root</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_exp">Pdiv.CommonIdomain.eqp_exp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mulr">Pdiv.CommonIdomain.eqp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mull">Pdiv.CommonIdomain.eqp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mul2l">Pdiv.CommonIdomain.eqp_mul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mul2r">Pdiv.CommonIdomain.eqp_mul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_dvdl">Pdiv.CommonIdomain.eqp_dvdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_dvdr">Pdiv.CommonIdomain.eqp_dvdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_size">Pdiv.CommonIdomain.eqp_size</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_scale">Pdiv.CommonIdomain.eqp_scale</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rtrans">Pdiv.CommonIdomain.eqp_rtrans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_ltrans">Pdiv.CommonIdomain.eqp_ltrans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_trans">Pdiv.CommonIdomain.eqp_trans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_sym">Pdiv.CommonIdomain.eqp_sym</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_eq">Pdiv.CommonIdomain.eqp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_div_XsubC">Pdiv.CommonIdomain.eqp_div_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp0">Pdiv.CommonIdomain.eqp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp01">Pdiv.CommonIdomain.eqp01</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eq_dvdp">Pdiv.CommonIdomain.eq_dvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_gcdpl">Pdiv.CommonIdomain.Gauss_gcdpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_gcdpr">Pdiv.CommonIdomain.Gauss_gcdpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_dvdp">Pdiv.CommonIdomain.Gauss_dvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_dvdpr">Pdiv.CommonIdomain.Gauss_dvdpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_dvdpl">Pdiv.CommonIdomain.Gauss_dvdpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp">Pdiv.CommonIdomain.gcdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdpC">Pdiv.CommonIdomain.gcdpC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdpE">Pdiv.CommonIdomain.gcdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdpp">Pdiv.CommonIdomain.gcdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_comp_poly">Pdiv.CommonIdomain.gcdp_comp_poly</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mul2r">Pdiv.CommonIdomain.gcdp_mul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mul2l">Pdiv.CommonIdomain.gcdp_mul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_eqp1">Pdiv.CommonIdomain.gcdp_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_def">Pdiv.CommonIdomain.gcdp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_modl">Pdiv.CommonIdomain.gcdp_modl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_modr">Pdiv.CommonIdomain.gcdp_modr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_eq0">Pdiv.CommonIdomain.gcdp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_exp">Pdiv.CommonIdomain.gcdp_exp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_scaler">Pdiv.CommonIdomain.gcdp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_scalel">Pdiv.CommonIdomain.gcdp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mulr">Pdiv.CommonIdomain.gcdp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mull">Pdiv.CommonIdomain.gcdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_addr">Pdiv.CommonIdomain.gcdp_addr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_addl">Pdiv.CommonIdomain.gcdp_addl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_addl_mul">Pdiv.CommonIdomain.gcdp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_rec">Pdiv.CommonIdomain.gcdp_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp0">Pdiv.CommonIdomain.gcdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp1">Pdiv.CommonIdomain.gcdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcd0p">Pdiv.CommonIdomain.gcd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcd1p">Pdiv.CommonIdomain.gcd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop">Pdiv.CommonIdomain.gdcop</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcopP">Pdiv.CommonIdomain.gdcopP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.GdcopSpec">Pdiv.CommonIdomain.GdcopSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop_recP">Pdiv.CommonIdomain.gdcop_recP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop_spec">Pdiv.CommonIdomain.gdcop_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop_rec">Pdiv.CommonIdomain.gdcop_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop0">Pdiv.CommonIdomain.gdcop0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gtNdvdp">Pdiv.CommonIdomain.gtNdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.IDomainPseudoDivision">Pdiv.CommonIdomain.IDomainPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.IDomainPseudoDivision.R">Pdiv.CommonIdomain.IDomainPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irredp_XsubCP">Pdiv.CommonIdomain.irredp_XsubCP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irredp_XsubC">Pdiv.CommonIdomain.irredp_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irredp_neq0">Pdiv.CommonIdomain.irredp_neq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irreducible_poly">Pdiv.CommonIdomain.irreducible_poly</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_gcdpr">Pdiv.CommonIdomain.leq_gcdpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_gcdpl">Pdiv.CommonIdomain.leq_gcdpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_divpl">Pdiv.CommonIdomain.leq_divpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_modp">Pdiv.CommonIdomain.leq_modp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_divpr">Pdiv.CommonIdomain.leq_divpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_divp">Pdiv.CommonIdomain.leq_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_divpr">Pdiv.CommonIdomain.ltn_divpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_modpN0">Pdiv.CommonIdomain.ltn_modpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_divpl">Pdiv.CommonIdomain.ltn_divpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_modp">Pdiv.CommonIdomain.ltn_modp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modpC">Pdiv.CommonIdomain.modpC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modpp">Pdiv.CommonIdomain.modpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_XsubC">Pdiv.CommonIdomain.modp_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_coprime">Pdiv.CommonIdomain.modp_coprime</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_eq0">Pdiv.CommonIdomain.modp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_eq0P">Pdiv.CommonIdomain.modp_eq0P</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_mod">Pdiv.CommonIdomain.modp_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_mulr">Pdiv.CommonIdomain.modp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_mull">Pdiv.CommonIdomain.modp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_small">Pdiv.CommonIdomain.modp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp0">Pdiv.CommonIdomain.modp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp1">Pdiv.CommonIdomain.modp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.mod0p">Pdiv.CommonIdomain.mod0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.mulp_gcdl">Pdiv.CommonIdomain.mulp_gcdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.mulp_gcdr">Pdiv.CommonIdomain.mulp_gcdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.polyC_eqp1">Pdiv.CommonIdomain.polyC_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.polyXsubCP">Pdiv.CommonIdomain.polyXsubCP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.polyXsubC_eqp1">Pdiv.CommonIdomain.polyXsubC_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.rcoprimep_coprimep">Pdiv.CommonIdomain.rcoprimep_coprimep</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_gdco">Pdiv.CommonIdomain.root_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_biggcd">Pdiv.CommonIdomain.root_biggcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_gcd">Pdiv.CommonIdomain.root_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_bigmul">Pdiv.CommonIdomain.root_bigmul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_factor_theorem">Pdiv.CommonIdomain.root_factor_theorem</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.scalp0">Pdiv.CommonIdomain.scalp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_gcdp1">Pdiv.CommonIdomain.size_gcdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_gcd1p">Pdiv.CommonIdomain.size_gcd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_poly_eq1">Pdiv.CommonIdomain.size_poly_eq1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_divp">Pdiv.CommonIdomain.size_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size2_dvdp_gdco">Pdiv.CommonIdomain.size2_dvdp_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.uniq_roots_dvdp">Pdiv.CommonIdomain.uniq_roots_dvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing">Pdiv.CommonRing</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.ComEdivnSpec">Pdiv.CommonRing.ComEdivnSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.comm_redivpP">Pdiv.CommonRing.comm_redivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.comm_redivp_spec">Pdiv.CommonRing.comm_redivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.leq_rmodp">Pdiv.CommonRing.leq_rmodp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.leq_rdivp">Pdiv.CommonRing.leq_rdivp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.ltn_rmodpN0">Pdiv.CommonRing.ltn_rmodpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.ltn_rmodp">Pdiv.CommonRing.ltn_rmodp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.Nrdvdp_small">Pdiv.CommonRing.Nrdvdp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rcoprimep">Pdiv.CommonRing.rcoprimep</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdivp">Pdiv.CommonRing.rdivp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdivp_small">Pdiv.CommonRing.rdivp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdivp0">Pdiv.CommonRing.rdivp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdiv0p">Pdiv.CommonRing.rdiv0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp">Pdiv.CommonRing.rdvdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdpN0">Pdiv.CommonRing.rdvdpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp_leq">Pdiv.CommonRing.rdvdp_leq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp0">Pdiv.CommonRing.rdvdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp1">Pdiv.CommonRing.rdvdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvd0p">Pdiv.CommonRing.rdvd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvd0pP">Pdiv.CommonRing.rdvd0pP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvd1p">Pdiv.CommonRing.rdvd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp">Pdiv.CommonRing.redivp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_def">Pdiv.CommonRing.redivp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_key">Pdiv.CommonRing.redivp_key</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_expanded_def">Pdiv.CommonRing.redivp_expanded_def</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_rec">Pdiv.CommonRing.redivp_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcdp">Pdiv.CommonRing.rgcdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcdpE">Pdiv.CommonRing.rgcdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcdp0">Pdiv.CommonRing.rgcdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcd0p">Pdiv.CommonRing.rgcd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgdcop">Pdiv.CommonRing.rgdcop</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgdcop_rec">Pdiv.CommonRing.rgdcop_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgdcop0">Pdiv.CommonRing.rgdcop0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.RingPseudoDivision">Pdiv.CommonRing.RingPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.RingPseudoDivision.R">Pdiv.CommonRing.RingPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp">Pdiv.CommonRing.rmodp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodpC">Pdiv.CommonRing.rmodpC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodpp">Pdiv.CommonRing.rmodpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp_eq0">Pdiv.CommonRing.rmodp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp_eq0P">Pdiv.CommonRing.rmodp_eq0P</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp_small">Pdiv.CommonRing.rmodp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp0">Pdiv.CommonRing.rmodp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp1">Pdiv.CommonRing.rmodp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmod0p">Pdiv.CommonRing.rmod0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rscalp">Pdiv.CommonRing.rscalp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rscalp_small">Pdiv.CommonRing.rscalp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing">Pdiv.ComRing</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.CommutativeRingPseudoDivision">Pdiv.ComRing.CommutativeRingPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.CommutativeRingPseudoDivision.R">Pdiv.ComRing.CommutativeRingPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.EdivnSpec">Pdiv.ComRing.EdivnSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.rdivp_eq">Pdiv.ComRing.rdivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.rdvdp_eq">Pdiv.ComRing.rdvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.rdvdp_eqP">Pdiv.ComRing.rdvdp_eqP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.redivpP">Pdiv.ComRing.redivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.redivp_spec">Pdiv.ComRing.redivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field">Pdiv.Field</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.Bezout_eq1_coprimepP">Pdiv.Field.Bezout_eq1_coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.coprimep_map">Pdiv.Field.coprimep_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.cubic_irreducible">Pdiv.Field.cubic_irreducible</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpAC">Pdiv.Field.divpAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpE">Pdiv.Field.divpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpK">Pdiv.Field.divpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpKC">Pdiv.Field.divpKC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpp">Pdiv.Field.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpP">Pdiv.Field.divpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_divl">Pdiv.Field.divp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_pmul2r">Pdiv.Field.divp_pmul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_pmul2l">Pdiv.Field.divp_pmul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_mulCA">Pdiv.Field.divp_mulCA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_mulAC">Pdiv.Field.divp_mulAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_mulA">Pdiv.Field.divp_mulA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_addl_mul">Pdiv.Field.divp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_addl_mul_small">Pdiv.Field.divp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_add">Pdiv.Field.divp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_opp">Pdiv.Field.divp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_scaler">Pdiv.Field.divp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_scalel">Pdiv.Field.divp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_modpP">Pdiv.Field.divp_modpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_eq">Pdiv.Field.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdpE">Pdiv.Field.dvdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdpP">Pdiv.Field.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_map">Pdiv.Field.dvdp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_gdcor">Pdiv.Field.dvdp_gdcor</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_eq_mul">Pdiv.Field.dvdp_eq_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_eq_div">Pdiv.Field.dvdp_eq_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_eq">Pdiv.Field.