1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
|
// SPDX-License-Identifier: Apache-2.0
package chisel3
import chisel3.experimental.VecLiterals.AddVecLiteralConstructor
import scala.collection.immutable.{SeqMap, VectorMap}
import scala.collection.mutable.{HashSet, LinkedHashMap}
import chisel3.experimental.{BaseModule, BundleLiteralException, OpaqueType, VecLiteralException}
import chisel3.internal._
import chisel3.internal.Builder.pushCommand
import chisel3.internal.firrtl._
import java.lang.Math.{floor, log10, pow}
import scala.collection.mutable
class AliasedAggregateFieldException(message: String) extends ChiselException(message)
/** An abstract class for data types that solely consist of (are an aggregate
* of) other Data objects.
*/
sealed abstract class Aggregate extends Data {
/** Return an Aggregate's literal value if it is a literal, None otherwise.
* If any element of the aggregate is not a literal with a defined width, the result isn't a literal.
*
* @return an Aggregate's literal value if it is a literal.
*/
override def litOption: Option[BigInt] = {
// Shift the accumulated value by our width and add in our component, masked by our width.
def shiftAdd(accumulator: Option[BigInt], elt: Data): Option[BigInt] = {
(accumulator, elt.litOption) match {
case (Some(accumulator), Some(eltLit)) =>
val width = elt.width.get
val masked = ((BigInt(1) << width) - 1) & eltLit // also handles the negative case with two's complement
Some((accumulator << width) + masked)
case (None, _) => None
case (_, None) => None
}
}
topBindingOpt match {
case Some(BundleLitBinding(_)) | Some(VecLitBinding(_)) =>
getElements.reverse
.foldLeft[Option[BigInt]](Some(BigInt(0)))(shiftAdd)
case _ => None
}
}
/** Returns a Seq of the immediate contents of this Aggregate, in order.
*/
def getElements: Seq[Data]
/** Similar to [[getElements]] but allows for more optimized use */
private[chisel3] def elementsIterator: Iterator[Data]
private[chisel3] def width: Width = elementsIterator.map(_.width).foldLeft(0.W)(_ + _)
override def asUInt: UInt = {
SeqUtils.asUInt(flatten.map(_.asUInt))
}
private[chisel3] override def connectFromBits(
that: Bits
): Unit = {
var i = 0
val bits = if (that.isLit) that else WireDefault(UInt(this.width), that) // handles width padding
for (x <- flatten) {
val fieldWidth = x.getWidth
if (fieldWidth > 0) {
x.connectFromBits(bits(i + fieldWidth - 1, i))
i += fieldWidth
} else {
// There's a zero-width field in this bundle.
// Zero-width fields can't really be assigned to, but the frontend complains if there are uninitialized fields,
// so we assign it to DontCare. We can't use connectFromBits() on DontCare, so use := instead.
x := DontCare
}
}
}
}
/** A vector (array) of [[Data]] elements. Provides hardware versions of various
* collection transformation functions found in software array implementations.
*
* Careful consideration should be given over the use of [[Vec]] vs
* [[scala.collection.immutable.Seq Seq]] or some other Scala collection. In general [[Vec]] only
* needs to be used when there is a need to express the hardware collection in a [[Reg]] or IO
* [[Bundle]] or when access to elements of the array is indexed via a hardware signal.
*
* Example of indexing into a [[Vec]] using a hardware address and where the [[Vec]] is defined in
* an IO [[Bundle]]
*
* {{{
* val io = IO(new Bundle {
* val in = Input(Vec(20, UInt(16.W)))
* val addr = Input(UInt(5.W))
* val out = Output(UInt(16.W))
* })
* io.out := io.in(io.addr)
* }}}
*
* @tparam T type of elements
*
* @note
* - when multiple conflicting assignments are performed on a Vec element, the last one takes effect (unlike Mem, where the result is undefined)
* - Vecs, unlike classes in Scala's collection library, are propagated intact to FIRRTL as a vector type, which may make debugging easier
*/
class Vec[T <: Data] private[chisel3] (gen: => T, val vec_length: Int) extends Aggregate with Iterator[T] {
def hasNext: Boolean = ???
def next(): T = ???
override def toString: String = {
topBindingOpt match {
case Some(VecLitBinding(vecLitBinding)) =>
val contents = vecLitBinding.zipWithIndex.map {
case ((data, lit), index) =>
s"$index=$lit"
}.mkString(", ")
s"${sample_element.cloneType}[$vec_length]($contents)"
case _ => stringAccessor(s"${sample_element.cloneType}[$vec_length]")
}
}
private[chisel3] override def typeEquivalent(that: Data): Boolean = that match {
case that: Vec[T] =>
this.vec_length == that.vec_length &&
(this.sample_element.typeEquivalent(that.sample_element))
case _ => false
}
private[chisel3] override def bind(target: Binding, parentDirection: SpecifiedDirection): Unit = {
_parent.foreach(_.addId(this))
binding = target
val resolvedDirection = SpecifiedDirection.fromParent(parentDirection, specifiedDirection)
sample_element.bind(SampleElementBinding(this), resolvedDirection)
for (child <- elementsIterator) { // assume that all children are the same
child.bind(ChildBinding(this), resolvedDirection)
}
// Since all children are the same, we can just use the sample_element rather than all children
direction =
ActualDirection.fromChildren(Set(sample_element.direction), resolvedDirection).getOrElse(ActualDirection.Empty)
}
// Note: the constructor takes a gen() function instead of a Seq to enforce
// that all elements must be the same and because it makes FIRRTL generation
// simpler.
private lazy val self: Seq[T] = {
val _self = Vector.fill(vec_length)(gen)
val thisNode = Node(this) // Share the same Node for all elements.
for ((elt, i) <- _self.zipWithIndex)
elt.setRef(thisNode, i)
_self
}
/**
* sample_element 'tracks' all changes to the elements.
