1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
package Chisel
import Builder._
import scala.math._
import scala.language.reflectiveCalls
import scala.language.experimental.macros
import scala.reflect.runtime.universe._
import scala.reflect.macros.blackbox._
object Enum {
/** create n enum values of given type */
def apply[T <: Bits](nodeType: T, n: Int): List[T] = Range(0, n).map(x => nodeType.fromInt(x)).toList
/** create enum values of given type and names */
def apply[T <: Bits](nodeType: T, l: Symbol *): Map[Symbol, T] = (l.toList zip (Range(0, l.length).map(x => nodeType.fromInt(x)))).toMap
/** create enum values of given type and names */
def apply[T <: Bits](nodeType: T, l: List[Symbol]): Map[Symbol, T] = (l zip (Range(0, l.length).map(x => nodeType.fromInt(x)))).toMap
}
/** Compute the log2 rounded up with min value of 1 */
object log2Up {
def apply(in: Int): Int = 1 max BigInt(in-1).bitLength
}
/** Compute the log2 rounded up */
object log2Ceil {
def apply(in: Int): Int = {
require(in > 0)
BigInt(in-1).bitLength
}
}
/** Compute the log2 rounded down with min value of 1 */
object log2Down {
def apply(in: Int): Int = log2Up(in) - (if (isPow2(in)) 0 else 1)
}
/** Compute the log2 rounded down */
object log2Floor {
def apply(in: Int): Int = log2Ceil(in) - (if (isPow2(in)) 0 else 1)
}
/** Check if an Integer is a power of 2 */
object isPow2 {
def apply(in: Int): Boolean = in > 0 && ((in & (in-1)) == 0)
}
object FillInterleaved
{
def apply(n: Int, in: UInt): UInt = apply(n, in.toBools)
def apply(n: Int, in: Seq[Bool]): UInt = Vec(in.map(Fill(n, _))).toBits
}
/** Returns the number of bits set (i.e value is 1) in the input signal.
*/
object PopCount
{
def apply(in: Iterable[Bool]): UInt = {
if (in.size == 0) {
UInt(0)
} else if (in.size == 1) {
in.head
} else {
apply(in.slice(0, in.size/2)) + Cat(UInt(0), apply(in.slice(in.size/2, in.size)))
}
}
def apply(in: Bits): UInt = apply((0 until in.getWidth).map(in(_)))
}
object RegNext {
def apply[T <: Data](next: T): T = Reg[T](next, next, null.asInstanceOf[T])
def apply[T <: Data](next: T, init: T): T = Reg[T](next, next, init)
}
object RegInit {
def apply[T <: Data](init: T): T = Reg[T](init, null.asInstanceOf[T], init)
}
/** A register with an Enable signal */
object RegEnable
{
def apply[T <: Data](updateData: T, enable: Bool) = {
val r = Reg(updateData)
when (enable) { r := updateData }
r
}
def apply[T <: Data](updateData: T, resetData: T, enable: Bool) = {
val r = RegInit(resetData)
when (enable) { r := updateData }
r
}
}
/** Builds a Mux tree out of the input signal vector using a one hot encoded
select signal. Returns the output of the Mux tree.
*/
object Mux1H
{
def apply[T <: Data](sel: Seq[Bool], in: Seq[T]): T =
apply(sel zip in)
def apply[T <: Data](in: Iterable[(Bool, T)]): T = {
if (in.tail.isEmpty) in.head._2
else {
val masked = in map {case (s, i) => Mux(s, i.toBits, Bits(0))}
val width = in.map(_._2.width).reduce(_ max _)
in.head._2.cloneTypeWidth(width).fromBits(masked.reduceLeft(_|_))
}
}
def apply[T <: Data](sel: UInt, in: Seq[T]): T =
apply((0 until in.size).map(sel(_)), in)
def apply(sel: UInt, in: UInt): Bool = (sel & in).orR
}
/** Builds a Mux tree under the assumption that multiple select signals
can be enabled. Priority is given to the first select signal.
Returns the output of the Mux tree.