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivpP">Pdiv.Field.edivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.EdivpSpec">Pdiv.Field.EdivpSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_map">Pdiv.Field.edivp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_eq">Pdiv.Field.edivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_spec">Pdiv.Field.edivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_def">Pdiv.Field.edivp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.egcdp_map">Pdiv.Field.egcdp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqpfP">Pdiv.Field.eqpfP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqpf_eq">Pdiv.Field.eqpf_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_map">Pdiv.Field.eqp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_rgdco_gdco">Pdiv.Field.eqp_rgdco_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_gdcol">Pdiv.Field.eqp_gdcol</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_gdcor">Pdiv.Field.eqp_gdcor</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_div">Pdiv.Field.eqp_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_divr">Pdiv.Field.eqp_divr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_mod">Pdiv.Field.eqp_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_modpr">Pdiv.Field.eqp_modpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_divl">Pdiv.Field.eqp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_modpl">Pdiv.Field.eqp_modpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.expp_sub">Pdiv.Field.expp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision">Pdiv.Field.FieldDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.F">Pdiv.Field.FieldDivision.F</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldMap">Pdiv.Field.FieldDivision.FieldMap</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldMap.f">Pdiv.Field.FieldDivision.FieldMap.f</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldMap.rR">Pdiv.Field.FieldDivision.FieldMap.rR</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#ffd296f893410e849a35ec5356a13636">_ ^f (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldRingMap">Pdiv.Field.FieldDivision.FieldRingMap</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldRingMap.f">Pdiv.Field.FieldDivision.FieldRingMap.f</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldRingMap.rR">Pdiv.Field.FieldDivision.FieldRingMap.rR</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#7ccad1b5013efc6ffe407f7b77347c15">_ ^f (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.gcdp_map">Pdiv.Field.gcdp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.gdcop_map">Pdiv.Field.gdcop_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.gdcop_rec_map">Pdiv.Field.gdcop_rec_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.leq_trunc_divp">Pdiv.Field.leq_trunc_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.map_modp">Pdiv.Field.map_modp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.map_divp">Pdiv.Field.map_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modNp">Pdiv.Field.modNp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modpE">Pdiv.Field.modpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modpP">Pdiv.Field.modpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_mul">Pdiv.Field.modp_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_addl_mul_small">Pdiv.Field.modp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_add">Pdiv.Field.modp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_opp">Pdiv.Field.modp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_scaler">Pdiv.Field.modp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_scalel">Pdiv.Field.modp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.mulKp">Pdiv.Field.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.mulpK">Pdiv.Field.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.redivp_map">Pdiv.Field.redivp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.reducible_cubic_root">Pdiv.Field.reducible_cubic_root</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.scalpE">Pdiv.Field.scalpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.scalp_map">Pdiv.Field.scalp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Idomain">Pdiv.Idomain</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs">Pdiv.IdomainDefs</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.divp">Pdiv.IdomainDefs.divp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.dvdp">Pdiv.IdomainDefs.dvdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.edivp">Pdiv.IdomainDefs.edivp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.edivp_key">Pdiv.IdomainDefs.edivp_key</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.edivp_expanded_def">Pdiv.IdomainDefs.edivp_expanded_def</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.eqp">Pdiv.IdomainDefs.eqp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.IDomainPseudoDivisionDefs">Pdiv.IdomainDefs.IDomainPseudoDivisionDefs</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.IDomainPseudoDivisionDefs.R">Pdiv.IdomainDefs.IDomainPseudoDivisionDefs.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.modp">Pdiv.IdomainDefs.modp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.scalp">Pdiv.IdomainDefs.scalp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#952776a2e27e0a80427a97e8cd81c9aa">_ %= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#64fc6df2b95b79b2107dd5d7f2014b97">_ %| _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#d8832071e7663562cc14f17c6edf99dc">_ %% _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#72a0c853cc9a32bb5fdc8a920a96e7c6">_ %/ _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic">Pdiv.IdomainMonic</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.divpE">Pdiv.IdomainMonic.divpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.divpp">Pdiv.IdomainMonic.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.divp_eq">Pdiv.IdomainMonic.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.dvdpP">Pdiv.IdomainMonic.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.dvdp_eq">Pdiv.IdomainMonic.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.modpE">Pdiv.IdomainMonic.modpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor">Pdiv.IdomainMonic.MonicDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor.monq">Pdiv.IdomainMonic.MonicDivisor.monq</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor.q">Pdiv.IdomainMonic.MonicDivisor.q</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor.R">Pdiv.IdomainMonic.MonicDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.mulKp">Pdiv.IdomainMonic.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.mulpK">Pdiv.IdomainMonic.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.scalpE">Pdiv.IdomainMonic.scalpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit">Pdiv.IdomainUnit</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpAC">Pdiv.IdomainUnit.divpAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpK">Pdiv.IdomainUnit.divpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpKC">Pdiv.IdomainUnit.divpKC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpp">Pdiv.IdomainUnit.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpP">Pdiv.IdomainUnit.divpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_scaler">Pdiv.IdomainUnit.divp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_divl">Pdiv.IdomainUnit.divp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_pmul2r">Pdiv.IdomainUnit.divp_pmul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_pmul2l">Pdiv.IdomainUnit.divp_pmul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_mulCA">Pdiv.IdomainUnit.divp_mulCA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_mulAC">Pdiv.IdomainUnit.divp_mulAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_mulA">Pdiv.IdomainUnit.divp_mulA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_addl_mul">Pdiv.IdomainUnit.divp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_addl_mul_small">Pdiv.IdomainUnit.divp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_add">Pdiv.IdomainUnit.divp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_opp">Pdiv.IdomainUnit.divp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_scalel">Pdiv.IdomainUnit.divp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_eq">Pdiv.IdomainUnit.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdpP">Pdiv.IdomainUnit.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdp_eq_mul">Pdiv.IdomainUnit.dvdp_eq_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdp_eq_div">Pdiv.IdomainUnit.dvdp_eq_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdp_eq">Pdiv.IdomainUnit.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.edivpP">Pdiv.IdomainUnit.edivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.eqp_divl">Pdiv.IdomainUnit.eqp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.eqp_modpl">Pdiv.IdomainUnit.eqp_modpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.expp_sub">Pdiv.IdomainUnit.expp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.leq_trunc_divp">Pdiv.IdomainUnit.leq_trunc_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modpP">Pdiv.IdomainUnit.modpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_scaler">Pdiv.IdomainUnit.modp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_mul">Pdiv.IdomainUnit.modp_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_addl_mul_small">Pdiv.IdomainUnit.modp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_add">Pdiv.IdomainUnit.modp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_opp">Pdiv.IdomainUnit.modp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_scalel">Pdiv.IdomainUnit.modp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor">Pdiv.IdomainUnit.MoreUnitDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor.d">Pdiv.IdomainUnit.MoreUnitDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor.R">Pdiv.IdomainUnit.MoreUnitDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor.ulcd">Pdiv.IdomainUnit.MoreUnitDivisor.ulcd</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.mulKp">Pdiv.IdomainUnit.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.mulpK">Pdiv.IdomainUnit.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.ucl_eqp_eq">Pdiv.IdomainUnit.ucl_eqp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.ulc_eqpP">Pdiv.IdomainUnit.ulc_eqpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor">Pdiv.IdomainUnit.UnitDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor.d">Pdiv.IdomainUnit.UnitDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor.R">Pdiv.IdomainUnit.UnitDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor.ulcd">Pdiv.IdomainUnit.UnitDivisor.ulcd</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring">Pdiv.Ring</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg">Pdiv.RingComRreg</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor">Pdiv.RingComRreg.ComRegDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.Cdl">Pdiv.RingComRreg.ComRegDivisor.Cdl</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.d">Pdiv.RingComRreg.ComRegDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.R">Pdiv.RingComRreg.ComRegDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.Rreg">Pdiv.RingComRreg.ComRegDivisor.Rreg</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.eq_rdvdp">Pdiv.RingComRreg.eq_rdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdivpK">Pdiv.RingComRreg.rdivpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdivpp">Pdiv.RingComRreg.rdivpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdivp_eq">Pdiv.RingComRreg.rdivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.Rdvdp">Pdiv.RingComRreg.Rdvdp</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.RdvdpN">Pdiv.RingComRreg.RdvdpN</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdpp">Pdiv.RingComRreg.rdvdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdp_mull">Pdiv.RingComRreg.rdvdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdp_eqP">Pdiv.RingComRreg.rdvdp_eqP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdp_spec">Pdiv.RingComRreg.rdvdp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.redivp_eq">Pdiv.RingComRreg.redivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rmodpp">Pdiv.RingComRreg.rmodpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rmodp_mull">Pdiv.RingComRreg.rmodp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic">Pdiv.RingMonic</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.eq_rdvdp">Pdiv.RingMonic.eq_rdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor">Pdiv.RingMonic.MonicDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor.d">Pdiv.RingMonic.MonicDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor.mond">Pdiv.RingMonic.MonicDivisor.mond</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor.R">Pdiv.RingMonic.MonicDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivpK">Pdiv.RingMonic.rdivpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivpp">Pdiv.RingMonic.rdivpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_mull">Pdiv.RingMonic.rdivp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addr">Pdiv.RingMonic.rdivp_addr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addl">Pdiv.RingMonic.rdivp_addl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addl_mul">Pdiv.RingMonic.rdivp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addl_mul_small">Pdiv.RingMonic.rdivp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_eq">Pdiv.RingMonic.rdivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdvdpP">Pdiv.RingMonic.rdvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdvdpp">Pdiv.RingMonic.rdvdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdvdp_mull">Pdiv.RingMonic.rdvdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.redivp_eq">Pdiv.RingMonic.redivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodpp">Pdiv.RingMonic.rmodpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_mulmr">Pdiv.RingMonic.rmodp_mulmr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_add">Pdiv.RingMonic.rmodp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_addl_mul_small">Pdiv.RingMonic.rmodp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_mull">Pdiv.RingMonic.rmodp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.ExtraMonicDivisor">Pdiv.Ring.ExtraMonicDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.ExtraMonicDivisor.R">Pdiv.Ring.ExtraMonicDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.polyXsubCP">Pdiv.Ring.polyXsubCP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.rdivp1">Pdiv.Ring.rdivp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.rdvdp_XsubCl">Pdiv.Ring.rdvdp_XsubCl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.root_factor_theorem">Pdiv.Ring.root_factor_theorem</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing">Pdiv.UnitRing</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing.uniq_roots_rdvdp">Pdiv.UnitRing.uniq_roots_rdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing.UnitRingPseudoDivision">Pdiv.UnitRing.UnitRingPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing.UnitRingPseudoDivision.R">Pdiv.UnitRing.UnitRingPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain">Pdiv.WeakIdomain</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpE">Pdiv.WeakIdomain.divpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpK">Pdiv.WeakIdomain.divpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpKC">Pdiv.WeakIdomain.divpKC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpp">Pdiv.WeakIdomain.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divp_eq">Pdiv.WeakIdomain.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.dvdpE">Pdiv.WeakIdomain.dvdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.dvdpP">Pdiv.WeakIdomain.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.dvdp_eq">Pdiv.WeakIdomain.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivpP">Pdiv.WeakIdomain.edivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_eq">Pdiv.WeakIdomain.edivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_spec">Pdiv.WeakIdomain.edivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_redivp">Pdiv.WeakIdomain.edivp_redivp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_def">Pdiv.WeakIdomain.edivp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.Fedivp_spec">Pdiv.WeakIdomain.Fedivp_spec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.lc_expn_scalp_neq0">Pdiv.WeakIdomain.lc_expn_scalp_neq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.modpE">Pdiv.WeakIdomain.modpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.mulKp">Pdiv.WeakIdomain.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.mulpK">Pdiv.WeakIdomain.