* For consistency, sample_element is always used for creating dynamically
* indexed ports and outputing the FIRRTL type.
*
* Needed specifically for the case when the Vec is length 0.
*/
private[chisel3] val sample_element: T = gen
// allElements current includes sample_element
// This is somewhat weird although I think the best course of action here is
// to deprecate allElements in favor of dispatched functions to Data or
// a pattern matched recursive descent
private[chisel3] final override def allElements: Seq[Element] =
(sample_element +: self).flatMap(_.allElements)
/** Strong bulk connect, assigning elements in this Vec from elements in a Seq.
*
* @note the length of this Vec must match the length of the input Seq
*/
def <>(that: Seq[T]): Unit = {
if (this.length != that.length) {
Builder.error("Vec and Seq being bulk connected have different lengths!")
}
for ((a, b) <- this.zip(that))
a <> b
}
// TODO: eliminate once assign(Seq) isn't ambiguous with assign(Data) since Vec extends Seq and Data
def <>(that: Vec[T]): Unit =
this.bulkConnect(that.asInstanceOf[Data])
/** Strong bulk connect, assigning elements in this Vec from elements in a Seq.
*
* @note the length of this Vec must match the length of the input Seq
*/
def :=(that: Seq[T]): Unit = {
require(
this.length == that.length,
s"Cannot assign to a Vec of length ${this.length} from a Seq of different length ${that.length}"
)
for ((a, b) <- this.zip(that))
a := b
}
// TODO: eliminate once assign(Seq) isn't ambiguous with assign(Data) since Vec extends Seq and Data
def :=(that: Vec[T]): Unit = this.connect(that)
/** Creates a dynamically indexed read or write accessor into the array.
*/
def apply(p: UInt): T = {
requireIsHardware(this, "vec")
requireIsHardware(p, "vec index")
val port = gen
// Reconstruct the resolvedDirection (in Aggregate.bind), since it's not stored.
// It may not be exactly equal to that value, but the results are the same.
val reconstructedResolvedDirection = direction match {
case ActualDirection.Input => SpecifiedDirection.Input
case ActualDirection.Output => SpecifiedDirection.Output
case ActualDirection.Bidirectional(ActualDirection.Default) | ActualDirection.Unspecified =>
SpecifiedDirection.Unspecified
case ActualDirection.Bidirectional(ActualDirection.Flipped) => SpecifiedDirection.Flip
case ActualDirection.Empty => SpecifiedDirection.Unspecified
}
// TODO port technically isn't directly child of this data structure, but the result of some
// muxes / demuxes. However, this does make access consistent with the top-level bindings.
// Perhaps there's a cleaner way of accomplishing this...
port.bind(ChildBinding(this), reconstructedResolvedDirection)
val i = Vec.truncateIndex(p, length)
port.setRef(Node(this), i)
port
}
/** Creates a statically indexed read or write accessor into the array.
*/
def apply(idx: Int): T = self(idx)
override def cloneType: this.type = {
new Vec(gen.cloneTypeFull, length).asInstanceOf[this.type]
}
override def getElements: Seq[Data] = self
final override private[chisel3] def elementsIterator: Iterator[Data] = self.iterator
/** Default "pretty-print" implementation
* Analogous to printing a Seq
* Results in "Vec(elt0, elt1, ...)"
*/
def toPrintable: Printable = {
val elts =
if (length == 0) List.empty[Printable]
else self.flatMap(e => List(e.toPrintable, PString(", "))).dropRight(1)
PString("Vec(") + Printables(elts) + PString(")")
}
/** Creates a Vec literal of this type with specified values. this must be a chisel type.
*
* @param elementInitializers literal values, specified as a pair of the Vec field to the literal value.
* The Vec field is specified as a function from an object of this type to the field.
* Fields that aren't initialized to DontCare, and assignment to a wire will overwrite any
* existing value with DontCare.
* @return a Vec literal of this type with subelement values specified
*
* Vec(2, UInt(8.W)).Lit(
* 1 -> 0x0A.U,
* 2 -> 0x0B.U
* )
* }}}
*/
private[chisel3] def _makeLit(
elementInitializers: (Int, T)*
): this.type = {
def checkLiteralConstruction(): Unit = {
val dupKeys = elementInitializers.map { x => x._1 }.groupBy(x => x).flatMap {
case (k, v) =>
if (v.length > 1) {
Some(k, v.length)
} else {
None
}
}
if (dupKeys.nonEmpty) {
throw new VecLiteralException(
s"VecLiteral: has duplicated indices ${dupKeys.map { case (k, n) => s"$k($n times)" }.mkString(",")}"
)
}
val outOfRangeIndices = elementInitializers.map(_._1).filter { case index => index < 0 || index >= length }
if (outOfRangeIndices.nonEmpty) {
throw new VecLiteralException(
s"VecLiteral: The following indices (${outOfRangeIndices.mkString(",")}) " +
s"are less than zero or greater or equal to than Vec length"
)
}
cloneSupertype(elementInitializers.map(_._2), s"Vec.Lit(...)")