*/
object PriorityMux
{
def apply[T <: Bits](in: Seq[(Bool, T)]): T = {
if (in.size == 1) {
in.head._2
} else {
Mux(in.head._1, in.head._2, apply(in.tail))
}
}
def apply[T <: Bits](sel: Seq[Bool], in: Seq[T]): T = apply(sel zip in)
def apply[T <: Bits](sel: Bits, in: Seq[T]): T = apply((0 until in.size).map(sel(_)), in)
}
/** This is identical to [[Chisel.when when]] with the condition inverted */
object unless {
def apply(c: Bool)(block: => Unit) {
when (!c) { block }
}
}
class SwitchContext[T <: Bits](cond: T) {
def is(v: Iterable[T])(block: => Unit) {
if (!v.isEmpty) when (v.map(_.asUInt === cond.asUInt).reduce(_||_)) { block }
}
def is(v: T)(block: => Unit) { is(Seq(v))(block) }
def is(v: T, vr: T*)(block: => Unit) { is(v :: vr.toList)(block) }
}
/** An object for separate cases in [[Chisel.switch switch]]
* It is equivalent to a [[Chisel.when$ when]] block comparing to the condition
* Use outside of a switch statement is illegal */
object is { // Begin deprecation of non-type-parameterized is statements.
def apply(v: Iterable[Bits])(block: => Unit) { Builder.error("The 'is' keyword may not be used outside of a switch.") }
def apply(v: Bits)(block: => Unit) { Builder.error("The 'is' keyword may not be used outside of a switch.") }
def apply(v: Bits, vr: Bits*)(block: => Unit) { Builder.error("The 'is' keyword may not be used outside of a switch.") }
}
/** Conditional logic to form a switch block
* @example
* {{{ ... // default values here
* switch ( myState ) {
* is( state1 ) {
* ... // some logic here
* }
* is( state2 ) {
* ... // some logic here
* }
* } }}}*/
object switch {
def apply[T <: Bits](cond: T)(x: => Unit): Unit = macro impl
def impl(c: Context)(cond: c.Tree)(x: c.Tree) = { import c.universe._
val sc = c.universe.internal.reificationSupport.freshTermName("sc")
def extractIsStatement(tree: Tree): List[c.universe.Tree] = tree match {
case q"Chisel.is.apply( ..$params )( ..$body )" => List(q"$sc.is( ..$params )( ..$body )")
case b => throw new Exception(s"Cannot include blocks that do not begin with is() in switch.")
}
val q"..$body" = x
val ises = body.flatMap(extractIsStatement(_))
q"""{ val $sc = new SwitchContext($cond); ..$ises }"""
}
}
/** MuxLookup creates a cascade of n Muxs to search for a key value */
object MuxLookup {
/** @param key a key to search for
* @param default a default value if nothing is found
* @param mapping a sequence to search of keys and values
* @return the value found or the default if not
*/
def apply[S <: UInt, T <: Bits] (key: S, default: T, mapping: Seq[(S, T)]): T = {
var res = default;
for ((k, v) <- mapping.reverse)
res = Mux(k === key, v, res);
res
}
}
/** Fill fans out a UInt to multiple copies */
object Fill {
/** Fan out x n times */
def apply(n: Int, x: UInt): UInt = {
n match {
case 0 => UInt(width=0)
case 1 => x
case y if n > 1 =>
val p2 = Array.ofDim[UInt](log2Up(n+1))
p2(0) = x
for (i <- 1 until p2.length)
p2(i) = Cat(p2(i-1), p2(i-1))
Cat((0 until log2Up(y+1)).filter(i => (y & (1 << i)) != 0).map(p2(_)))
case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.")
}
}
/** Fan out x n times */
def apply(n: Int, x: Bool): UInt =
if (n > 1) UInt(0,n) - x
else apply(n, x: UInt)
}
/** MuxCase returns the first value that is enabled in a map of values */
object MuxCase {
/** @param default the default value if none are enabled
* @param mapping a set of data values with associated enables
* @return the first value in mapping that is enabled */
def apply[T <: Bits] (default: T, mapping: Seq[(Bool, T)]): T = {
var res = default;
for ((t, v) <- mapping.reverse){
res = Mux(t, v, res);
}
res
}
}
object ListLookup {
def apply[T <: Data](addr: UInt, default: List[T], mapping: Array[(BitPat, List[T])]): List[T] = {
val map = mapping.map(m => (m._1 === addr, m._2))
default.zipWithIndex map { case (d, i) =>
map.foldRight(d)((m, n) => Mux(m._1, m._2(i), n))
}
}
}
object Lookup {
def apply[T <: Bits](addr: UInt, default: T, mapping: Seq[(BitPat, T)]): T =
ListLookup(addr, List(default), mapping.map(m => (m._1, List(m._2))).toArray).head
}
/** Litte/big bit endian convertion: reverse the order of the bits in a UInt.