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.Redivp_spec">Pdiv.WeakIdomain.Redivp_spec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.scalpE">Pdiv.WeakIdomain.scalpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision">Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision.R">Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pElem">pElem</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pElemI">pElemI</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pElemJ">pElemJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pElemP">pElemP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pElemS">pElemS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm">perm</a> [abbreviation, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#Perm">Perm</a> [constructor, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html">perm</a> [library]<br/> -<a href="mathcomp.fingroup.action.html#PermAction">PermAction</a> [section, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#PermAction.rT">PermAction.rT</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDef">PermDef</a> [module, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDefSection">PermDefSection</a> [section, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDefSection.T">PermDefSection.T</a> [variable, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDefSig">PermDefSig</a> [module, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDefSig.fun_of_permE">PermDefSig.fun_of_permE</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDefSig.fun_of_perm">PermDefSig.fun_of_perm</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDefSig.perm">PermDefSig.perm</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDefSig.permE">PermDefSig.permE</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDef.fun_of_permE">PermDef.fun_of_permE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDef.fun_of_perm">PermDef.fun_of_perm</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDef.perm">PermDef.perm</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermDef.permE">PermDef.permE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#permE">permE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permEl">permEl</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#PermIn">PermIn</a> [section, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#PermIn.A">PermIn.A</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#PermIn.f">PermIn.f</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#PermIn.injf">PermIn.injf</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#PermIn.sBf">PermIn.sBf</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#PermIn.T">PermIn.T</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.perm.html#permJ">permJ</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#permK">permK</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#permKV">permKV</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#permM">permM</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#permP">permP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permP">permP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permPl">permPl</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permPr">permPr</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perms">perms</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#PermSeq">PermSeq</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#PermSeq.T">PermSeq.T</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perms_rec">perms_rec</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermutationParity">PermutationParity</a> [section, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#PermutationParity.T">PermutationParity.T</a> [variable, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permutations">permutations</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Permutations">Permutations</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permutationsE">permutationsE</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permutationsErot">permutationsErot</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permutations_all_uniq">permutations_all_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#permutations_uniq">permutations_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Permutations.cons_permsE">Permutations.cons_permsE</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Permutations.permsP">Permutations.permsP</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Permutations.T">Permutations.T</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.fingroup.perm.html#permX">permX</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.ssreflect.path.html#perm_sortP">perm_sortP</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#perm_sort">perm_sort</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#perm_merge">perm_merge</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_onM">perm_onM</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_on1">perm_on1</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_closed">perm_closed</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_on">perm_on</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_of_baseFinGroupMixin">perm_of_baseFinGroupMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_mulP">perm_mulP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_invP">perm_invP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_oneP">perm_oneP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_mul">perm_mul</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_inv">perm_inv</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_invK">perm_invK</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_one">perm_one</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_onto">perm_onto</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_inj">perm_inj</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_def">perm_def</a> [abbreviation, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_proof">perm_proof</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_finMixin">perm_finMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_countMixin">perm_countMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_choiceMixin">perm_choiceMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_eqMixin">perm_eqMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_of">perm_of</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm_type">perm_type</a> [inductive, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#perm_bigcprod">perm_bigcprod</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.algebra.vector.html#perm_basis">perm_basis</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#perm_free">perm_free</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.matrix.html#perm_mxV">perm_mxV</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#perm_mx_is_perm">perm_mx_is_perm</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#perm_mxM">perm_mxM</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#perm_mx1">perm_mx1</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#perm_mx">perm_mx</a> [definition, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#perm_inE">perm_inE</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#perm_in_on">perm_in_on</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#perm_in">perm_in</a> [definition, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#perm_in_inj">perm_in_inj</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_undup_count">perm_undup_count</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_iotaP">perm_eq_iotaP</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_consP">perm_eq_consP</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_nilP">perm_eq_nilP</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_small">perm_eq_small</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_all">perm_eq_all</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_flatten">perm_eq_flatten</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_rev">perm_eq_rev</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_uniq">perm_eq_uniq</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_mem">perm_eq_mem</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_size">perm_eq_size</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_trans">perm_eq_trans</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_sym">perm_eq_sym</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq_refl">perm_eq_refl</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eqlE">perm_eqlE</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eqrP">perm_eqrP</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eqlP">perm_eqlP</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eqP">perm_eqP</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_permutations">perm_permutations</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_count_undup">perm_count_undup</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_tseq">perm_tseq</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_tally_seq">perm_tally_seq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_tally">perm_tally</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_flatten">perm_flatten</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_sumn">perm_sumn</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_iotaP">perm_iotaP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_pmap">perm_pmap</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_map_inj">perm_map_inj</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_map">perm_map</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_to_subseq">perm_to_subseq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_to_rem">perm_to_rem</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eqr">perm_eqr</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eql">perm_eql</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_undup">perm_undup</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_uniq">perm_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_small_eq">perm_small_eq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_all">perm_all</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_has">perm_has</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_consP">perm_consP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_nilP">perm_nilP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_mem">perm_mem</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_size">perm_size</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_filterC">perm_filterC</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_filter">perm_filter</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_rev">perm_rev</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_rotr">perm_rotr</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_rot">perm_rot</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_rcons">perm_rcons</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_catCA">perm_catCA</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_catAC">perm_catAC</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_cat">perm_cat</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_catr">perm_catr</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_cat2r">perm_cat2r</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_cons">perm_cons</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_catl">perm_catl</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_cat2l">perm_cat2l</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_catC">perm_catC</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eqr">perm_eqr</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eql">perm_eql</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_trans">perm_trans</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_sym">perm_sym</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_refl">perm_refl</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#perm_eq">perm_eq</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.fingroup.action.html#perm_faithful">perm_faithful</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#perm_act1P">perm_act1P</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.fingroup.action.html#perm_mact">perm_mact</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#perm_big">perm_big</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.fingroup.perm.html#perm1">perm1</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#PervasiveMonoids">PervasiveMonoids</a> [section, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pexpIrz">pexpIrz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pexprz_eq1">pexprz_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial">Pextraspecial</a> [module, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.act">Pextraspecial.act</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.actP">Pextraspecial.actP</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.Construction">Pextraspecial.Construction</a> [section, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.Construction.p">Pextraspecial.Construction.p</a> [variable, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.gactP">Pextraspecial.gactP</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.groupAction">Pextraspecial.groupAction</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.gtype">Pextraspecial.gtype</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.gtype_key">Pextraspecial.gtype_key</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.ngtype">Pextraspecial.ngtype</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.ngtypeQ">Pextraspecial.ngtypeQ</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pfactor">pfactor</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pfactorK">pfactorK</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pfactorKpdiv">pfactorKpdiv</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pfactor_coprime">pfactor_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pfactor_dvdnn">pfactor_dvdnn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pfactor_dvdn">pfactor_dvdn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pfactor_gt0">pfactor_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.finfun.html#pfamily">pfamily</a> [abbreviation, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/> -<a href="mathcomp.ssreflect.finfun.html#pfamilyP">pfamilyP</a> [lemma, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/> -<a href="mathcomp.ssreflect.finfun.html#pfamily_mem">pfamily_mem</a> [definition, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/> -<a href="mathcomp.ssreflect.finfun.html#pffun_on">pffun_on</a> [abbreviation, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/> -<a href="mathcomp.ssreflect.finfun.html#pffun_onP">pffun_onP</a> [lemma, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/> -<a href="mathcomp.ssreflect.finfun.html#pffun_on_mem">pffun_on_mem</a> [definition, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#pFtoE">pFtoE</a> [abbreviation, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroup">pgroup</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html">pgroup</a> [library]<br/> -<a href="mathcomp.solvable.pgroup.html#PgroupDefs">PgroupDefs</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PgroupDefs.gT">PgroupDefs.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroupE">pgroupE</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroupJ">pgroupJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroupM">pgroupM</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroupNK">pgroupNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroupP">pgroupP</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PgroupProps">PgroupProps</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PgroupProps.gT">PgroupProps.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroupS">pgroupS</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroup_pdiv">pgroup_pdiv</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroup_p">pgroup_p</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroup_pi">pgroup_pi</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.character.character.html#pgroup_cyclic_faithful">pgroup_cyclic_faithful</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/> -<a href="mathcomp.solvable.sylow.html#pgroup_sol">pgroup_sol</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/> -<a href="mathcomp.solvable.sylow.html#pgroup_nil">pgroup_nil</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/> -<a href="mathcomp.solvable.sylow.html#pgroup_fix_mod">pgroup_fix_mod</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pgroup1">pgroup1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHall">pHall</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHallE">pHallE</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHallJ">pHallJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHallJnorm">pHallJnorm</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHallJ2">pHallJ2</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHallNK">pHallNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHallP">pHallP</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHall_id">pHall_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHall_subl">pHall_subl</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHall_Hall">pHall_Hall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHall_pgroup">pHall_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pHall_sub">pHall_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PhiJ">PhiJ</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PhiS">PhiS</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_mulg">Phi_mulg</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_cprod">Phi_cprod</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_min">Phi_min</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_Mho">Phi_Mho</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_joing">Phi_joing</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_quotient_abelem">Phi_quotient_abelem</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_quotient_cyclic">Phi_quotient_cyclic</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_quotient_id">Phi_quotient_id</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_normal">Phi_normal</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_char">Phi_char</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_nongen">Phi_nongen</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_proper">Phi_proper</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_sub_max">Phi_sub_max</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#Phi_sub">Phi_sub</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#Pi">Pi</a> [module, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiAdditive">PiAdditive</a> [section, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.equivV">PiAdditive.equivV</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.Q">PiAdditive.Q</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.V">PiAdditive.V</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.zeroV">PiAdditive.zeroV</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#Pick">Pick</a> [constructor, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pick">pick</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickle">pickle</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickleK">pickleK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickleK_inv">pickleK_inv</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickle_taggedK">pickle_taggedK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickle_tagged">pickle_tagged</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickle_seqK">pickle_seqK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickle_seq">pickle_seq</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickle_invK">pickle_invK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#pickle_inv">pickle_inv</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pickP">pickP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pick_spec">pick_spec</a> [inductive, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pick_true">pick_true</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiConst">PiConst</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_id">pid_mx_id</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_minh">pid_mx_minh</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_minv">pid_mx_minv</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_block">pid_mx_block</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_col">pid_mx_col</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_row">pid_mx_row</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_1">pid_mx_1</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_0">pid_mx_0</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx">pid_mx</a> [definition, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.algebra.matrix.html#pid_mx_key">pid_mx_key</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#piE">piE</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiEmbed">PiEmbed</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiMono1">PiMono1</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiMono2">PiMono2</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph">PiMorph</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph1">PiMorph1</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph11">PiMorph11</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph2">PiMorph2</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#pinvmx">pinvmx</a> [definition, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.solvable.abelian.html#piOhm1">piOhm1</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#piP">piP</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism">PiRMorphism</a> [section, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.equivR">PiRMorphism.equivR</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.Q">PiRMorphism.Q</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.R">PiRMorphism.R</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.zeroR">PiRMorphism.zeroR</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#piSg">piSg</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiSig">PiSig</a> [module, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiSig.E">PiSig.E</a> [axiom, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiSig.f">PiSig.f</a> [axiom, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#PiSpec">PiSpec</a> [constructor, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pi_p'group">pi_p'group</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pi_pgroup">pi_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.field.fieldext.html#pi_subfext_inv">pi_subfext_inv</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.fieldext.html#pi_subfext_mul">pi_subfext_mul</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.fieldext.html#pi_subfext_opp">pi_subfext_opp</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.fieldext.html#pi_subfext_add">pi_subfext_add</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.fieldext.html#pi_subfx_inj">pi_subfx_inj</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_p'nat">pi_p'nat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_pnat">pi_pnat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_of_prime">pi_of_prime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_of_exp">pi_of_exp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_of_part">pi_of_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_ofM">pi_ofM</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_of_dvd">pi_of_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_max_pdiv">pi_max_pdiv</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_pdiv">pi_pdiv</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_of">pi_of</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi_arg">pi_arg</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_invr">pi_invr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_unitr">pi_unitr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_is_multiplicative">pi_is_multiplicative</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_mulr">pi_mulr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_oner">pi_oner</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_is_additive">pi_is_additive</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_addr">pi_addr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_oppr">pi_oppr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#pi_zeror">pi_zeror</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_eq_quot">pi_eq_quot</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_eq_quot_mixin">pi_eq_quot_mixin</a> [projection, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_morph11">pi_morph11</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_mono2">pi_mono2</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_mono1">pi_mono1</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_morph2">pi_morph2</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_morph1">pi_morph1</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_spec">pi_spec</a> [inductive, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#pi_phant">pi_phant</a> [definition, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pi_of_exponent">pi_of_exponent</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.sylow.html#pi_center_nilpotent">pi_center_nilpotent</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pi'_p'group">pi'_p'group</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pi'_p'nat">pi'_p'nat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#Pi.E">Pi.E</a> [definition, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.generic_quotient.html#Pi.f">Pi.f</a> [definition, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/> -<a href="mathcomp.ssreflect.ssrnat.html#plusE">plusE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pmap">pmap</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Pmap">Pmap</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#PmapSub">PmapSub</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#PmapSub.p">PmapSub.p</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#PmapSub.sT">PmapSub.sT</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#PmapSub.T">PmapSub.T</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pmapS_filter">pmapS_filter</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pmap_sub_uniq">pmap_sub_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pmap_uniq">pmap_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pmap_cat">pmap_cat</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#pmap_filter">pmap_filter</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Pmap.aT">Pmap.aT</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Pmap.f">Pmap.f</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Pmap.fK">Pmap.fK</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Pmap.g">Pmap.g</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#Pmap.rT">Pmap.rT</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PMax">PMax</a> [section, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pmaxElem">pmaxElem</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pmaxElemJ">pmaxElemJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pmaxElemP">pmaxElemP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pmaxElemS">pmaxElemS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pmaxElem_LdivP">pmaxElem_LdivP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pmaxElem_exists">pmaxElem_exists</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.maximal.html#pmaxElem_extraspecial">pmaxElem_extraspecial</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PMax.gT">PMax.gT</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PMax.M">PMax.M</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PMax.P">PMax.P</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PMax.p">PMax.p</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#PMax.pP">PMax.pP</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.gfunctor.html#pmorphimF">pmorphimF</a> [lemma, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pmorphim_pHall">pmorphim_pHall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pmorphim_pgroup">pmorphim_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrn">pmulrn</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_rle0">pmulrz_rle0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_rge0">pmulrz_rge0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_rlt0">pmulrz_rlt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_rgt0">pmulrz_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_lle0">pmulrz_lle0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_lge0">pmulrz_lge0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_llt0">pmulrz_llt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#pmulrz_lgt0">pmulrz_lgt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat">pnat</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnatE">pnatE</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnatI">pnatI</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnatNK">pnatNK</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnatP">pnatP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnatPpi">pnatPpi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PnatTheory">PnatTheory</a> [section, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_1">pnat_1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_coprime">pnat_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_div">pnat_div</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_dvd">pnat_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_pi">pnat_pi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_id">pnat_id</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_exp">pnat_exp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#pnat_mul">pnat_mul</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnat_exponent">pnat_exponent</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElem">pnElem</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElemE">pnElemE</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElemI">pnElemI</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElemJ">pnElemJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElemP">pnElemP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElemPcard">pnElemPcard</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElemS">pnElemS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElem_prime">pnElem_prime</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#pnElem0">pnElem0</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly">poly</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#Poly">Poly</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html">poly</a> [library]<br/> -<a href="mathcomp.algebra.poly.html#polyC">polyC</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyCK">polyCK</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolyCompose">PolyCompose</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolyCompose.R">PolyCompose.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#b0797d7dde7f681ae2ccab57f6c6a648">_ \Po _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_inv">polyC_inv</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_exp">polyC_exp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_multiplicative">polyC_multiplicative</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_mul">polyC_mul</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_muln">polyC_muln</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_sub">polyC_sub</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_opp">polyC_opp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_add">polyC_add</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_eq0">polyC_eq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC_inj">polyC_inj</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#polyC_mulrz">polyC_mulrz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC0">polyC0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyC1">polyC1</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.polydiv.html">polydiv</a> [library]<br/> -<a href="mathcomp.algebra.poly.html#PolyK">PolyK</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polynomial">polynomial</a> [record, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#Polynomial">Polynomial</a> [constructor, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#Polynomial">Polynomial</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialComRing">PolynomialComRing</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialComRing.R">PolynomialComRing.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialIdomain">PolynomialIdomain</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialIdomain.R">PolynomialIdomain.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory">PolynomialTheory</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive">PolynomialTheory.OnePrimitive</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.n">PolynomialTheory.OnePrimitive.n</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.n_gt0">PolynomialTheory.OnePrimitive.n_gt0</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.prim_z">PolynomialTheory.OnePrimitive.prim_z</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.z">PolynomialTheory.OnePrimitive.z</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd">PolynomialTheory.PolyOverAdd</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd.addS">PolynomialTheory.PolyOverAdd.addS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd.kS">PolynomialTheory.PolyOverAdd.kS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd.S">PolynomialTheory.PolyOverAdd.S</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverRing">PolynomialTheory.PolyOverRing</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverRing.kS">PolynomialTheory.PolyOverRing.kS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverRing.ringS">PolynomialTheory.PolyOverRing.ringS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverRing.S">PolynomialTheory.PolyOverRing.S</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverSemiring">PolynomialTheory.PolyOverSemiring</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverSemiring.kS">PolynomialTheory.PolyOverSemiring.kS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverSemiring.ringS">PolynomialTheory.PolyOverSemiring.ringS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverSemiring.S">PolynomialTheory.PolyOverSemiring.S</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PolynomialTheory.R">PolynomialTheory.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#31951e7a9fd9bb5a774892066ed196b8">_ ^`N ( _ ) (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#1d9676bfa4392b4098c6e293b2d018ad">_ ^` ( _ ) (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#945c56de5ff21a9d3435445d11cfa3f2">_ .-primitive_root (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#cf34ca2293616a3eea81a8b32110ecbc">_ .-unity_root (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#03fafeca1d8bb8af3cc89a1830d3996b">_ .[ _ ] (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#cfa0aa09962cfc701c4777d893c479b4">_ ^`</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#728a2917ff59e46e3f0e4d98ed9ea172">_ %:P</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#78f0b7e9c087664de9d653df6828ab64">'X</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#72573bab7b99d99443b6173a7515ef0d">'X^ _</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#27fd9446e6d344308e4e6554f93d6b3b">\poly_ ( _ < _ ) _</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polynomial_choiceMixin">polynomial_choiceMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polynomial_eqMixin">polynomial_eqMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#Polynomial.R">Polynomial.