// look for literals of this vec that are wider than the vec's type
val badLits = elementInitializers.flatMap {
case (index, lit) =>
(sample_element.width, lit.width) match {
case (KnownWidth(m), KnownWidth(n)) =>
if (m < n) Some(index -> lit) else None
case (KnownWidth(_), _) =>
None
case (UnknownWidth(), _) =>
None
case _ =>
Some(index -> lit)
}
case _ => None
}
if (badLits.nonEmpty) {
throw new VecLiteralException(
s"VecLiteral: Vec[$gen] has the following incorrectly typed or sized initializers: " +
badLits.map { case (a, b) => s"$a -> $b" }.mkString(",")
)
}
}
requireIsChiselType(this, "vec literal constructor model")
checkLiteralConstruction()
val clone = cloneType
val cloneFields = getRecursiveFields(clone, "(vec root)").toMap
// Create the Vec literal binding from litArgs of arguments
val vecLitLinkedMap = new mutable.LinkedHashMap[Data, LitArg]()
elementInitializers.sortBy { case (a, _) => a }.foreach {
case (fieldIndex, value) =>
val field = clone.apply(fieldIndex)
val fieldName = cloneFields.getOrElse(
field,
throw new VecLiteralException(
s"field $field (with value $value) is not a field," +
s" ensure the field is specified as a function returning a field on an object of class ${this.getClass}," +
s" eg '_.a' to select hypothetical bundle field 'a'"
)
)
val valueBinding = value.topBindingOpt match {
case Some(litBinding: LitBinding) => litBinding
case _ => throw new VecLiteralException(s"field $fieldIndex specified with non-literal value $value")
}
field match { // Get the litArg(s) for this field
case bitField: Bits =>
if (!field.typeEquivalent(bitField)) {
throw new VecLiteralException(
s"VecLit: Literal specified at index $fieldIndex ($value) does not match Vec type $sample_element"
)
}
if (bitField.getWidth > field.getWidth) {
throw new VecLiteralException(
s"VecLit: Literal specified at index $fieldIndex ($value) is too wide for Vec type $sample_element"
)
}
val litArg = valueBinding match {
case ElementLitBinding(litArg) => litArg
case BundleLitBinding(litMap) =>
litMap.getOrElse(
value,
throw new BundleLiteralException(s"Field $fieldName specified with unspecified value")
)
case VecLitBinding(litMap) =>
litMap.getOrElse(
value,
throw new VecLiteralException(s"Field $fieldIndex specified with unspecified value")
)
}
val adjustedLitArg = litArg.cloneWithWidth(sample_element.width)
vecLitLinkedMap(bitField) = adjustedLitArg
case recordField: Record =>
if (!(recordField.typeEquivalent(value))) {
throw new VecLiteralException(
s"field $fieldIndex $recordField specified with non-type-equivalent value $value"
)
}
// Copy the source BundleLitBinding with fields (keys) remapped to the clone
val remap = getMatchedFields(value, recordField).toMap
valueBinding.asInstanceOf[BundleLitBinding].litMap.map {
case (valueField, valueValue) =>
vecLitLinkedMap(remap(valueField)) = valueValue
}
case vecField: Vec[_] =>
if (!(vecField.typeEquivalent(value))) {
throw new VecLiteralException(
s"field $fieldIndex $vecField specified with non-type-equivalent value $value"
)
}
// Copy the source VecLitBinding with vecFields (keys) remapped to the clone
val remap = getMatchedFields(value, vecField).toMap
value.topBinding.asInstanceOf[VecLitBinding].litMap.map {
case (valueField, valueValue) =>
vecLitLinkedMap(remap(valueField)) = valueValue
}
case enumField: EnumType => {
if (!(enumField.typeEquivalent(value))) {
throw new VecLiteralException(
s"field $fieldIndex $enumField specified with non-type-equivalent enum value $value"
)
}
val litArg = valueBinding match {
case ElementLitBinding(litArg) => litArg
case _ =>
throw new VecLiteralException(s"field $fieldIndex $enumField could not bematched with $valueBinding")
}
vecLitLinkedMap(field) = litArg
}
case _ => throw new VecLiteralException(s"unsupported field $fieldIndex of type $field")
}
}
clone.bind(VecLitBinding(VectorMap(vecLitLinkedMap.toSeq*)))
clone.asInstanceOf[this.type]
}
}
object Vec {
/** Creates a new [[Vec]] with `n` entries of the specified data type.
*
* @note elements are NOT assigned by default and have no value
*/
def apply[T <: Data](n: Int, gen: T): Vec[T] = {
new Vec(gen.cloneTypeFull, n)
}
/** Truncate an index to implement modulo-power-of-2 addressing. */
private[chisel3] def truncateIndex(
idx: UInt,
n: BigInt
): UInt = {
val w = (n - 1).bitLength
if (n <= 1) 0.U
else if (idx.width.known && idx.width.get <= w) idx
else if (idx.width.known) idx(w - 1, 0)
else (idx | 0.U(w.W))(w - 1, 0)
}
/** Gets the correct connect operation (directed hardware assign or bulk connect) for element in Vec.
*/
private def getConnectOpFromDirectionality[T <: Data](
proto: T
): (T, T) => Unit = proto.direction match {
case ActualDirection.Input | ActualDirection.Output | ActualDirection.Unspecified =>
// When internal wires are involved, driver / sink must be specified explicitly, otherwise
// the system is unable to infer which is driver / sink
(x, y) => x := y
case ActualDirection.Bidirectional(_) =>
// For bidirectional, must issue a bulk connect so subelements are resolved correctly.
