aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCyril Cohen2020-06-02 15:50:04 +0200
committerCyril Cohen2020-06-06 19:37:55 +0200
commit344207b5925cb82ab46798d3ca3c13d3926fa0cb (patch)
treec3b1c0713174bec21c44c43decae87ea1c78e274
parent258f7f981174f0681bd089476706675fbd331a88 (diff)
Missing homo_mono lemmas
-rw-r--r--mathcomp/ssreflect/ssrbool.v107
1 files changed, 107 insertions, 0 deletions
diff --git a/mathcomp/ssreflect/ssrbool.v b/mathcomp/ssreflect/ssrbool.v
index 80dea3b..3248e57 100644
--- a/mathcomp/ssreflect/ssrbool.v
+++ b/mathcomp/ssreflect/ssrbool.v
@@ -85,3 +85,110 @@ Arguments homo_sym_in {aT rT} [aR rR f aD].
Arguments mono_sym_in {aT rT} [aR rR f aD].
Arguments homo_sym_in11 {aT rT} [aR rR f aD aD'].
Arguments mono_sym_in11 {aT rT} [aR rR f aD aD'].
+
+Section onW_can.
+
+Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}).
+Variables (f : aT -> rT) (g : rT -> aT).
+
+Lemma onW_can : cancel g f -> {on aD, cancel g & f}.
+Proof. by move=> fgK x xaD; apply: fgK. Qed.
+
+Lemma onW_can_in : {in rD, cancel g f} -> {in rD, {on aD, cancel g & f}}.
+Proof. by move=> fgK x xrD xaD; apply: fgK. Qed.
+
+Lemma in_onW_can : cancel g f -> {in rD, {on aD, cancel g & f}}.
+Proof. by move=> fgK x xrD xaD; apply: fgK. Qed.
+
+Lemma onT_can : (forall x, g x \in aD) -> {on aD, cancel g & f} -> cancel g f.
+Proof. by move=> mem_g fgK x; apply: fgK. Qed.
+
+Lemma onT_can_in : {homo g : x / x \in rD >-> x \in aD} ->
+ {in rD, {on aD, cancel g & f}} -> {in rD, cancel g f}.
+Proof. by move=> mem_g fgK x x_rD; apply/fgK/mem_g. Qed.
+
+Lemma in_onT_can : (forall x, g x \in aD) ->
+ {in rT, {on aD, cancel g & f}} -> cancel g f.
+Proof. by move=> mem_g fgK x; apply/fgK. Qed.
+
+End onW_can.
+Arguments onW_can {aT rT} aD {f g}.
+Arguments onW_can_in {aT rT} aD {rD f g}.
+Arguments in_onW_can {aT rT} aD rD {f g}.
+Arguments onT_can {aT rT} aD {f g}.
+Arguments onW_can_in {aT rT} aD {rD f g}.
+Arguments in_onT_can {aT rT} aD {f g}.
+
+Section MonoHomoMorphismTheory_in.
+
+Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}).
+Variables (f : aT -> rT) (g : rT -> aT) (aR : rel aT) (rR : rel rT).
+
+Hypothesis fgK : {in rD, {on aD, cancel g & f}}.
+Hypothesis mem_g : {homo g : x / x \in rD >-> x \in aD}.
+
+Lemma homoRL_in :
+ {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
+ {in rD & aD, forall x y, aR (g x) y -> rR x (f y)}.
+Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed.
+
+Lemma homoLR_in :
+ {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
+ {in aD & rD, forall x y, aR x (g y) -> rR (f x) y}.
+Proof. by move=> Hf x y hx hy /Hf; rewrite fgK ?mem_g// ?inE; apply. Qed.
+
+Lemma homo_mono_in :
+ {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
+ {in rD &, {homo g : x y / rR x y >-> aR x y}} ->
+ {in rD &, {mono g : x y / rR x y >-> aR x y}}.
+Proof.
+move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact.
+by apply: contraNF=> /mf; rewrite !fgK ?mem_g//; apply.
+Qed.
+
+Lemma monoLR_in :
+ {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+ {in aD & rD, forall x y, rR (f x) y = aR x (g y)}.
+Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK ?mem_g// mf ?mem_g. Qed.
+
+Lemma monoRL_in :
+ {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+ {in rD & aD, forall x y, rR x (f y) = aR (g x) y}.
+Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK ?mem_g// mf ?mem_g. Qed.
+
+Lemma can_mono_in :
+ {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+ {in rD &, {mono g : x y / rR x y >-> aR x y}}.
+Proof. by move=> mf x y hx hy; rewrite -mf ?mem_g// !fgK ?mem_g. Qed.
+
+End MonoHomoMorphismTheory_in.
+Arguments homoRL_in {aT rT aD rD f g aR rR}.
+Arguments homoLR_in {aT rT aD rD f g aR rR}.
+Arguments homo_mono_in {aT rT aD rD f g aR rR}.
+Arguments monoLR_in {aT rT aD rD f g aR rR}.
+Arguments monoRL_in {aT rT aD rD f g aR rR}.
+Arguments can_mono_in {aT rT aD rD f g aR rR}.
+
+Section inj_can_sym_in_on.
+Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}).
+Variables (f : aT -> rT) (g : rT -> aT).
+
+Lemma inj_can_sym_in_on : {homo f : x / x \in aD >-> x \in rD} ->
+ {in aD, {on rD, cancel f & g}} ->
+ {in [pred x | x \in rD & g x \in aD], injective g} ->
+ {in rD, {on aD, cancel g & f}}.
+Proof. by move=> fD fK gI x x_rD gx_aD; apply: gI; rewrite ?inE ?fK ?fD. Qed.
+
+Lemma inj_can_sym_on : {in aD, cancel f g} ->
+ {in [pred x | g x \in aD], injective g} -> {on aD, cancel g & f}.
+Proof. by move=> fK gI x gx_aD; apply: gI; rewrite ?inE ?fK. Qed.
+
+Lemma inj_can_sym_in : {homo f \o g : x / x \in rD} -> {on rD, cancel f & g} ->
+ {in rD, injective g} -> {in rD, cancel g f}.
+Proof. by move=> fgD fK gI x x_rD; apply: gI; rewrite ?fK ?fgD. Qed.
+
+End inj_can_sym_in_on.
+Arguments inj_can_sym_in_on {aT rT aD rD f g}.
+Arguments inj_can_sym_on {aT rT aD f g}.
+Arguments inj_can_sym_in {aT rT rD f g}.
+