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver">polyOver</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOverC">polyOverC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOverNr">polyOverNr</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOverP">polyOverP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOverS">polyOverS</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.field.fieldext.html#polyOverSv">polyOverSv</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOverX">polyOverX</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOverXsubC">polyOverXsubC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOverZ">polyOverZ</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.field.fieldext.html#polyOver_subvs">polyOver_subvs</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.algebra.intdiv.html#polyOver_dvdzP">polyOver_dvdzP</a> [lemma, in <a href="mathcomp.algebra.intdiv.html">mathcomp.algebra.intdiv</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_comp">polyOver_comp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_nderivn">polyOver_nderivn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_derivn">polyOver_derivn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_deriv">polyOver_deriv</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_mulr_closed">polyOver_mulr_closed</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_addr_closed">polyOver_addr_closed</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_poly">polyOver_poly</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver_key">polyOver_key</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyOver0">polyOver0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.field.falgebra.html#polyOver1P">polyOver1P</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyP">polyP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseq">polyseq</a> [projection, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseqC">polyseqC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseqK">polyseqK</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseqMX">polyseqMX</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseqMXn">polyseqMXn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseqX">polyseqX</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseqXn">polyseqXn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseqXsubC">polyseqXsubC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseq_poly">polyseq_poly</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseq_cons">polyseq_cons</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseq0">polyseq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyseq1">polyseq1</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polySpred">polySpred</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyX">polyX</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyXsubC_eq0">polyXsubC_eq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.polyXY.html">polyXY</a> [library]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE">PolyXY_Field.FtoE</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Field.E">PolyXY_Field.E</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Field.F">PolyXY_Field.F</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Field">PolyXY_Field</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R">PolyXY_Idomain.R</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Idomain">PolyXY_Idomain</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_ComRing.R">PolyXY_ComRing.R</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_ComRing">PolyXY_ComRing</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R">PolyXY_Ring.R</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#PolyXY_Ring">PolyXY_Ring</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyX_eq0">polyX_eq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyX_key">polyX_key</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#polyX_def">polyX_def</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#PolyZintOIdom">PolyZintOIdom</a> [section, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#PolyZintOIdom.R">PolyZintOIdom.R</a> [variable, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#PolyZintRing">PolyZintRing</a> [section, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#PolyZintRing.R">PolyZintRing.R</a> [variable, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.field.separable.html#poly_square_freeP">poly_square_freeP</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.algebra.mxpoly.html#poly_rV_is_linear">poly_rV_is_linear</a> [lemma, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/> -<a href="mathcomp.algebra.mxpoly.html#poly_rV_K">poly_rV_K</a> [lemma, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/> -<a href="mathcomp.algebra.mxpoly.html#poly_rV">poly_rV</a> [definition, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#poly_XmY_eq0">poly_XmY_eq0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#poly_XaY_eq0">poly_XaY_eq0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#poly_XmY0">poly_XmY0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#poly_XaY0">poly_XaY0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#poly_XmY">poly_XmY</a> [definition, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.polyXY.html#poly_XaY">poly_XaY</a> [definition, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_invE">poly_invE</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_unitE">poly_unitE</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_comUnitMixin">poly_comUnitMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_inv_out">poly_inv_out</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_intro_unit">poly_intro_unit</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_mulVp">poly_mulVp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_inv">poly_inv</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_unit">poly_unit</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_idomainAxiom">poly_idomainAxiom</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_mul_comm">poly_mul_comm</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_initial">poly_initial</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_morphX_comm">poly_morphX_comm</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_def">poly_def</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_ind">poly_ind</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_lmodMixin">poly_lmodMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_ringMixin">poly_ringMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_zmodMixin">poly_zmodMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_key">poly_key</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_expanded_def">poly_expanded_def</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_nil">poly_nil</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_countMixin">poly_countMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_of">poly_of</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly_inj">poly_inj</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly0Vpos">poly0Vpos</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly1_neq0">poly1_neq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#poly2_root">poly2_root</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.ssreflect.ssrnat.html#pop_succn">pop_succn</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/> -<a href="mathcomp.ssreflect.ssrnat.html#PosNotEq0">PosNotEq0</a> [constructor, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/> -<a href="mathcomp.ssreflect.ssrnat.html#posnP">posnP</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#Posz">Posz</a> [constructor, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#PoszD">PoszD</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#PoszM">PoszM</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.ssreflect.ssrnat.html#pos_of_nat">pos_of_nat</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powerset">powerset</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powersetCE">powersetCE</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powersetE">powersetE</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powersetI">powersetI</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powersetS">powersetS</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powersetT">powersetT</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powerset0">powerset0</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#powerset1">powerset1</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.algebra.mxpoly.html#powers_mx">powers_mx</a> [definition, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprod">pprod</a> [abbreviation, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprod">pprod</a> [abbreviation, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodE">pprodE</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodEY">pprodEY</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodg1">pprodg1</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodJ">pprodJ</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodm">pprodm</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodmE">pprodmE</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodmEl">pprodmEl</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodmEr">pprodmEr</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodmM">pprodmM</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodP">pprodP</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodW">pprodW</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodWC">pprodWC</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprodWY">pprodWY</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#pprod1g">pprod1g</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.field.algC.html#pQtoC">pQtoC</a> [abbreviation, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/> -<a href="mathcomp.field.cyclotomic.html#pQtoC">pQtoC</a> [abbreviation, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/> -<a href="mathcomp.field.algnum.html#pQtoC">pQtoC</a> [abbreviation, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient">Pquotient</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pquotient_pcore">pquotient_pcore</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pquotient_pHall">pquotient_pHall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pquotient_pgroup">pquotient_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient.G">Pquotient.G</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient.gT">Pquotient.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient.H">Pquotient.H</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient.K">Pquotient.K</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient.p">Pquotient.p</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient.pi">Pquotient.pi</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#Pquotient.piK">Pquotient.piK</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.algebra.poly.html#PreClosedField">PreClosedField</a> [module, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PreClosedField.closed_nonrootP">PreClosedField.closed_nonrootP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PreClosedField.closed_rootP">PreClosedField.closed_rootP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PreClosedField.UseAxiom">PreClosedField.UseAxiom</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PreClosedField.UseAxiom.closedF">PreClosedField.UseAxiom.closedF</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#PreClosedField.UseAxiom.F">PreClosedField.UseAxiom.F</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.ssreflect.fingraph.html#predC_closed">predC_closed</a> [lemma, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predC1">predC1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predD1">predD1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predD1P">predD1P</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.character.classfun.html#Predicates">Predicates</a> [section, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.character.classfun.html#Predicates.D">Predicates.D</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.character.classfun.html#Predicates.gT">Predicates.gT</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.character.classfun.html#Predicates.R">Predicates.R</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.character.classfun.html#Predicates.rT">Predicates.rT</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.ssreflect.ssrnat.html#predn">predn</a> [abbreviation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/> -<a href="mathcomp.ssreflect.ssrnat.html#prednK">prednK</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/> -<a href="mathcomp.ssreflect.binomial.html#predn_exp">predn_exp</a> [lemma, in <a href="mathcomp.ssreflect.binomial.html">mathcomp.ssreflect.binomial</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#predn_int">predn_int</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#predOfType">predOfType</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.ssrbool.html#PredType">PredType</a> [definition, in <a href="mathcomp.ssreflect.ssrbool.html">mathcomp.ssreflect.ssrbool</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#predT_subset">predT_subset</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predU1">predU1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predU1l">predU1l</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predU1P">predU1P</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predU1r">predU1r</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#predX">predX</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#predX_prod_enum">predX_prod_enum</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.algebra.vector.html#pred_of_vspace">pred_of_vspace</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.interval.html#pred_of_itv">pred_of_itv</a> [definition, in <a href="mathcomp.algebra.interval.html">mathcomp.algebra.interval</a>]<br/> -<a href="mathcomp.character.character.html#pred_Nirr">pred_Nirr</a> [definition, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pred_of_set">pred_of_set</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#pred_of_set_def">pred_of_set_def</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pred0b">pred0b</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pred0P">pred0P</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pred0Pn">pred0Pn</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pred1">pred1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pred1E">pred1E</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pred2">pred2</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pred2P">pred2P</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pred3">pred3</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#pred4">pred4</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.seq.html#prefix_subseq">prefix_subseq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#PreGroupIdentities">PreGroupIdentities</a> [section, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#PreGroupIdentities.T">PreGroupIdentities.T</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimset">preimset</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimsetC">preimsetC</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimsetD">preimsetD</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimsetI">preimsetI</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimsetS">preimsetS</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimsetT">preimsetT</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimsetU">preimsetU</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimset_proper">preimset_proper</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preimset0">preimset0</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.fingroup.perm.html#preim_permV">preim_permV</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.automorphism.html#preim_autE">preim_autE</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#preim_seq">preim_seq</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#preim_iinv">preim_iinv</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preim_partition_pblock">preim_partition_pblock</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preim_partitionP">preim_partitionP</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#preim_partition">preim_partition</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation">Presentation</a> [module, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html">presentation</a> [library]<br/> -<a