// Bulk connecting two wires may not succeed because Chisel frontend does not infer
// directions.
(x, y) => x <> y
}
/** Creates a new [[Vec]] composed of elements of the input Seq of [[Data]]
* nodes.
*
* @note input elements should be of the same type (this is checked at the
* FIRRTL level, but not at the Scala / Chisel level)
* @note the width of all output elements is the width of the largest input
* element
* @note output elements are connected from the input elements
*/
def apply[T <: Data](elts: Seq[T]): Vec[T] = {
// REVIEW TODO: this should be removed in favor of the apply(elts: T*)
// varargs constructor, which is more in line with the style of the Scala
// collection API. However, a deprecation phase isn't possible, since
// changing apply(elt0, elts*) to apply(elts*) causes a function collision
// with apply(Seq) after type erasure. Workarounds by either introducing a
// DummyImplicit or additional type parameter will break some code.
// Check that types are homogeneous. Width mismatch for Elements is safe.
require(elts.nonEmpty, "Vec hardware values are not allowed to be empty")
elts.foreach(requireIsHardware(_, "vec element"))
val vec: Vec[T] = Wire(Vec(elts.length, cloneSupertype(elts, "Vec")))
val op = getConnectOpFromDirectionality(vec(0))
(vec.zip(elts)).foreach { x =>
op(x._1, x._2)
}
vec
}
/** Creates a new [[Vec]] composed of the input [[Data]] nodes.
*
* @note input elements should be of the same type (this is checked at the
* FIRRTL level, but not at the Scala / Chisel level)
* @note the width of all output elements is the width of the largest input
* element
* @note output elements are connected from the input elements
*/
def apply[T <: Data](elt0: T, elts: T*): Vec[T] =
apply(elt0 +: elts.toSeq)
/** Creates a new [[Vec]] of length `n` composed of the results of the given
* function applied over a range of integer values starting from 0.
*
* @param n number of elements in the vector (the function is applied from
* 0 to `n-1`)
* @param gen function that takes in an Int (the index) and returns a
* [[Data]] that becomes the output element
*/
def tabulate[T <: Data](
n: Int
)(gen: (Int) => T
): Vec[T] =
apply((0 until n).map(i => gen(i)))
/** Creates a new 2D [[Vec]] of length `n by m` composed of the results of the given
* function applied over a range of integer values starting from 0.
*
* @param n number of 1D vectors inside outer vector
* @param m number of elements in each 1D vector (the function is applied from
* 0 to `n-1`)
* @param gen function that takes in an Int (the index) and returns a
* [[Data]] that becomes the output element
*/
def tabulate[T <: Data](
n: Int,
m: Int
)(gen: (Int, Int) => T
): Vec[Vec[T]] = {
// TODO make this lazy (requires LazyList and cross compilation, beyond the scope of this PR)
val elts = Seq.tabulate(n, m)(gen)
val flatElts = elts.flatten
require(flatElts.nonEmpty, "Vec hardware values are not allowed to be empty")
flatElts.foreach(requireIsHardware(_, "vec element"))
val tpe = cloneSupertype(flatElts, "Vec.tabulate")
val myVec = Wire(Vec(n, Vec(m, tpe)))
val op = getConnectOpFromDirectionality(myVec(0)(0))
for {
(xs1D, ys1D) <- myVec.zip(elts)
(x, y) <- xs1D.zip(ys1D)
} {
op(x, y)
}
myVec
}
/** Creates a new 3D [[Vec]] of length `n by m by p` composed of the results of the given
* function applied over a range of integer values starting from 0.
*
* @param n number of 2D vectors inside outer vector
* @param m number of 1D vectors in each 2D vector
* @param p number of elements in each 1D vector
* @param gen function that takes in an Int (the index) and returns a
* [[Data]] that becomes the output element
*/
def tabulate[T <: Data](
n: Int,
m: Int,
p: Int
)(gen: (Int, Int, Int) => T
): Vec[Vec[Vec[T]]] = {
// TODO make this lazy (requires LazyList and cross compilation, beyond the scope of this PR)
val elts = Seq.tabulate(n, m, p)(gen)
val flatElts = elts.flatten.flatten
require(flatElts.nonEmpty, "Vec hardware values are not allowed to be empty")
flatElts.foreach(requireIsHardware(_, "vec element"))
val tpe = cloneSupertype(flatElts, "Vec.tabulate")
val myVec = Wire(Vec(n, Vec(m, Vec(p, tpe))))
val op = getConnectOpFromDirectionality(myVec(0)(0)(0))
for {
(xs2D, ys2D) <- myVec.zip(elts)
(xs1D, ys1D) <- xs2D.zip(ys2D)
(x, y) <- xs1D.zip(ys1D)
} {
op(x, y)
}
myVec
}
/** Creates a new [[Vec]] of length `n` composed of the result of the given
* function applied to an element of data type T.
*
* @param n number of elements in the vector
* @param gen function that takes in an element T and returns an output
* element of the same type
*/
def fill[T <: Data](n: Int)(gen: => T): Vec[T] =
apply(Seq.fill(n)(gen))
/** Creates a new 2D [[Vec]] of length `n by m` composed of the result of the given
* function applied to an element of data type T.