*/
object Reverse
{
private def doit(in: UInt, length: Int): UInt = {
if (length == 1) {
in
} else if (isPow2(length) && length >= 8 && length <= 64) {
// This esoterica improves simulation performance
var res = in
var shift = length >> 1
var mask = UInt((BigInt(1) << length) - 1, length)
do {
mask = mask ^ (mask(length-shift-1,0) << shift)
res = ((res >> shift) & mask) | ((res(length-shift-1,0) << shift) & ~mask)
shift = shift >> 1
} while (shift > 0)
res
} else {
val half = (1 << log2Up(length))/2
Cat(doit(in(half-1,0), half), doit(in(length-1,half), length-half))
}
}
def apply(in: UInt): UInt = doit(in, in.getWidth)
}
/** Returns the n-cycle delayed version of the input signal.
*/
object ShiftRegister
{
/** @param in input to delay
* @param n number of cycles to delay
* @param en enable the shift */
def apply[T <: Data](in: T, n: Int, en: Bool = Bool(true)): T =
{
// The order of tests reflects the expected use cases.
if (n == 1) {
RegEnable(in, en)
} else if (n != 0) {
RegNext(apply(in, n-1, en))
} else {
in
}
}
}
/** Compute Log2 with truncation of a UInt in hardware using a Mux Tree
* An alternative interpretation is it computes the minimum number of bits needed to represent x
* @example
* {{{ data_out := Log2(data_in) }}}
* @note Truncation is used so Log2(UInt(12412)) = 13*/
object Log2 {
/** Compute the Log2 on the least significant n bits of x */
def apply(x: Bits, width: Int): UInt = {
if (width < 2) UInt(0)
else if (width == 2) x(1)
else Mux(x(width-1), UInt(width-1), apply(x, width-1))
}
def apply(x: Bits): UInt = apply(x, x.getWidth)
}
/** Converts from One Hot Encoding to a UInt indicating which bit is active
* This is the inverse of [[Chisel.UIntToOH UIntToOH]]*/
object OHToUInt {
def apply(in: Seq[Bool]): UInt = apply(Vec(in))
def apply(in: Vec[Bool]): UInt = apply(in.toBits, in.size)
def apply(in: Bits): UInt = apply(in, in.getWidth)
def apply(in: Bits, width: Int): UInt = {
if (width <= 2) Log2(in, width)
else {
val mid = 1 << (log2Up(width)-1)
val hi = in(width-1, mid)
val lo = in(mid-1, 0)
Cat(hi.orR, apply(hi | lo, mid))
}
}
}
/** @return the bit position of the trailing 1 in the input vector
* with the assumption that multiple bits of the input bit vector can be set
* @example {{{ data_out := PriorityEncoder(data_in) }}}
*/
object PriorityEncoder {
def apply(in: Seq[Bool]): UInt = PriorityMux(in, (0 until in.size).map(UInt(_)))
def apply(in: Bits): UInt = apply(in.toBools)
}
/** Returns the one hot encoding of the input UInt.