href="mathcomp.fingroup.presentation.html#PresentationTheory">PresentationTheory</a> [section, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.And">Presentation.And</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.and_rel">Presentation.and_rel</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.bool_of_rel">Presentation.bool_of_rel</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Cast">Presentation.Cast</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Comm">Presentation.Comm</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Conj">Presentation.Conj</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Cst">Presentation.Cst</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Env">Presentation.Env</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.env">Presentation.env</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.env1">Presentation.env1</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Eq1">Presentation.Eq1</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Eq2">Presentation.Eq2</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Eq3">Presentation.Eq3</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.eval">Presentation.eval</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Exp">Presentation.Exp</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Formula">Presentation.Formula</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.formula">Presentation.formula</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Generator">Presentation.Generator</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.hom">Presentation.hom</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Idx">Presentation.Idx</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Inv">Presentation.Inv</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.iso">Presentation.iso</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Mul">Presentation.Mul</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.NoRel">Presentation.NoRel</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Presentation">Presentation.Presentation</a> [section, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.rel">Presentation.rel</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.Rel">Presentation.Rel</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.rel_type">Presentation.rel_type</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.sat">Presentation.sat</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.term">Presentation.term</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.fingroup.presentation.html#Presentation.type">Presentation.type</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev">prev</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_map">prev_map</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_rev">prev_rev</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_rotr">prev_rotr</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_rot">prev_rot</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_next">prev_next</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_cycle">prev_cycle</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_nth">prev_nth</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.path.html#prev_at">prev_at</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#pre_image">pre_image</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime">prime</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html">prime</a> [library]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar">PrimeChar</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeCharType">PrimeCharType</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_dimf">primeChar_dimf</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_vectMixin">primeChar_vectMixin</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_vectAxiom">primeChar_vectAxiom</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_pgroup">primeChar_pgroup</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_abelem">primeChar_abelem</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_scaleAr">primeChar_scaleAr</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_scaleAl">primeChar_scaleAl</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_lmodMixin">primeChar_lmodMixin</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_scaleDl">primeChar_scaleDl</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_scaleDr">primeChar_scaleDr</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_scale1">primeChar_scale1</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_scaleA">primeChar_scaleA</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#primeChar_scale">primeChar_scale</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinField">PrimeChar.FinField</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinField.charFp">PrimeChar.FinField.charFp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinField.F0">PrimeChar.FinField.F0</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinRing">PrimeChar.FinRing</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.charRp">PrimeChar.FinRing.charRp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.n">PrimeChar.FinRing.n</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.pr_p">PrimeChar.FinRing.pr_p</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.R0">PrimeChar.FinRing.R0</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.p">PrimeChar.p</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing">PrimeChar.PrimeCharRing</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.charRp">PrimeChar.PrimeCharRing.charRp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.natrFp">PrimeChar.PrimeCharRing.natrFp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.R0">PrimeChar.PrimeCharRing.R0</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.field.finfield.html#99d0e83cb5d8e3b8b8814aee93045e65">_ *p: _</a> [notation, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux">PrimeDecompAux</a> [module, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.add_totient_factor">PrimeDecompAux.add_totient_factor</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.add_divisors">PrimeDecompAux.add_divisors</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.cons_pfactor">PrimeDecompAux.cons_pfactor</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.edivn2">PrimeDecompAux.edivn2</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.edivn2P">PrimeDecompAux.edivn2P</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.elogn2">PrimeDecompAux.elogn2</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.elogn2P">PrimeDecompAux.elogn2P</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.Elogn2Spec">PrimeDecompAux.Elogn2Spec</a> [constructor, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.elogn2_spec">PrimeDecompAux.elogn2_spec</a> [inductive, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.ifnz">PrimeDecompAux.ifnz</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.ifnzP">PrimeDecompAux.ifnzP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.IfnzPos">PrimeDecompAux.IfnzPos</a> [constructor, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.IfnzZero">PrimeDecompAux.IfnzZero</a> [constructor, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#PrimeDecompAux.ifnz_spec">PrimeDecompAux.ifnz_spec</a> [inductive, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#7be21c16e780ad44531793b3b1a9d2d1">_ ^? _ :: _ (nat_scope)</a> [notation, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.algebra.zmodp.html#PrimeField">PrimeField</a> [section, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/> -<a href="mathcomp.algebra.zmodp.html#PrimeField.F_prime.p_pr">PrimeField.F_prime.p_pr</a> [variable, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/> -<a href="mathcomp.algebra.zmodp.html#PrimeField.F_prime">PrimeField.F_prime</a> [section, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/> -<a href="mathcomp.algebra.zmodp.html#PrimeField.p">PrimeField.p</a> [variable, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primeP">primeP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primePn">primePn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primePns">primePns</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.field.finfield.html#PrimePowerField">PrimePowerField</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primes">primes</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.character.integral_char.html#primes_class_simple_gt1">primes_class_simple_gt1</a> [lemma, in <a href="mathcomp.character.integral_char.html">mathcomp.character.integral_char</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primes_part">primes_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primes_prime">primes_prime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primes_exp">primes_exp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primes_mul">primes_mul</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#primes_uniq">primes_uniq</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.solvable.abelian.html#primes_exponent">primes_exponent</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#prime_subgroupVti">prime_subgroupVti</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.ssreflect.binomial.html#prime_dvd_bin">prime_dvd_bin</a> [lemma, in <a href="mathcomp.ssreflect.binomial.html">mathcomp.ssreflect.binomial</a>]<br/> -<a href="mathcomp.solvable.frobenius.html#prime_FrobeniusP">prime_FrobeniusP</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_decompE">prime_decompE</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_above">prime_above</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_coprime">prime_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_oddPn">prime_oddPn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_gt0">prime_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_gt1">prime_gt1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_nt_dvdP">prime_nt_dvdP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_decomp_correct">prime_decomp_correct</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_decomp">prime_decomp</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#074ed9914305c17e256e36efda3fbe58">[ rec _ , _ , _ , _ , _ , _ ]</a> [notation, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_decomp_rec">prime_decomp_rec</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prime_decomp">prime_decomp</a> [section, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#prime_idealrM">prime_idealrM</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#prime_idealr_zmod">prime_idealr_zmod</a> [projection, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#prime_idealr">prime_idealr</a> [record, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#prime_idealr_closed">prime_idealr_closed</a> [definition, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.solvable.extremal.html#prime_Ohm1P">prime_Ohm1P</a> [lemma, in <a href="mathcomp.solvable.extremal.html">mathcomp.solvable.extremal</a>]<br/> -<a href="mathcomp.character.inertia.html#prime_invariant_irr_extendible">prime_invariant_irr_extendible</a> [lemma, in <a href="mathcomp.character.inertia.html">mathcomp.character.inertia</a>]<br/> -<a href="mathcomp.solvable.abelian.html#prime_abelem">prime_abelem</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#prime_meetG">prime_meetG</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#prime_TIg">prime_TIg</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.solvable.cyclic.html#prime_cyclic">prime_cyclic</a> [lemma, in <a href="mathcomp.solvable.cyclic.html">mathcomp.solvable.cyclic</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#Primitive">Primitive</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#primitive">primitive</a> [definition, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef">PrimitiveDef</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.A">PrimitiveDef.A</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.aT">PrimitiveDef.aT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.S">PrimitiveDef.S</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.sT">PrimitiveDef.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.to">PrimitiveDef.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.cyclic.html#PrimitiveRoots">PrimitiveRoots</a> [section, in <a href="mathcomp.solvable.cyclic.html">mathcomp.solvable.cyclic</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#primitive_root_splitting_abelian">primitive_root_splitting_abelian</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.field.separable.html#Primitive_Element_Theorem">Primitive_Element_Theorem</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.algebra.poly.html#primitive_root_of_unity">primitive_root_of_unity</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html">primitive_action</a> [library]<br/> -<a href="mathcomp.solvable.primitive_action.html#Primitive.aT">Primitive.aT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#Primitive.G">Primitive.G</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#Primitive.S">Primitive.S</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#Primitive.sT">Primitive.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#Primitive.to">Primitive.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.solvable.primitive_action.html#prim_trans_norm">prim_trans_norm</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/> -<a href="mathcomp.algebra.poly.html#prim_rootP">prim_rootP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#prim_root_exp_coprime">prim_root_exp_coprime</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#prim_order_dvd">prim_order_dvd</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#prim_expr_mod">prim_expr_mod</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#prim_expr_order">prim_expr_order</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#prim_order_gt0">prim_order_gt0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.algebra.poly.html#prim_order_exists">prim_order_exists</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#principal_comp">principal_comp</a> [definition, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#principal_comp_def">principal_comp_def</a> [definition, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#principal_comp_key">principal_comp_key</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#principal_comp_subproof">principal_comp_subproof</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#ProdEqType">ProdEqType</a> [section, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#ProdEqType.T1">ProdEqType.T1</a> [variable, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.eqtype.html#ProdEqType.T2">ProdEqType.T2</a> [variable, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#ProdFinType">ProdFinType</a> [section, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#ProdFinType.T1">ProdFinType.T1</a> [variable, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#ProdFinType.T2">ProdFinType.T2</a> [variable, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph">ProdMorph</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm">ProdMorph.Cprodm</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.cfHK">ProdMorph.Cprodm.cfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.eqfHK">ProdMorph.Cprodm.eqfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.eqHK_G">ProdMorph.Cprodm.eqHK_G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.fH">ProdMorph.Cprodm.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.fK">ProdMorph.Cprodm.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.G">ProdMorph.Cprodm.G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.H">ProdMorph.Cprodm.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.K">ProdMorph.Cprodm.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs">ProdMorph.defs</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.A">ProdMorph.defs.A</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.B">ProdMorph.defs.B</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.fA">ProdMorph.defs.fA</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.fB">ProdMorph.defs.fB</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm">ProdMorph.Dprodm</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.cfHK">ProdMorph.Dprodm.cfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.eqHK_G">ProdMorph.Dprodm.eqHK_G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.fH">ProdMorph.Dprodm.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.fK">ProdMorph.Dprodm.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.G">ProdMorph.Dprodm.G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.H">ProdMorph.Dprodm.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.K">ProdMorph.Dprodm.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.gT">ProdMorph.gT</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props">ProdMorph.Props</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.actf">ProdMorph.Props.actf</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.eqfHK">ProdMorph.Props.eqfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.fH">ProdMorph.Props.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.fK">ProdMorph.Props.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.H">ProdMorph.Props.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.K">ProdMorph.Props.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.nHK">ProdMorph.Props.nHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.rT">ProdMorph.rT</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm">ProdMorph.Sdprodm</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.actf">ProdMorph.Sdprodm.actf</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.eqHK_G">ProdMorph.Sdprodm.eqHK_G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.fH">ProdMorph.Sdprodm.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.fK">ProdMorph.Sdprodm.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.G">ProdMorph.Sdprodm.G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.H">ProdMorph.Sdprodm.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.K">ProdMorph.Sdprodm.