*
* @param n number of inner vectors (rows) in the outer vector
* @param m number of elements in each inner vector (column)
* @param gen function that takes in an element T and returns an output
* element of the same type
*/
def fill[T <: Data](
n: Int,
m: Int
)(gen: => T
): Vec[Vec[T]] = {
tabulate(n, m)((_, _) => gen)
}
/** Creates a new 3D [[Vec]] of length `n by m by p` composed of the result of the given
* function applied to an element of data type T.
*
* @param n number of 2D vectors inside outer vector
* @param m number of 1D vectors in each 2D vector
* @param p number of elements in each 1D vector
* @param gen function that takes in an element T and returns an output
* element of the same type
*/
def fill[T <: Data](
n: Int,
m: Int,
p: Int
)(gen: => T
): Vec[Vec[Vec[T]]] = {
tabulate(n, m, p)((_, _, _) => gen)
}
/** Creates a new [[Vec]] of length `n` composed of the result of the given
* function applied to an element of data type T.
*
* @param start First element in the Vec
* @param len Lenth of elements in the Vec
* @param f Function that applies the element T from previous index and returns the output
* element to the next index
*/
def iterate[T <: Data](
start: T,
len: Int
)(f: (T) => T
): Vec[T] =
apply(Seq.iterate(start, len)(f))
/** A trait for [[Vec]]s containing common hardware generators for collection
* operations.
*/
// def apply[T <: Data](p: UInt): T
// IndexedSeq has its own hashCode/equals that we must not use
override def hashCode: Int = super.hashCode
override def equals(that: Any): Boolean = super.equals(that)
/** Outputs true if p outputs true for every element.
*/
// def forall[T <: Data](p: T => Bool): Bool =
// (this.toSeq.map(p)).fold(true.B)(_ && _)
/** Outputs true if p outputs true for at least one element.
*/
// def exists[T <: Data](p: T => Bool): Bool =
// (this.toSeq.map(p)).fold(false.B)(_ || _)
/** Outputs true if the vector contains at least one element equal to x (using
* the === operator).
*/
// def contains[T <: Data](x: T): Bool =
// this.exists(_ === x)
/** Outputs the number of elements for which p is true.
*/
// def count[T <: Data](p: T => Bool): UInt =
// SeqUtils.count(this.toSeq.map(p))
/** Helper function that appends an index (literal value) to each element,
* useful for hardware generators which output an index.
*/
// private def indexWhereHelper(p: T => Bool) = this.map(p).zip((0 until length).map(i => i.asUInt))
/** Outputs the index of the first element for which p outputs true.
*/
// def indexWhere(p: T => Bool): UInt =
// SeqUtils.priorityMux(indexWhereHelper(p))
/** Outputs the index of the last element for which p outputs true.
*/
// def lastIndexWhere(p: T => Bool): UInt =
// SeqUtils.priorityMux(indexWhereHelper(p).reverse)
/** Outputs the index of the element for which p outputs true, assuming that
* the there is exactly one such element.
*
* The implementation may be more efficient than a priority mux, but
* incorrect results are possible if there is not exactly one true element.
*
* @note the assumption that there is only one element for which p outputs
* true is NOT checked (useful in cases where the condition doesn't always
* hold, but the results are not used in those cases)
*/
// def onlyIndexWhere(p: T => Bool): UInt =
// SeqUtils.oneHotMux(indexWhereHelper(p))
}
/** Base class for Aggregates based on key values pairs of String and Data
*
* Record should only be extended by libraries and fairly sophisticated generators.
* RTL writers should use [[Bundle]]. See [[Record#elements]] for an example.
*/
abstract class Record extends Aggregate {
private[chisel3] def _isOpaqueType: Boolean = this match {
case maybe: OpaqueType => maybe.opaqueType
case _ => false
}
// Doing this earlier than onModuleClose allows field names to be available for prefixing the names
// of hardware created when connecting to one of these elements
private def setElementRefs(): Unit = {
val opaqueType = this._isOpaqueType
// Since elements is a map, it is impossible for two elements to have the same
// identifier; however, Namespace sanitizes identifiers to make them legal for Firrtl/Verilog
// which can cause collisions
val _namespace = Namespace.empty
require(
!opaqueType || (elements.size == 1 && elements.head._1 == ""),
s"Opaque types must have exactly one element with an empty name, not ${elements.size}: ${elements.keys.mkString(", ")}"
)
val thisNode = Node(this) // Share the same Node for all elements.
for ((name, elt) <- elements) {
elt.setRef(thisNode, _namespace.name(name, leadingDigitOk = true), opaque = opaqueType)
}
}
/** Checks that there are no duplicate elements (aka aliased fields) in the Record */
private def checkForAndReportDuplicates(): Unit = {
// Using List to avoid allocation in the common case of no duplicates
var duplicates: List[Data] = Nil
// Is there a more optimized datastructure we could use with the Int identities? BitSet? Requires benchmarking.
val seen = mutable.HashSet.empty[Data]
this.elementsIterator.foreach { e =>
if (seen(e)) {
duplicates = e :: duplicates
}
seen += e
}
if (!duplicates.isEmpty) {
// show groups of names of fields with duplicate id's
// The sorts make the displayed order of fields deterministic and matching the order of occurrence in the Bundle.