*/
object UIntToOH
{
def apply(in: UInt, width: Int = -1): UInt =
if (width == -1) UInt(1) << in
else (UInt(1) << in(log2Up(width)-1,0))(width-1,0)
}
/** A counter module
* @param n The maximum value of the counter, does not have to be power of 2
*/
class Counter(val n: Int) {
val value = if (n == 1) UInt(0) else Reg(init=UInt(0, log2Up(n)))
def inc(): Bool = {
if (n == 1) Bool(true)
else {
val wrap = value === UInt(n-1)
value := Mux(Bool(!isPow2(n)) && wrap, UInt(0), value + UInt(1))
wrap
}
}
}
/** Counter Object
* Example Usage:
* {{{ val countOn = Bool(true) // increment counter every clock cycle
* val myCounter = Counter(countOn, n)
* when ( myCounter.value === UInt(3) ) { ... } }}}*/
object Counter
{
def apply(n: Int): Counter = new Counter(n)
def apply(cond: Bool, n: Int): (UInt, Bool) = {
val c = new Counter(n)
var wrap: Bool = null
when (cond) { wrap = c.inc() }
(c.value, cond && wrap)
}
}
/** An I/O Bundle containing data and a signal determining if it is valid */
class ValidIO[+T <: Data](gen2: T) extends Bundle
{
val valid = Bool(OUTPUT)
val bits = gen2.cloneType.asOutput
def fire(dummy: Int = 0): Bool = valid
override def cloneType: this.type = new ValidIO(gen2).asInstanceOf[this.type]
}
/** Adds a valid protocol to any interface. The standard used is
that the consumer uses the flipped interface.
*/
object Valid {
def apply[T <: Data](gen: T): ValidIO[T] = new ValidIO(gen)
}
/** An I/O Bundle with simple handshaking using valid and ready signals for data 'bits'*/
class DecoupledIO[+T <: Data](gen: T) extends Bundle
{
val ready = Bool(INPUT)
val valid = Bool(OUTPUT)
val bits = gen.cloneType.asOutput
def fire(dummy: Int = 0): Bool = ready && valid
override def cloneType: this.type = new DecoupledIO(gen).asInstanceOf[this.type]
}
/** Adds a ready-valid handshaking protocol to any interface.
* The standard used is that the consumer uses the flipped interface.
*/
object Decoupled {
def apply[T <: Data](gen: T): DecoupledIO[T] = new DecoupledIO(gen)
}
/** An I/O bundle for enqueuing data with valid/ready handshaking */
class EnqIO[T <: Data](gen: T) extends DecoupledIO(gen)
{
def enq(dat: T): T = { valid := Bool(true); bits := dat; dat }
valid := Bool(false)
for (io <- bits.flatten)
io := UInt(0)
override def cloneType: this.type = { new EnqIO(gen).asInstanceOf[this.type]; }
}
/** An I/O bundle for dequeuing data with valid/ready handshaking */
class DeqIO[T <: Data](gen: T) extends DecoupledIO(gen)
{
flip()
ready := Bool(false)
def deq(b: Boolean = false): T = { ready := Bool(true); bits }
override def cloneType: this.type = { new DeqIO(gen).asInstanceOf[this.type]; }
}
/** An I/O bundle for dequeuing data with valid/ready handshaking */
class DecoupledIOC[+T <: Data](gen: T) extends Bundle
{
val ready = Bool(INPUT)
val valid = Bool(OUTPUT)
val bits = gen.cloneType.asOutput
}
/** An I/O Bundle for Queues
* @param gen The type of data to queue
* @param entries The max number of entries in the queue */
class QueueIO[T <: Data](gen: T, entries: Int) extends Bundle
{
/** I/O to enqueue data, is [[Chisel.DecoupledIO]] flipped */
val enq = Decoupled(gen.cloneType).flip
/** I/O to enqueue data, is [[Chisel.DecoupledIO]]*/
val deq = Decoupled(gen.cloneType)
/** The current amount of data in the queue */
val count = UInt(OUTPUT, log2Up(entries + 1))
}
/** A hardware module implementing a Queue
* @param gen The type of data to queue
* @param entries The max number of entries in the queue
* @param pipe True if a single entry queue can run at full throughput (like a pipeline). The ''ready'' signals are combinationally coupled.
* @param flow True if the inputs can be consumed on the same cycle
(the inputs "flow" through the queue immediately). The ''valid'' signals are coupled.