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/> -<a href="mathcomp.algebra.ssrint.html#prodMz">prodMz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#prodn_gt0">prodn_gt0</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#prodn_cond_gt0">prodn_cond_gt0</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#prodsgP">prodsgP</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.character.classfun.html#Product">Product</a> [section, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.solvable.center.html#Product">Product</a> [section, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/> -<a href="mathcomp.character.classfun.html#Product.G">Product.G</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.character.classfun.html#Product.gT">Product.gT</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.solvable.center.html#Product.gT">Product.gT</a> [variable, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodv">prodv</a> [definition, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodvA">prodvA</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.fieldext.html#prodvAC">prodvAC</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.fieldext.html#prodvC">prodvC</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.fieldext.html#prodvCA">prodvCA</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodvDl">prodvDl</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodvDr">prodvDr</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.algebra.vector.html#ProdVector">ProdVector</a> [section, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#ProdVector.R">ProdVector.R</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#ProdVector.vT1">ProdVector.vT1</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#ProdVector.vT2">ProdVector.vT2</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodvP">prodvP</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodvS">prodvS</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodvSl">prodvSl</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodvSr">prodvSr</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.fieldext.html#prodv_is_aspace">prodv_is_aspace</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodv_sub">prodv_sub</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodv_id">prodv_id</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodv_line">prodv_line</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodv_key">prodv_key</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodv0">prodv0</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prodv1">prodv1</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#prod_constt">prod_constt</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.fingroup.perm.html#prod_tpermP">prod_tpermP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#prod_prime_decomp">prod_prime_decomp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.field.cyclotomic.html#prod_Cyclotomic">prod_Cyclotomic</a> [lemma, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/> -<a href="mathcomp.field.cyclotomic.html#prod_cyclotomic">prod_cyclotomic</a> [lemma, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/> -<a href="mathcomp.character.character.html#prod_repr_lin">prod_repr_lin</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/> -<a href="mathcomp.character.character.html#prod_repr">prod_repr</a> [definition, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/> -<a href="mathcomp.character.character.html#prod_mx_repr">prod_mx_repr</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#prod_countMixin">prod_countMixin</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.choice.html#prod_choiceMixin">prod_choiceMixin</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#prod_finMixin">prod_finMixin</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#prod_enumP">prod_enumP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#prod_enum">prod_enum</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.character.classfun.html#prod_cfunE">prod_cfunE</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#prod_nat_const_nat">prod_nat_const_nat</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.ssreflect.bigop.html#prod_nat_const">prod_nat_const</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/> -<a href="mathcomp.solvable.burnside_app.html#prod_t_correct">prod_t_correct</a> [lemma, in <a href="mathcomp.solvable.burnside_app.html">mathcomp.solvable.burnside_app</a>]<br/> -<a href="mathcomp.solvable.burnside_app.html#prod_tuple">prod_tuple</a> [definition, in <a href="mathcomp.solvable.burnside_app.html">mathcomp.solvable.burnside_app</a>]<br/> -<a href="mathcomp.field.falgebra.html#prod0v">prod0v</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#prod1v">prod1v</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection">Projection</a> [section, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.K">Projection.K</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.defV">Projection.Sumv_Pi.defV</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.V">Projection.Sumv_Pi.V</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.sumv_pi_rec">Projection.Sumv_Pi.sumv_pi_rec</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.Vs">Projection.Sumv_Pi.Vs</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.P">Projection.Sumv_Pi.P</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.r0">Projection.Sumv_Pi.r0</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.I">Projection.Sumv_Pi.I</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi">Projection.Sumv_Pi</a> [section, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#Projection.vT">Projection.vT</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#projv">projv</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#projv_proj">projv_proj</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#projv_id">projv_id</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#proj_mx_hom">proj_mx_hom</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.character.mxrepresentation.html#proj_factmodS">proj_factmodS</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proj_mx_proj">proj_mx_proj</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proj_mx_0">proj_mx_0</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proj_mx_id">proj_mx_id</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proj_mx_compl_sub">proj_mx_compl_sub</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proj_mx_sub">proj_mx_sub</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proj_mx">proj_mx</a> [definition, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#proper">proper</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.field.falgebra.html#Proper">Proper</a> [section, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properD">properD</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properD1">properD1</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#properE">properE</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properEcard">properEcard</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properEneq">properEneq</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#properG_ltn_log">properG_ltn_log</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properI">properI</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properIl">properIl</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properIr">properIr</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properIset">properIset</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#properJ">properJ</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#ProperMxsum">ProperMxsum</a> [constructor, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#ProperMxsumExpr">ProperMxsumExpr</a> [constructor, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#properP">properP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.algebra.vector.html#ProperSumvExpr">ProperSumvExpr</a> [constructor, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properT">properT</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.solvable.nilpotent.html#PropertiesDefs">PropertiesDefs</a> [section, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/> -<a href="mathcomp.solvable.nilpotent.html#PropertiesDefs.A">PropertiesDefs.A</a> [variable, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/> -<a href="mathcomp.solvable.nilpotent.html#PropertiesDefs.gT">PropertiesDefs.gT</a> [variable, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properU">properU</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properUl">properUl</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#properUr">properUr</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#properxx">properxx</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.algebra.vector.html#proper_addvP">proper_addvP</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#proper_addv_dim">proper_addv_dim</a> [projection, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#proper_addv_val">proper_addv_val</a> [projection, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.vector.html#proper_addv_expr">proper_addv_expr</a> [record, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/> -<a href="mathcomp.algebra.ring_quotient.html#proper_ideal">proper_ideal</a> [definition, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#proper_irrefl">proper_irrefl</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#proper_card">proper_card</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#proper_sub_trans">proper_sub_trans</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#proper_trans">proper_trans</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#proper_subn">proper_subn</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.ssreflect.fintype.html#proper_sub">proper_sub</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proper_mxsumP">proper_mxsumP</a> [definition, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proper_mxsum_rank">proper_mxsum_rank</a> [projection, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proper_mxsum_val">proper_mxsum_val</a> [projection, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.algebra.mxalgebra.html#proper_mxsum_expr">proper_mxsum_expr</a> [record, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#proper_neq">proper_neq</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.field.falgebra.html#Proper.aT">Proper.aT</a> [variable, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.field.falgebra.html#Proper.R">Proper.R</a> [variable, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#proper0">proper0</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.fingroup.fingroup.html#proper1G">proper1G</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/> -<a href="mathcomp.ssreflect.finset.html#proper1set">proper1set</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries">pseries</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PseriesDefs">PseriesDefs</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PseriesDefs.A">PseriesDefs.A</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PseriesDefs.gT">PseriesDefs.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#PseriesDefs.pis">PseriesDefs.pis</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseriesJ">pseriesJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseriesS">pseriesS</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_rcons_id">pseries_rcons_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_char_catr">pseries_char_catr</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_catr_id">pseries_catr_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_char_catl">pseries_char_catl</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_catl_id">pseries_catl_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_sub_catr">pseries_sub_catr</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_norm2">pseries_norm2</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_sub_catl">pseries_sub_catl</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_pop2">pseries_pop2</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_pop">pseries_pop</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_normal">pseries_normal</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_char">pseries_char</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_sub">pseries_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_subfun">pseries_subfun</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_rcons">pseries_rcons</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries_group_set">pseries_group_set</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#pseries1">pseries1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#psubgroup">psubgroup</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#psubgroupJ">psubgroupJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#psubgroup1">psubgroup1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pT">pT</a> [abbreviation, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.field.separable.html#purely_inseparable_trans">purely_inseparable_trans</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.field.separable.html#purely_inseparable_refl">purely_inseparable_refl</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.field.separable.html#purely_inseparableP">purely_inseparableP</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.field.separable.html#purely_inseparable">purely_inseparable</a> [definition, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.field.separable.html#purely_inseparable_elementP">purely_inseparable_elementP</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.field.separable.html#purely_inseparable_element">purely_inseparable_element</a> [definition, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pval">pval</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.fingroup.perm.html#pvalE">pvalE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/> -<a href="mathcomp.field.galois.html#Px">Px</a> [abbreviation, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#pX1p2id">pX1p2id</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#pX1p2n_extraspecial">pX1p2n_extraspecial</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#pX1p2n_pgroup">pX1p2n_pgroup</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#pX1p2S">pX1p2S</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#pX1p2_extraspecial">pX1p2_extraspecial</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.solvable.extraspecial.html#pX1p2_pgroup">pX1p2_pgroup</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/> -<a href="mathcomp.field.algC.html#pZtoC">pZtoC</a> [abbreviation, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/> -<a href="mathcomp.field.cyclotomic.html#pZtoC">pZtoC</a> [abbreviation, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/> -<a href="mathcomp.field.algnum.html#pZtoC">pZtoC</a> [abbreviation, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/> -<a href="mathcomp.field.algC.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/> -<a href="mathcomp.algebra.intdiv.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.algebra.intdiv.html">mathcomp.algebra.intdiv</a>]<br/> -<a href="mathcomp.field.cyclotomic.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/> -<a href="mathcomp.field.algnum.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_elt_constt">p_elt_constt</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_eltNK">p_eltNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_eltJ">p_eltJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_eltX">p_eltX</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_eltV">p_eltV</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_elt1">p_elt1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_eltM">p_eltM</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_eltM_norm">p_eltM_norm</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_elt_exp">p_elt_exp</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_group1">p_group1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_Sylow">p_Sylow</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_groupJ">p_groupJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_groupP">p_groupP</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_elt">p_elt</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p_group">p_group</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#p_natP">p_natP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#p_part_gt1">p_part_gt1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#p_part_eq1">p_part_eq1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#p_part">p_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.algebra.mxpoly.html#p_A">p_A</a> [abbreviation, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_abelian">p_rank_abelian</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_Ohm1">p_rank_Ohm1</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_p'quotient">p_rank_p'quotient</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_dprod">p_rank_dprod</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_quotient">p_rank_quotient</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_le_rank">p_rank_le_rank</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_pmaxElem_exists">p_rank_pmaxElem_exists</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_Hall">p_rank_Hall</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_Sylow">p_rank_Sylow</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rankJ">p_rankJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rankElem_max">p_rankElem_max</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rankS">p_rankS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_abelem">p_rank_abelem</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_le_logn">p_rank_le_logn</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank1">p_rank1</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_gt0">p_rank_gt0</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_geP">p_rank_geP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank_witness">p_rank_witness</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p_rank">p_rank</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.maximal.html#p_abelem_split1">p_abelem_split1</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#p_core_Fitting">p_core_Fitting</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#p_index_maximal">p_index_maximal</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#p_maximal_index">p_maximal_index</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.maximal.html#p_maximal_normal">p_maximal_normal</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p'groupEpi">p'groupEpi</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p'group_quotient_cent_prime">p'group_quotient_cent_prime</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#p'natE">p'natE</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#p'natEpi">p'natEpi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.ssreflect.prime.html#p'nat_coprime">p'nat_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/> -<a