diff options
| author | Jasper Hugunin | 2018-02-22 01:45:41 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2018-02-22 01:45:41 -0800 |
| commit | ddc1cc6857821220b9a67af0af042282200dbf44 (patch) | |
| tree | 4b9975f96a4946abd9eaba862bc4329b5aceef26 | |
| parent | 66c7010194f5946cc4f07edc55f92129d0963b99 (diff) | |
Change Implicit Arguments to Arguments in real_closed
| -rw-r--r-- | mathcomp/real_closed/mxtens.v | 4 | ||||
| -rw-r--r-- | mathcomp/real_closed/ordered_qelim.v | 6 | ||||
| -rw-r--r-- | mathcomp/real_closed/qe_rcf.v | 26 | ||||
| -rw-r--r-- | mathcomp/real_closed/realalg.v | 16 |
4 files changed, 26 insertions, 26 deletions
diff --git a/mathcomp/real_closed/mxtens.v b/mathcomp/real_closed/mxtens.v index 4e6b72a..792e223 100644 --- a/mathcomp/real_closed/mxtens.v +++ b/mathcomp/real_closed/mxtens.v @@ -44,8 +44,8 @@ Proof. by rewrite ltn_mod; case: n k=> //; rewrite muln0=> [] []. Qed. Definition mxtens_unindex m n k := (Ordinal (@mxtens_index_proof1 m n k), Ordinal (@mxtens_index_proof2 m n k)). -Implicit Arguments mxtens_index [[m] [n]]. -Implicit Arguments mxtens_unindex [[m] [n]]. +Arguments mxtens_index {m n}. +Arguments mxtens_unindex {m n}. Lemma mxtens_indexK m n : cancel (@mxtens_index m n) (@mxtens_unindex m n). Proof. diff --git a/mathcomp/real_closed/ordered_qelim.v b/mathcomp/real_closed/ordered_qelim.v index 4779540..5f4e7f5 100644 --- a/mathcomp/real_closed/ordered_qelim.v +++ b/mathcomp/real_closed/ordered_qelim.v @@ -76,7 +76,7 @@ Canonical term_eqMixin (T : eqType) := EqMixin (@term_eqP T). Canonical term_eqType (T : eqType) := Eval hnf in EqType (term T) (@term_eqMixin T). -Implicit Arguments term_eqP [x y]. +Arguments term_eqP T [x y]. Prenex Implicits term_eq. @@ -98,7 +98,7 @@ Arguments Scope Not [_ oterm_scope]. Arguments Scope Exists [_ nat_scope oterm_scope]. Arguments Scope Forall [_ nat_scope oterm_scope]. -Implicit Arguments Bool [T]. +Arguments Bool [T]. Prenex Implicits Const Add Opp NatMul Mul Exp Bool Unit And Or Implies Not. Prenex Implicits Exists Forall Lt. @@ -199,7 +199,7 @@ Canonical oclause_eqMixin (T : eqType) := EqMixin (@oclause_eqP T). Canonical oclause_eqType (T : eqType) := Eval hnf in EqType (oclause T) (@oclause_eqMixin T). -Implicit Arguments oclause_eqP [x y]. +Arguments oclause_eqP T [x y]. Prenex Implicits oclause_eq. Section EvalTerm. diff --git a/mathcomp/real_closed/qe_rcf.v b/mathcomp/real_closed/qe_rcf.v index 272c44a..c2e0333 100644 --- a/mathcomp/real_closed/qe_rcf.v +++ b/mathcomp/real_closed/qe_rcf.v @@ -114,7 +114,7 @@ Arguments Scope Or [_ qf_scope qf_scope]. Arguments Scope Implies [_ qf_scope qf_scope]. Arguments Scope Not [_ qf_scope]. -Implicit Arguments Bool [R]. +Arguments Bool [R]. Prenex Implicits Const Add Opp NatMul Mul Exp Bool Unit And Or Implies Not Lt. Prenex Implicits to_rterm. @@ -537,7 +537,7 @@ rewrite lead_coefDl ?lead_coefMX ?size_mulX // ltnS size_polyC. by rewrite (leq_trans (leq_b1 _)) // size_poly_gt0. Qed. -Implicit Arguments eval_LeadCoef [e p k]. +Arguments eval_LeadCoef [e p k]. Prenex Implicits eval_LeadCoef. Lemma eval_AmulXn a n e : eval_poly e (AmulXn a n) = (eval e a)%:P * 'X^n. @@ -625,7 +625,7 @@ rewrite (ihps _ (fun ps => k' (eval e lp :: ps))) => //= lps. by rewrite Pk. Qed. -Implicit Arguments eval_SeqPInfty [e ps k]. +Arguments eval_SeqPInfty [e ps k]. Prenex Implicits eval_SeqPInfty. Lemma eval_SeqMInfty e ps k k' : @@ -640,7 +640,7 @@ rewrite eval_Size /= /k'' {k''}. by set X := map _ _; grab_eq k'' X; apply: ihps => {X} lps; rewrite Pk. Qed. -Implicit Arguments eval_SeqMInfty [e ps k]. +Arguments eval_SeqMInfty [e ps k]. Prenex Implicits eval_SeqMInfty. Lemma eval_ChangesPoly e ps k : qf_eval e (ChangesPoly ps k) = @@ -682,7 +682,7 @@ set X := lead_coef _; grab_eq k'' X; apply: eval_LeadCoef => {X}. by move=> x; rewrite ihn // !eval_OpPoly /= !mul_polyC. Qed. -Implicit Arguments eval_Rediv_rec_loop [e q sq cq c qq r n k]. +Arguments eval_Rediv_rec_loop [e q sq cq c qq r n k]. Prenex Implicits eval_Rediv_rec_loop. Lemma eval_Rediv e p q k k' (d := (redivp (eval_poly e p) (eval_poly e q))) : @@ -698,7 +698,7 @@ rewrite (eval_LeadCoef (fun lq => by rewrite redivp_rec_loopP. Qed. -Implicit Arguments eval_Rediv [e p q k]. +Arguments eval_Rediv [e p q k]. Prenex Implicits eval_Rediv. Lemma eval_NextMod e p q k k' : @@ -716,7 +716,7 @@ rewrite (eval_Rediv (fun mpq => by rewrite Pk !eval_OpPoly. Qed. -Implicit Arguments eval_NextMod [e p q k]. +Arguments eval_NextMod [e p q k]. Prenex Implicits eval_NextMod. Lemma eval_Rgcd_loop e n p q k k' : @@ -759,7 +759,7 @@ rewrite big_cons (ihsp _ (fun r => k' (rgcdp (eval_poly e p) r))) //. by move=> r; apply: eval_Rgcd. Qed. -Implicit Arguments eval_Rgcd [e p q k]. +Arguments eval_Rgcd [e p q k]. Prenex Implicits eval_Rgcd. @@ -781,7 +781,7 @@ rewrite (eval_NextMod (fun npq => k' (p' :: mods_aux q' npq n))) => // npq. by rewrite (ihn _ _ _ (fun ps => k' (p' :: ps))) => // ps; rewrite Pk. Qed. -Implicit Arguments eval_ModsAux [e p q n k]. +Arguments eval_ModsAux [e p q n k]. Prenex Implicits eval_ModsAux. Lemma eval_Mods e p q k k' : @@ -789,7 +789,7 @@ Lemma eval_Mods e p q k k' : qf_eval e (Mods p q k) = k' (mods (eval_poly e p) (eval_poly e q)). Proof. by move=> Pk; rewrite !eval_Size; apply: eval_ModsAux. Qed. -Implicit Arguments eval_Mods [e p q k]. +Arguments eval_Mods [e p q k]. Prenex Implicits eval_Mods. Lemma eval_TaqR e p q k : @@ -831,7 +831,7 @@ Lemma eval_TaqsR e p sq i k k' : k' (taqsR (eval_poly e p) (map (eval_poly e) sq) i). Proof. by move=> Pk; rewrite /TaqsR /taqsR eval_TaqR Pk /= eval_Pcq. Qed. -Implicit Arguments eval_TaqsR [e p sq i k]. +Arguments eval_TaqsR [e p sq i k]. Prenex Implicits eval_TaqsR. Fact invmx_ctmat1 : invmx (map_mx (intr : int -> F) ctmat1) = @@ -885,7 +885,7 @@ rewrite (eval_TaqsR by move=> y; rewrite (ihn _ k') // -(eval_Coefs e). Qed. -Implicit Arguments eval_CcountWeak [e p sq k]. +Arguments