*
* Example usage:
* {{{ val q = new Queue(UInt(), 16)
* q.io.enq <> producer.io.out
* consumer.io.in <> q.io.deq }}}
*/
class Queue[T <: Data](gen: T, val entries: Int,
pipe: Boolean = false,
flow: Boolean = false,
_reset: Bool = null) extends Module(_reset=_reset)
{
val io = new QueueIO(gen, entries)
val ram = Mem(gen, entries)
val enq_ptr = Counter(entries)
val deq_ptr = Counter(entries)
val maybe_full = Reg(init=Bool(false))
val ptr_match = enq_ptr.value === deq_ptr.value
val empty = ptr_match && !maybe_full
val full = ptr_match && maybe_full
val maybe_flow = Bool(flow) && empty
val do_flow = maybe_flow && io.deq.ready
val do_enq = io.enq.ready && io.enq.valid && !do_flow
val do_deq = io.deq.ready && io.deq.valid && !do_flow
when (do_enq) {
ram(enq_ptr.value) := io.enq.bits
enq_ptr.inc()
}
when (do_deq) {
deq_ptr.inc()
}
when (do_enq != do_deq) {
maybe_full := do_enq
}
io.deq.valid := !empty || Bool(flow) && io.enq.valid
io.enq.ready := !full || Bool(pipe) && io.deq.ready
io.deq.bits := Mux(maybe_flow, io.enq.bits, ram(deq_ptr.value))
val ptr_diff = enq_ptr.value - deq_ptr.value
if (isPow2(entries)) {
io.count := Cat(maybe_full && ptr_match, ptr_diff)
} else {
io.count := Mux(ptr_match,
Mux(maybe_full,
UInt(entries), UInt(0)),
Mux(deq_ptr.value > enq_ptr.value,
UInt(entries) + ptr_diff, ptr_diff))
}
}
/** Generic hardware queue. Required parameter entries controls
the depth of the queues. The width of the queue is determined
from the inputs.
Example usage:
{{{ val q = Queue(Decoupled(UInt()), 16)
q.io.enq <> producer.io.out
consumer.io.in <> q.io.deq }}}
*/
object Queue
{
def apply[T <: Data](enq: DecoupledIO[T], entries: Int = 2, pipe: Boolean = false): DecoupledIO[T] = {
val q = Module(new Queue(enq.bits.cloneType, entries, pipe))
q.io.enq.valid := enq.valid // not using <> so that override is allowed
q.io.enq.bits := enq.bits
enq.ready := q.io.enq.ready
q.io.deq
}
}
/** Returns a bit vector in which only the least-significant 1 bit in
the input vector, if any, is set.
*/
object PriorityEncoderOH
{
private def encode(in: Seq[Bool]): UInt = {
val outs = Vec.tabulate(in.size)(i => UInt(BigInt(1) << i, in.size))
PriorityMux(in :+ Bool(true), outs :+ UInt(0, in.size))
}
def apply(in: Seq[Bool]): Vec[Bool] = {
val enc = encode(in)
Vec.tabulate(in.size)(enc(_))
}
def apply(in: Bits): UInt = encode((0 until in.getWidth).map(i => in(i)))
}
/** An I/O bundle for the Arbiter */
class ArbiterIO[T <: Data](gen: T, n: Int) extends Bundle {
val in = Vec(Decoupled(gen), n).flip
val out = Decoupled(gen)
val chosen = UInt(OUTPUT, log2Up(n))
}
/** Arbiter Control determining which producer has access */
object ArbiterCtrl
{
def apply(request: Seq[Bool]): Seq[Bool] = {
Bool(true) +: (1 until request.length).map(i => !request.slice(0, i).foldLeft(Bool(false))(_ || _))
}
}
abstract class LockingArbiterLike[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends Module {
require(isPow2(count))
def grant: Seq[Bool]
val io = new ArbiterIO(gen, n)
val locked = if(count > 1) Reg(init=Bool(false)) else Bool(false)
val lockIdx = if(count > 1) Reg(init=UInt(n-1)) else UInt(n-1)
val chosen = Wire(UInt(width = log2Up(n)))
io.out.valid := io.in(chosen).valid
io.out.bits := io.in(chosen).bits
io.chosen := chosen
io.in(chosen).ready := Bool(false) // XXX FIRRTL workaround