href="mathcomp.solvable.pgroup.html#p'_elt_constt">p'_elt_constt</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p1ElemE">p1ElemE</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.abelian.html#p2Elem_dprodP">p2Elem_dprodP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/> -<a href="mathcomp.solvable.sylow.html#p2group_abelian">p2group_abelian</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/> -<a href="mathcomp.solvable.maximal.html#p3group_extraspecial">p3group_extraspecial</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/> -<br/><br/><hr/><table> -<tr> -<td>Global Index</td> -<td><a href="index_global_A.html">A</a></td> -<td><a href="index_global_B.html">B</a></td> -<td><a href="index_global_C.html">C</a></td> -<td><a href="index_global_D.html">D</a></td> -<td><a href="index_global_E.html">E</a></td> -<td><a href="index_global_F.html">F</a></td> -<td><a href="index_global_G.html">G</a></td> -<td><a href="index_global_H.html">H</a></td> -<td><a href="index_global_I.html">I</a></td> -<td><a href="index_global_J.html">J</a></td> -<td><a href="index_global_K.html">K</a></td> -<td><a href="index_global_L.html">L</a></td> -<td><a href="index_global_M.html">M</a></td> -<td><a href="index_global_N.html">N</a></td> -<td><a href="index_global_O.html">O</a></td> -<td><a href="index_global_P.html">P</a></td> -<td><a href="index_global_Q.html">Q</a></td> -<td><a href="index_global_R.html">R</a></td> -<td><a href="index_global_S.html">S</a></td> -<td><a href="index_global_T.html">T</a></td> -<td><a href="index_global_U.html">U</a></td> -<td><a href="index_global_V.html">V</a></td> -<td><a href="index_global_W.html">W</a></td> -<td><a href="index_global_X.html">X</a></td> -<td>Y</td> -<td><a href="index_global_Z.html">Z</a></td> -<td>_</td> -<td><a href="index_global_*.html">other</a></td> -<td>(23836 entries)</td> -</tr> -<tr> -<td>Notation Index</td> -<td><a href="index_notation_A.html">A</a></td> -<td><a href="index_notation_B.html">B</a></td> -<td><a href="index_notation_C.html">C</a></td> -<td><a href="index_notation_D.html">D</a></td> -<td><a href="index_notation_E.html">E</a></td> -<td><a href="index_notation_F.html">F</a></td> -<td><a href="index_notation_G.html">G</a></td> -<td>H</td> -<td><a href="index_notation_I.html">I</a></td> -<td>J</td> -<td><a href="index_notation_K.html">K</a></td> -<td><a href="index_notation_L.html">L</a></td> -<td><a href="index_notation_M.html">M</a></td> -<td><a href="index_notation_N.html">N</a></td> -<td>O</td> -<td><a href="index_notation_P.html">P</a></td> -<td><a href="index_notation_Q.html">Q</a></td> -<td><a href="index_notation_R.html">R</a></td> -<td><a href="index_notation_S.html">S</a></td> -<td>T</td> -<td><a href="index_notation_U.html">U</a></td> -<td><a href="index_notation_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_notation_Z.html">Z</a></td> -<td>_</td> -<td><a href="index_notation_*.html">other</a></td> -<td>(1409 entries)</td> -</tr> -<tr> -<td>Module Index</td> -<td><a href="index_module_A.html">A</a></td> -<td><a href="index_module_B.html">B</a></td> -<td><a href="index_module_C.html">C</a></td> -<td><a href="index_module_D.html">D</a></td> -<td><a href="index_module_E.html">E</a></td> -<td><a href="index_module_F.html">F</a></td> -<td><a href="index_module_G.html">G</a></td> -<td>H</td> -<td><a href="index_module_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td><a href="index_module_M.html">M</a></td> -<td><a href="index_module_N.html">N</a></td> -<td>O</td> -<td><a href="index_module_P.html">P</a></td> -<td><a href="index_module_Q.html">Q</a></td> -<td><a href="index_module_R.html">R</a></td> -<td><a href="index_module_S.html">S</a></td> -<td>T</td> -<td><a href="index_module_U.html">U</a></td> -<td><a href="index_module_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td>Z</td> -<td>_</td> -<td>other</td> -<td>(221 entries)</td> -</tr> -<tr> -<td>Variable Index</td> -<td><a href="index_variable_A.html">A</a></td> -<td><a href="index_variable_B.html">B</a></td> -<td><a href="index_variable_C.html">C</a></td> -<td><a href="index_variable_D.html">D</a></td> -<td><a href="index_variable_E.html">E</a></td> -<td><a href="index_variable_F.html">F</a></td> -<td><a href="index_variable_G.html">G</a></td> -<td><a href="index_variable_H.html">H</a></td> -<td><a href="index_variable_I.html">I</a></td> -<td>J</td> -<td><a href="index_variable_K.html">K</a></td> -<td><a href="index_variable_L.html">L</a></td> -<td><a href="index_variable_M.html">M</a></td> -<td><a href="index_variable_N.html">N</a></td> -<td><a href="index_variable_O.html">O</a></td> -<td><a href="index_variable_P.html">P</a></td> -<td><a href="index_variable_Q.html">Q</a></td> -<td><a href="index_variable_R.html">R</a></td> -<td><a href="index_variable_S.html">S</a></td> -<td><a href="index_variable_T.html">T</a></td> -<td><a href="index_variable_U.html">U</a></td> -<td><a href="index_variable_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_variable_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(3574 entries)</td> -</tr> -<tr> -<td>Library Index</td> -<td><a href="index_library_A.html">A</a></td> -<td><a href="index_library_B.html">B</a></td> -<td><a href="index_library_C.html">C</a></td> -<td><a href="index_library_D.html">D</a></td> -<td><a href="index_library_E.html">E</a></td> -<td><a href="index_library_F.html">F</a></td> -<td><a href="index_library_G.html">G</a></td> -<td><a href="index_library_H.html">H</a></td> -<td><a href="index_library_I.html">I</a></td> -<td><a href="index_library_J.html">J</a></td> -<td>K</td> -<td>L</td> -<td><a href="index_library_M.html">M</a></td> -<td><a href="index_library_N.html">N</a></td> -<td>O</td> -<td><a href="index_library_P.html">P</a></td> -<td><a href="index_library_Q.html">Q</a></td> -<td><a href="index_library_R.html">R</a></td> -<td><a href="index_library_S.html">S</a></td> -<td><a href="index_library_T.html">T</a></td> -<td>U</td> -<td><a href="index_library_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_library_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(90 entries)</td> -</tr> -<tr> -<td>Lemma Index</td> -<td><a href="index_lemma_A.html">A</a></td> -<td><a href="index_lemma_B.html">B</a></td> -<td><a href="index_lemma_C.html">C</a></td> -<td><a href="index_lemma_D.html">D</a></td> -<td><a href="index_lemma_E.html">E</a></td> -<td><a href="index_lemma_F.html">F</a></td> -<td><a href="index_lemma_G.html">G</a></td> -<td><a href="index_lemma_H.html">H</a></td> -<td><a href="index_lemma_I.html">I</a></td> -<td><a href="index_lemma_J.html">J</a></td> -<td><a href="index_lemma_K.html">K</a></td> -<td><a href="index_lemma_L.html">L</a></td> -<td><a href="index_lemma_M.html">M</a></td> -<td><a href="index_lemma_N.html">N</a></td> -<td><a href="index_lemma_O.html">O</a></td> -<td><a href="index_lemma_P.html">P</a></td> -<td><a href="index_lemma_Q.html">Q</a></td> -<td><a href="index_lemma_R.html">R</a></td> -<td><a href="index_lemma_S.html">S</a></td> -<td><a href="index_lemma_T.html">T</a></td> -<td><a href="index_lemma_U.html">U</a></td> -<td><a href="index_lemma_V.html">V</a></td> -<td><a href="index_lemma_W.html">W</a></td> -<td><a href="index_lemma_X.html">X</a></td> -<td>Y</td> -<td><a href="index_lemma_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(12096 entries)</td> -</tr> -<tr> -<td>Constructor Index</td> -<td><a href="index_constructor_A.html">A</a></td> -<td><a href="index_constructor_B.html">B</a></td> -<td><a href="index_constructor_C.html">C</a></td> -<td><a href="index_constructor_D.html">D</a></td> -<td><a href="index_constructor_E.html">E</a></td> -<td><a href="index_constructor_F.html">F</a></td> -<td><a href="index_constructor_G.html">G</a></td> -<td><a href="index_constructor_H.html">H</a></td> -<td><a href="index_constructor_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td><a href="index_constructor_L.html">L</a></td> -<td><a href="index_constructor_M.html">M</a></td> -<td><a href="index_constructor_N.html">N</a></td> -<td><a href="index_constructor_O.html">O</a></td> -<td><a href="index_constructor_P.html">P</a></td> -<td><a href="index_constructor_Q.html">Q</a></td> -<td><a href="index_constructor_R.html">R</a></td> -<td><a href="index_constructor_S.html">S</a></td> -<td><a href="index_constructor_T.html">T</a></td> -<td><a href="index_constructor_U.html">U</a></td> -<td><a href="index_constructor_V.html">V</a></td> -<td>W</td> -<td><a href="index_constructor_X.html">X</a></td> -<td>Y</td> -<td><a href="index_constructor_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(368 entries)</td> -</tr> -<tr> -<td>Axiom Index</td> -<td><a href="index_axiom_A.html">A</a></td> -<td><a href="index_axiom_B.html">B</a></td> -<td><a href="index_axiom_C.html">C</a></td> -<td>D</td> -<td><a href="index_axiom_E.html">E</a></td> -<td><a href="index_axiom_F.html">F</a></td> -<td>G</td> -<td>H</td> -<td><a href="index_axiom_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td>M</td> -<td>N</td> -<td>O</td> -<td><a href="index_axiom_P.html">P</a></td> -<td>Q</td> -<td><a href="index_axiom_R.html">R</a></td> -<td><a href="index_axiom_S.html">S</a></td> -<td>T</td> -<td>U</td> -<td>V</td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td>Z</td> -<td>_</td> -<td>other</td> -<td>(45 entries)</td> -</tr> -<tr> -<td>Inductive Index</td> -<td><a href="index_inductive_A.html">A</a></td> -<td><a href="index_inductive_B.html">B</a></td> -<td><a href="index_inductive_C.html">C</a></td> -<td><a href="index_inductive_D.html">D</a></td> -<td><a href="index_inductive_E.html">E</a></td> -<td><a href="index_inductive_F.html">F</a></td> -<td><a href="index_inductive_G.html">G</a></td> -<td><a href="index_inductive_H.html">H</a></td> -<td><a href="index_inductive_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td><a href="index_inductive_L.html">L</a></td> -<td><a href="index_inductive_M.html">M</a></td> -<td><a href="index_inductive_N.html">N</a></td> -<td><a href="index_inductive_O.html">O</a></td> -<td><a href="index_inductive_P.html">P</a></td> -<td>Q</td> -<td><a href="index_inductive_R.html">R</a></td> -<td><a href="index_inductive_S.html">S</a></td> -<td><a href="index_inductive_T.html">T</a></td> -<td><a href="index_inductive_U.html">U</a></td> -<td><a href="index_inductive_V.html">V</a></td> -<td>W</td> -<td><a href="index_inductive_X.html">X</a></td> -<td>Y</td> -<td>Z</td> -<td>_</td> -<td>other</td> -<td>(107 entries)</td> -</tr> -<tr> -<td>Projection Index</td> -<td><a href="index_projection_A.html">A</a></td> -<td><a href="index_projection_B.html">B</a></td> -<td><a href="index_projection_C.html">C</a></td> -<td><a href="index_projection_D.html">D</a></td> -<td><a href="index_projection_E.html">E</a></td> -<td><a href="index_projection_F.html">F</a></td> -<td><a href="index_projection_G.html">G</a></td> -<td>H</td> -<td><a href="index_projection_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td><a href="index_projection_M.html">M</a></td> -<td><a href="index_projection_N.html">N</a></td> -<td>O</td> -<td><a href="index_projection_P.html">P</a></td> -<td><a href="index_projection_Q.html">Q</a></td> -<td><a href="index_projection_R.html">R</a></td> -<td><a href="index_projection_S.html">S</a></td> -<td><a href="index_projection_T.html">T</a></td> -<td><a href="index_projection_U.html">U</a></td> -<td><a href="index_projection_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_projection_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(273 entries)</td> -</tr> -<tr> -<td>Section Index</td> -<td><a href="index_section_A.html">A</a></td> -<td><a href="index_section_B.html">B</a></td> -<td><a href="index_section_C.html">C</a></td> -<td><a href="index_section_D.html">D</a></td> -<td><a href="index_section_E.html">E</a></td> -<td><a href="index_section_F.html">F</a></td> -<td><a href="index_section_G.html">G</a></td> -<td><a href="index_section_H.html">H</a></td> -<td><a href="index_section_I.html">I</a></td> -<td>J</td> -<td><a href="index_section_K.html">K</a></td> -<td><a href="index_section_L.html">L</a></td> -<td><a href="index_section_M.html">M</a></td> -<td><a href="index_section_N.html">N</a></td> -<td><a href="index_section_O.html">O</a></td> -<td><a href="index_section_P.html">P</a></td> -<td><a href="index_section_Q.html">Q</a></td> -<td><a href="index_section_R.html">R</a></td> -<td><a href="index_section_S.html">S</a></td> -<td><a href="index_section_T.html">T</a></td> -<td><a href="index_section_U.html">U</a></td> -<td><a href="index_section_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_section_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(1140 entries)</td> -</tr> -<tr> -<td>Abbreviation Index</td> -<td><a href="index_abbreviation_A.html">A</a></td> -<td><a href="index_abbreviation_B.html">B</a></td> -<td><a href="index_abbreviation_C.html">C</a></td> -<td><a href="index_abbreviation_D.html">D</a></td> -<td><a href="index_abbreviation_E.html">E</a></td> -<td><a href="index_abbreviation_F.html">F</a></td> -<td><a href="index_abbreviation_G.html">G</a></td> -<td><a href="index_abbreviation_H.html">H</a></td> -<td><a href="index_abbreviation_I.html">I</a></td> -<td><a href="index_abbreviation_J.html">J</a></td> -<td><a href="index_abbreviation_K.html">K</a></td> -<td><a href="index_abbreviation_L.html">L</a></td> -<td><a href="index_abbreviation_M.html">M</a></td> -<td><a href="index_abbreviation_N.html">N</a></td> -<td><a href="index_abbreviation_O.html">O</a></td> -<td><a href="index_abbreviation_P.html">P</a></td> -<td><a href="index_abbreviation_Q.html">Q</a></td> -<td><a href="index_abbreviation_R.html">R</a></td> -<td><a href="index_abbreviation_S.html">S</a></td> -<td><a href="index_abbreviation_T.html">T</a></td> -<td><a href="index_abbreviation_U.html">U</a></td> -<td><a href="index_abbreviation_V.html">V</a></td> -<td><a href="index_abbreviation_W.html">W</a></td> -<td><a href="index_abbreviation_X.html">X</a></td> -<td>Y</td> -<td><a href="index_abbreviation_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(728 entries)</td> -</tr> -<tr> -<td>Definition Index</td> -<td><a href="index_definition_A.html">A</a></td> -<td><a href="index_definition_B.html">B</a></td> -<td><a href="index_definition_C.html">C</a></td> -<td><a href="index_definition_D.html">D</a></td> -<td><a href="index_definition_E.html">E</a></td> -<td><a href="index_definition_F.html">F</a></td> -<td><a href="index_definition_G.html">G</a></td> -<td><a href="index_definition_H.html">H</a></td> -<td><a href="index_definition_I.html">I</a></td> -<td><a href="index_definition_J.html">J</a></td> -<td><a href="index_definition_K.html">K</a></td> -<td><a href="index_definition_L.html">L</a></td> -<td><a href="index_definition_M.html">M</a></td> -<td><a href="index_definition_N.html">N</a></td> -<td><a href="index_definition_O.html">O</a></td> -<td><a href="index_definition_P.html">P</a></td> -<td><a href="index_definition_Q.html">Q</a></td> -<td><a href="index_definition_R.html">R</a></td> -<td><a href="index_definition_S.html">S</a></td> -<td><a href="index_definition_T.html">T</a></td> -<td><a href="index_definition_U.html">U</a></td> -<td><a href="index_definition_V.html">V</a></td> -<td><a href="index_definition_W.html">W</a></td> -<td><a href="index_definition_X.html">X</a></td> -<td>Y</td> -<td><a href="index_definition_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(3596 entries)</td> -</tr> -<tr> -<td>Record Index</td> -<td><a href="index_record_A.html">A</a></td> -<td>B</td> -<td><a href="index_record_C.html">C</a></td> -<td><a href="index_record_D.html">D</a></td> -<td><a href="index_record_E.html">E</a></td> -<td><a href="index_record_F.html">F</a></td> -<td><a href="index_record_G.html">G</a></td> -<td>H</td> -<td><a href="index_record_I.html">I</a></td> -<td>J</td> -<td>K</td> -<td>L</td> -<td><a href="index_record_M.html">M</a></td> -<td><a href="index_record_N.html">N</a></td> -<td>O</td> -<td><a href="index_record_P.html">P</a></td> -<td><a href="index_record_Q.html">Q</a></td> -<td><a href="index_record_R.html">R</a></td> -<td><a href="index_record_S.html">S</a></td> -<td><a href="index_record_T.html">T</a></td> -<td><a href="index_record_U.html">U</a></td> -<td><a href="index_record_V.html">V</a></td> -<td>W</td> -<td>X</td> -<td>Y</td> -<td><a href="index_record_Z.html">Z</a></td> -<td>_</td> -<td>other</td> -<td>(189 entries)</td> -</tr> -</table> -</div> - -<div id="footer"> -<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a> -</div> - -</div> - -</body> -</html>
\ No newline at end of file |