eval_CcountWeak [e p sq k]. Prenex Implicits eval_CcountWeak. Lemma eval_ProdPoly e T s f k f' k' : @@ -902,7 +902,7 @@ move=> fa; rewrite (ihs _ (fun fs => k' (eval_poly e fa * fs))) //. by move=> fs; rewrite Pk eval_OpPoly. Qed. -Implicit Arguments eval_ProdPoly [e T s f k]. +Arguments eval_ProdPoly [e T s f k]. Prenex Implicits eval_ProdPoly. Lemma eval_BoundingPoly e sq : diff --git a/mathcomp/real_closed/realalg.v b/mathcomp/real_closed/realalg.v index 0cbba9f..7d9d987 100644 --- a/mathcomp/real_closed/realalg.v +++ b/mathcomp/real_closed/realalg.v @@ -194,11 +194,11 @@ Definition eq_algcreal : rel algcreal := eq_algcreal_dec. Lemma eq_algcrealP (x y : algcreal) : reflect (x == y)%CR (eq_algcreal x y). Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed. -Implicit Arguments eq_algcrealP [x y]. +Arguments eq_algcrealP [x y]. Lemma neq_algcrealP (x y : algcreal) : reflect (x != y)%CR (~~ eq_algcreal x y). Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed. -Implicit Arguments neq_algcrealP [x y]. +Arguments neq_algcrealP [x y]. Prenex Implicits eq_algcrealP neq_algcrealP. Fact eq_algcreal_is_equiv : equiv_class_of eq_algcreal. @@ -284,11 +284,11 @@ Definition le_algcreal : rel algcreal := fun x y => ~~ ltVge_algcreal_dec y x. Lemma lt_algcrealP (x y : algcreal) : reflect (x < y)%CR (lt_algcreal x y). Proof. by rewrite /lt_algcreal; case: ltVge_algcreal_dec; constructor. Qed. -Implicit Arguments lt_algcrealP [x y]. +Arguments lt_algcrealP [x y]. Lemma le_algcrealP (x y : algcreal) : reflect (x <= y)%CR (le_algcreal x y). Proof. by rewrite /le_algcreal; case: ltVge_algcreal_dec; constructor. Qed. -Implicit Arguments le_algcrealP [x y]. +Arguments le_algcrealP [x y]. Prenex Implicits lt_algcrealP le_algcrealP. Definition exp_algcreal x n := iterop n mul_algcreal x one_algcreal. @@ -609,7 +609,7 @@ Qed. Lemma nequiv_alg (x y : algcreal) : reflect (x != y)%CR (x != y %[mod {alg F}]). Proof. by rewrite eqquotE; apply: neq_algcrealP. Qed. -Implicit Arguments nequiv_alg [x y]. +Arguments nequiv_alg [x y]. Prenex Implicits nequiv_alg. Lemma pi_algK (x : algcreal) : (repr (\pi_{alg F} x) == x)%CR. @@ -711,7 +711,7 @@ elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg /=. by apply: eq_crealP; exists m0=> * /=; rewrite mulrDl subrr normr0. Qed. -Implicit Arguments neq_creal_cst [F x y]. +Arguments neq_creal_cst [F x y]. Prenex Implicits neq_creal_cst. Lemma nonzero1_alg : one_alg != zero_alg. @@ -964,11 +964,11 @@ Proof. by rewrite [`|_|]piE. Qed. Lemma lt_algP (x y : algcreal) : reflect (x < y)%CR (\pi_{alg F} x < \pi y). Proof. by rewrite lt_pi; apply: lt_algcrealP. Qed. -Implicit Arguments lt_algP [x y]. +Arguments lt_algP [x y]. Lemma le_algP (x y : algcreal) : reflect (x <= y)%CR (\pi_{alg F} x <= \pi y). Proof. by rewrite le_pi; apply: le_algcrealP. Qed. -Implicit Arguments le_algP [x y]. +Arguments le_algP [x y]. Prenex Implicits lt_algP le_algP. Lemma ler_to_alg : {mono to_alg : x y / x <= y}. |