for ((g, i) <- grant.zipWithIndex)
io.in(i).ready := Mux(locked, lockIdx === UInt(i), g) && io.out.ready
if(count > 1){
val cnt = Reg(init=UInt(0, width = log2Up(count)))
val cnt_next = cnt + UInt(1)
when(io.out.fire()) {
when(needsLock.map(_(io.out.bits)).getOrElse(Bool(true))) {
cnt := cnt_next
when(!locked) {
locked := Bool(true)
lockIdx := Vec(io.in.map{ in => in.fire()}).indexWhere{i: Bool => i}
}
}
when(cnt_next === UInt(0)) {
locked := Bool(false)
}
}
}
}
class LockingRRArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) {
lazy val last_grant = Reg(init=UInt(0, log2Up(n)))
override def grant: Seq[Bool] = {
val ctrl = ArbiterCtrl((0 until n).map(i => io.in(i).valid && UInt(i) > last_grant) ++ io.in.map(_.valid))
(0 until n).map(i => ctrl(i) && UInt(i) > last_grant || ctrl(i + n))
}
var choose = UInt(n-1)
for (i <- n-2 to 0 by -1)
choose = Mux(io.in(i).valid, UInt(i), choose)
for (i <- n-1 to 1 by -1)
choose = Mux(io.in(i).valid && UInt(i) > last_grant, UInt(i), choose)
chosen := Mux(locked, lockIdx, choose)
when (io.out.fire()) { last_grant := chosen }
}
class LockingArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) {
def grant: Seq[Bool] = ArbiterCtrl(io.in.map(_.valid))
var choose = UInt(n-1)
for (i <- n-2 to 0 by -1) {
choose = Mux(io.in(i).valid, UInt(i), choose)
}
chosen := Mux(locked, lockIdx, choose)
}
/** Hardware module that is used to sequence n producers into 1 consumer.
Producers are chosen in round robin order.
Example usage:
val arb = new RRArbiter(2, UInt())
arb.io.in(0) <> producer0.io.out
arb.io.in(1) <> producer1.io.out
consumer.io.in <> arb.io.out
*/
class RRArbiter[T <: Data](gen:T, n: Int) extends LockingRRArbiter[T](gen, n, 1)
/** Hardware module that is used to sequence n producers into 1 consumer.
Priority is given to lower producer
Example usage:
val arb = Module(new Arbiter(2, UInt()))
arb.io.in(0) <> producer0.io.out
arb.io.in(1) <> producer1.io.out
consumer.io.in <> arb.io.out
*/
class Arbiter[T <: Data](gen: T, n: Int) extends LockingArbiter[T](gen, n, 1)
/** linear feedback shift register
*/
object LFSR16
{
def apply(increment: Bool = Bool(true)): UInt =
{
val width = 16
val lfsr = Reg(init=UInt(1, width))
when (increment) { lfsr := Cat(lfsr(0)^lfsr(2)^lfsr(3)^lfsr(5), lfsr(width-1,1)) }
lfsr
}
}
/** A hardware module that delays data coming down the pipeline
by the number of cycles set by the latency parameter. Functionality
is similar to ShiftRegister but this exposes a Pipe interface.
Example usage:
val pipe = new Pipe(UInt())
pipe.io.enq <> produce.io.out
consumer.io.in <> pipe.io.deq
*/
object Pipe
{
def apply[T <: Data](enqValid: Bool, enqBits: T, latency: Int): ValidIO[T] = {
if (latency == 0) {
val out = Wire(Valid(enqBits))
out.valid <> enqValid
out.bits <> enqBits
out
} else {
val v = Reg(Bool(), next=enqValid, init=Bool(false))
val b = RegEnable(enqBits, enqValid)
apply(v, b, latency-1)
}
}
def apply[T <: Data](enqValid: Bool, enqBits: T): ValidIO[T] = apply(enqValid, enqBits, 1)
def apply[T <: Data](enq: ValidIO[T], latency: Int = 1): ValidIO[T] = apply(enq.valid, enq.bits, latency)
}
class Pipe[T <: Data](gen: T, latency: Int = 1) extends Module
{
val io = new Bundle {
val enq = Valid(gen).flip
val deq = Valid(gen)
}
io.deq <> Pipe(io.enq, latency)
}
|