// It's a bit convoluted but happens rarely and makes the error message easier to understand
val dupNames = duplicates.toSeq
.sortBy(_._id)
.map { duplicate =>
this.elements.collect { case x if x._2._id == duplicate._id => x }.toSeq
.sortBy(_._2._id)
.map(_._1)
.reverse
.mkString("(", ",", ")")
}
.mkString(",")
throw new AliasedAggregateFieldException(
s"${this.className} contains aliased fields named ${dupNames}"
)
}
}
private[chisel3] override def bind(target: Binding, parentDirection: SpecifiedDirection): Unit = {
_parent.foreach(_.addId(this))
binding = target
val resolvedDirection = SpecifiedDirection.fromParent(parentDirection, specifiedDirection)
checkForAndReportDuplicates()
for ((child, sameChild) <- this.elementsIterator.zip(this.elementsIterator)) {
if (child != sameChild) {
throwException(
s"${this.className} does not return the same objects when calling .elements multiple times. Did you make it a def by mistake?"
)
}
child.bind(ChildBinding(this), resolvedDirection)
}
// Check that children obey the directionality rules.
val childDirections = elementsIterator.map(_.direction).toSet - ActualDirection.Empty
direction = ActualDirection.fromChildren(childDirections, resolvedDirection) match {
case Some(dir) => dir
case None =>
val resolvedDirection = SpecifiedDirection.fromParent(parentDirection, specifiedDirection)
resolvedDirection match {
case SpecifiedDirection.Unspecified => ActualDirection.Bidirectional(ActualDirection.Default)
case SpecifiedDirection.Flip => ActualDirection.Bidirectional(ActualDirection.Flipped)
case _ => ActualDirection.Bidirectional(ActualDirection.Default)
}
}
setElementRefs()
}
/** Creates a Bundle literal of this type with specified values. this must be a chisel type.
*
* @param elems literal values, specified as a pair of the Bundle field to the literal value.
* The Bundle field is specified as a function from an object of this type to the field.
* Fields that aren't initialized to DontCare, and assignment to a wire will overwrite any
* existing value with DontCare.
* @return a Bundle literal of this type with subelement values specified
*
* @example {{{
* class MyBundle extends Bundle {
* val a = UInt(8.W)
* val b = Bool()
* }
*
* (new MyBundle).Lit(
* _.a -> 42.U,
* _.b -> true.B
* )
* }}}
*/
private[chisel3] def _makeLit(elems: (this.type => (Data, Data))*): this.type = {
requireIsChiselType(this, "bundle literal constructor model")
val clone = cloneType
val cloneFields = getRecursiveFields(clone, "(bundle root)").toMap
// Create the Bundle literal binding from litargs of arguments
val bundleLitMap = elems.map { fn => fn(clone.asInstanceOf[this.type]) }.flatMap {
case (field, value) =>
val fieldName = cloneFields.getOrElse(
field,
throw new BundleLiteralException(
s"field $field (with value $value) is not a field," +
s" ensure the field is specified as a function returning a field on an object of class ${this.getClass}," +
s" eg '_.a' to select hypothetical bundle field 'a'"
)
)
val valueBinding = value.topBindingOpt match {
case Some(litBinding: LitBinding) => litBinding
case _ => throw new BundleLiteralException(s"field $fieldName specified with non-literal value $value")
}
field match { // Get the litArg(s) for this field
case field: Bits =>
if (field.getClass != value.getClass) { // TODO typeEquivalent is too strict because it checks width
throw new BundleLiteralException(
s"Field $fieldName $field specified with non-type-equivalent value $value"
)
}
val litArg = valueBinding match {
case ElementLitBinding(litArg) => litArg
case BundleLitBinding(litMap) =>
litMap.getOrElse(
value,
throw new BundleLiteralException(s"Field $fieldName specified with unspecified value")
)
case VecLitBinding(litMap) =>
litMap.getOrElse(
value,
throw new VecLiteralException(s"Vec literal $fieldName specified with out literal values")
)
}
Seq(field -> litArg)
case field: Record =>
if (!(field.typeEquivalent(value))) {
throw new BundleLiteralException(
s"field $fieldName $field specified with non-type-equivalent value $value"
)
}
// Copy the source BundleLitBinding with fields (keys) remapped to the clone
val remap = getMatchedFields(value, field).toMap
value.topBinding.asInstanceOf[BundleLitBinding].litMap.map {
case (valueField, valueValue) =>
remap(valueField) -> valueValue
}
case vecField: Vec[_] =>
if (!(vecField.typeEquivalent(value))) {
throw new BundleLiteralException(
s"field $fieldName $vecField specified with non-type-equivalent value $value"
)
}
// Copy the source BundleLitBinding with fields (keys) remapped to the clone
val remap = getMatchedFields(value, vecField).toMap
value.topBinding.asInstanceOf[VecLitBinding].litMap.map {
case (valueField, valueValue) =>
remap(valueField) -> valueValue
}
case field: EnumType => {
if (!(field.typeEquivalent(value))) {
throw new BundleLiteralException(
s"field $fieldName $field specified with non-type-equivalent enum value $value"
)
}
val litArg = valueBinding match {
case ElementLitBinding(litArg) => litArg
case _ =>
throw new BundleLiteralException(s"field $fieldName $field could not be matched with $valueBinding")
}
Seq(field -> litArg)
}
case _ => throw new BundleLiteralException(s"unsupported field $fieldName of type $field")
}
}
// don't convert to a Map yet to preserve duplicate keys
val duplicates = bundleLitMap.map(_._1).groupBy(identity).collect { case (x, elts) if elts.size > 1 => x }
if (!duplicates.isEmpty) {
val duplicateNames = duplicates.map(cloneFields(_)).mkString(", ")
throw new BundleLiteralException(s"duplicate fields $duplicateNames in Bundle literal constructor")
}
clone.bind(BundleLitBinding(bundleLitMap.toMap))
clone.asInstanceOf[this.type]
}
/** The collection of [[Data]]
*
* This underlying datastructure is a ListMap because the elements must
* remain ordered for serialization/deserialization. Elements added later
* are higher order when serialized (this is similar to [[Vec]]). For example:
* {{{
* // Assume we have some type MyRecord that creates a Record from the ListMap
* val record = MyRecord(ListMap("fizz" -> UInt(16.W), "buzz" -> UInt(16.W)))
* // "buzz" is higher order because it was added later than "fizz"
* record("fizz") := "hdead".U
* record("buzz") := "hbeef".U
* val uint = record.asUInt
* assert(uint === "hbeefdead".U) // This will pass
* }}}
*/
override def toString: String = {
topBindingOpt match {
case Some(BundleLitBinding(_)) =>
val contents = elements.toList.reverse.map {
case (name, data) =>
s"$name=$data"
}.mkString(", ")
s"$className($contents)"
case _ => stringAccessor(s"$className")
}
}
def elements: SeqMap[String, Data]
/** Name for Pretty Printing */
def className: String = try {
this.getClass.getSimpleName
} catch {
// This happens if your class is defined in an object and is anonymous
case e: java.lang.InternalError if e.getMessage == "Malformed class name" => this.getClass.toString
}
private[chisel3] override def typeEquivalent(that: Data): Boolean = that match {
case that: Record =>
this.getClass == that.getClass &&
this.elements.size == that.elements.size &&
this.elements.forall {
case (name, model) =>
that.elements.contains(name) &&
(that.elements(name).typeEquivalent(model))
}
case _ => false
}
private[chisel3] def _onModuleClose: Unit = {
// This is usually done during binding, but these must still be set for unbound Records
if (this.binding.isEmpty) {
setElementRefs()
}
}
private[chisel3] final def allElements: Seq[Element] = elementsIterator.flatMap(_.allElements).toIndexedSeq
override def getElements: Seq[Data] = elementsIterator.toIndexedSeq
final override private[chisel3] def elementsIterator: Iterator[Data] = elements.iterator.map(_._2)
// Helper because Bundle elements are reversed before printing
private[chisel3] def toPrintableHelper(elts: Seq[(String, Data)]): Printable = {
val xs =
if (elts.isEmpty) List.empty[Printable] // special case because of dropRight below
else
elts.flatMap {
case (name, data) =>
List(PString(s"$name -> "), data.toPrintable, PString(", "))
}.dropRight(1) // Remove trailing ", "
PString(s"$className(") + Printables(xs) + PString(")")
}
/** Default "pretty-print" implementation
* Analogous to printing a Map
* Results in "`\$className(elt0.name -> elt0.value, ...)`"
*/
def toPrintable: Printable = toPrintableHelper(elements.toList)
/** Implementation of cloneType that is [optionally for Record] overridden by the compiler plugin
*
* @note This should _never_ be overridden or called in user-code
*/
protected def _cloneTypeImpl: Record = {
throwException(
s"Internal Error! This should have been implemented by the chisel3-plugin. Please file an issue against chisel3"
)
}
}
/**
* Mix-in for Bundles that have arbitrary Seqs of Chisel types that aren't
* involved in hardware construction.
*
* Used to avoid raising an error/exception when a Seq is a public member of the
* bundle.
* This is useful if we those public Seq fields in the Bundle are unrelated to
* hardware construction.
*/
trait IgnoreSeqInBundle {
this: Bundle =>
override def ignoreSeq: Boolean = true
}
class AutoClonetypeException(message: String) extends ChiselException(message)
package experimental {
class BundleLiteralException(message: String) extends ChiselException(message)
class VecLiteralException(message: String) extends ChiselException(message)
/** Indicates that the compiler plugin should generate [[cloneType]] for this type
*
* All user-defined [[Record]]s should mix this trait in as it will be required for upgrading to Chisel 3.6.
*/
trait AutoCloneType { self: Record =>
override def cloneType: this.type = _cloneTypeImpl.asInstanceOf[this.type]
}
}
/** Base class for data types defined as a bundle of other data types.
*
* Usage: extend this class (either as an anonymous or named class) and define
* members variables of [[Data]] subtypes to be elements in the Bundle.
*
* Example of an anonymous IO bundle
* {{{
* class MyModule extends Module {
* val io = IO(new Bundle {
* val in = Input(UInt(64.W))
* val out = Output(SInt(128.W))
* })
* }
* }}}
*
* Or as a named class
* {{{
* class Packet extends Bundle {
* val header = UInt(16.W)
* val addr = UInt(16.W)
* val data = UInt(32.W)
* }
* class MyModule extends Module {
* val io = IO(new Bundle {
* val inPacket = Input(new Packet)
* val outPacket = Output(new Packet)
* })
* val reg = Reg(new Packet)
* reg <> io.inPacket
* io.outPacket <> reg
* }
* }}}
*/
abstract class Bundle extends Record {
override def className: String = try {
this.getClass.getSimpleName match {
case name if name.startsWith("$anon$") => "AnonymousBundle" // fallback for anonymous Bundle case
case "" => "AnonymousBundle" // ditto, but on other platforms
case name => name
}
} catch {
// This happens if you have nested objects which your class is defined in
case e: java.lang.InternalError if e.getMessage == "Malformed class name" => this.getClass.toString
}
/** The collection of [[Data]]
*
* Elements defined earlier in the Bundle are higher order upon
* serialization. For example:
* @example
* {{{
* class MyBundle extends Bundle {
* val foo = UInt(16.W)
* val bar = UInt(16.W)
* }
* // Note that foo is higher order because its defined earlier in the Bundle
* val bundle = Wire(new MyBundle)
* bundle.foo := 0x1234.U
* bundle.bar := 0x5678.U
* val uint = bundle.asUInt
* assert(uint === "h12345678".U) // This will pass
* }}}
*/
final lazy val elements: SeqMap[String, Data] =
// _elementsImpl is a method, only call it once
_elementsImpl match {
// Those not using plugin-generated _elementsImpl use the old reflective implementation
case oldElements: VectorMap[_, _] => oldElements.asInstanceOf[VectorMap[String, Data]]
// Plugin-generated _elementsImpl are incomplete and need some processing
case rawElements => _processRawElements(rawElements)
}
// The compiler plugin is imperfect at picking out elements statically so we process at runtime
// checking for errors and filtering out mistakes
private def _processRawElements(rawElements: Iterable[(String, Any)]): SeqMap[String, Data] = {
val hardwareFields = rawElements.flatMap {
case (name, data: Data) =>
if (data.isSynthesizable) {
Some(s"$name: $data")
} else {
None
}
case (name, Some(data: Data)) =>
if (data.isSynthesizable) {
Some(s"$name: $data")
} else {
None
}
case (name, s: scala.collection.Seq[Any]) if s.nonEmpty =>
s.head match {
// Ignore empty Seq()
case d: Data =>
throwException(
"Public Seq members cannot be used to define Bundle elements " +
s"(found public Seq member '${name}'). " +
"Either use a Vec if all elements are of the same type, or MixedVec if the elements " +
"are of different types. If this Seq member is not intended to construct RTL, mix in the trait " +
"IgnoreSeqInBundle."
)
case _ => // don't care about non-Data Seq
}
None
case _ => None
}
if (hardwareFields.nonEmpty) {
throw ExpectedChiselTypeException(s"Bundle: $this contains hardware fields: " + hardwareFields.mkString(","))
}
VectorMap(rawElements.toSeq.flatMap {
case (name, data: Data) =>
Some(name -> data)
case (name, Some(data: Data)) =>
Some(name -> data)
case _ => None
}.sortWith {
case ((an, a), (bn, b)) => (a._id > b._id) || ((a eq b) && (an > bn))
}*)
}
/* The old, reflective implementation of Bundle.elements
* This method is optionally overwritten by the compiler plugin for much better performance
*/
protected def _elementsImpl: Iterable[(String, Any)] = {
val nameMap = LinkedHashMap[String, Data]()
for (m <- getPublicFields(classOf[Bundle])) {
getBundleField(m) match {
case Some(d: Data) =>
requireIsChiselType(d)
if (nameMap contains m.getName) {
require(nameMap(m.getName) eq d)
} else {
nameMap(m.getName) = d
}
case None =>
if (!ignoreSeq) {
m.invoke(this) match {
case s: scala.collection.Seq[Any] if s.nonEmpty =>
s.head match {
// Ignore empty Seq()
case d: Data =>
throwException(
"Public Seq members cannot be used to define Bundle elements " +
s"(found public Seq member '${m.getName}'). " +
"Either use a Vec if all elements are of the same type, or MixedVec if the elements " +
"are of different types. If this Seq member is not intended to construct RTL, mix in the trait " +
"IgnoreSeqInBundle."
)
case _ => // don't care about non-Data Seq
}
case _ => // not a Seq
}
}
}
}
VectorMap(nameMap.toSeq.sortWith { case ((an, a), (bn, b)) => (a._id > b._id) || ((a eq b) && (an > bn)) }*)
}
/**
* Overridden by [[IgnoreSeqInBundle]] to allow arbitrary Seqs of Chisel elements.
*/
def ignoreSeq: Boolean = false
/** Returns a field's contained user-defined Bundle element if it appears to
* be one, otherwise returns None.
*/
private def getBundleField(m: java.lang.reflect.Method): Option[Data] = m.invoke(this) match {
case d: Data => Some(d)
case Some(d: Data) => Some(d)
case _ => None
}
private def checkClone(clone: Bundle): Unit = {
for ((name, field) <- elements) {
if (clone.elements(name) eq field) {
throw new AutoClonetypeException(
s"Automatically cloned $clone has field '$name' aliased with base $this." +
" In the future, this will be solved automatically by the compiler plugin." +
" For now, ensure Chisel types used in the Bundle definition are passed through constructor arguments," +
" or wrapped in Input(...), Output(...), or Flipped(...) if appropriate." +
" As a last resort, you can override cloneType manually."
)
}
}
}
override def cloneType: this.type = {
val clone = _cloneTypeImpl.asInstanceOf[this.type]
checkClone(clone)
clone.asInstanceOf[this.type]
}
// This is overriden for binary compatibility reasons in 3.5
override protected def _cloneTypeImpl: Bundle = super._cloneTypeImpl.asInstanceOf[Bundle]
/** Default "pretty-print" implementation
* Analogous to printing a Map
* Results in "`Bundle(elt0.name -> elt0.value, ...)`"
* @note The order is reversed from the order of elements in order to print
* the fields in the order they were defined
*/
override def toPrintable: Printable = toPrintableHelper(elements.toList.reverse)
}
|