1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
|
// See LICENSE for license details.
package chisel3.core
import scala.collection.immutable.ListMap
import scala.collection.mutable.{ArrayBuffer, HashSet, LinkedHashMap}
import scala.language.experimental.macros
import chisel3.internal._
import chisel3.internal.Builder.pushCommand
import chisel3.internal.firrtl._
import chisel3.internal.sourceinfo._
/** An abstract class for data types that solely consist of (are an aggregate
* of) other Data objects.
*/
sealed abstract class Aggregate extends Data {
/** Returns a Seq of the immediate contents of this Aggregate, in order.
*/
def getElements: Seq[Data]
private[core] def width: Width = getElements.map(_.width).foldLeft(0.W)(_ + _)
private[core] def legacyConnect(that: Data)(implicit sourceInfo: SourceInfo): Unit =
pushCommand(BulkConnect(sourceInfo, this.lref, that.lref))
override def do_asUInt(implicit sourceInfo: SourceInfo): UInt = {
SeqUtils.do_asUInt(getElements.map(_.asUInt()))
}
private[core] override def connectFromBits(that: Bits)(implicit sourceInfo: SourceInfo,
compileOptions: CompileOptions): Unit = {
var i = 0
val bits = Wire(UInt(this.width), init=that) // handles width padding
for (x <- getElements) {
x.connectFromBits(bits(i + x.getWidth - 1, i))
i += x.getWidth
}
}
}
object Vec {
/** Creates a new [[Vec]] with `n` entries of the specified data type.
*
* @note elements are NOT assigned by default and have no value
*/
def apply[T <: Data](n: Int, gen: T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T] = new Vec(gen.chiselCloneType, n)
@deprecated("Vec argument order should be size, t; this will be removed by the official release", "chisel3")
def apply[T <: Data](gen: T, n: Int)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T] = new Vec(gen.chiselCloneType, n)
/** Creates a new [[Vec]] composed of elements of the input Seq of [[Data]]
* nodes.
*
* @note input elements should be of the same type (this is checked at the
* FIRRTL level, but not at the Scala / Chisel level)
* @note the width of all output elements is the width of the largest input
* element
* @note output elements are connected from the input elements
*/
def apply[T <: Data](elts: Seq[T]): Vec[T] = macro VecTransform.apply_elts
def do_apply[T <: Data](elts: Seq[T])(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T] = {
// REVIEW TODO: this should be removed in favor of the apply(elts: T*)
// varargs constructor, which is more in line with the style of the Scala
// collection API. However, a deprecation phase isn't possible, since
// changing apply(elt0, elts*) to apply(elts*) causes a function collision
// with apply(Seq) after type erasure. Workarounds by either introducing a
// DummyImplicit or additional type parameter will break some code.
// Check that types are homogeneous. Width mismatch for Elements is safe.
require(!elts.isEmpty)
val vec = Wire(new Vec(cloneSupertype(elts, "Vec"), elts.length))
def doConnect(sink: T, source: T) = {
// TODO: this looks bad, and should feel bad. Replace with a better abstraction.
// NOTE: Must use elts.head instead of vec.sample_element because vec.sample_element has
// WireBinding which does not have a direction
val hasDirectioned = elts.head match {
case t: Aggregate => t.flatten.exists(_.dir != Direction.Unspecified)
case t: Element => t.dir != Direction.Unspecified
}
if (hasDirectioned) {
sink bulkConnect source
} else {
sink connect source
}
}
for ((v, e) <- vec zip elts) {
doConnect(v, e)
}
vec
}
/** Creates a new [[Vec]] composed of the input [[Data]] nodes.
*
* @note input elements should be of the same type (this is checked at the
* FIRRTL level, but not at the Scala / Chisel level)
* @note the width of all output elements is the width of the largest input
* element
* @note output elements are connected from the input elements
*/
def apply[T <: Data](elt0: T, elts: T*): Vec[T] = macro VecTransform.apply_elt0
def do_apply[T <: Data](elt0: T, elts: T*)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T] =
apply(elt0 +: elts.toSeq)
/** Creates a new [[Vec]] of length `n` composed of the results of the given
* function applied over a range of integer values starting from 0.
*
* @param n number of elements in the vector (the function is applied from
* 0 to `n-1`)
* @param gen function that takes in an Int (the index) and returns a
* [[Data]] that becomes the output element
*/
def tabulate[T <: Data](n: Int)(gen: (Int) => T): Vec[T] = macro VecTransform.tabulate
def do_tabulate[T <: Data](n: Int)(gen: (Int) => T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T] =
apply((0 until n).map(i => gen(i)))
/** Creates a new [[Vec]] of length `n` composed of the result of the given
* function repeatedly applied.
*
* @param n number of elements (amd the number of times the function is
* called)
* @param gen function that generates the [[Data]] that becomes the output
* element
*/
@deprecated("Vec.fill(n)(gen) is deprecated. Please use Vec(Seq.fill(n)(gen))", "chisel3")
def fill[T <: Data](n: Int)(gen: => T): Vec[T] = macro VecTransform.fill
def do_fill[T <: Data](n: Int)(gen: => T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T] =
apply(Seq.fill(n)(gen))
/** Truncate an index to implement modulo-power-of-2 addressing. */
private[core] def truncateIndex(idx: UInt, n: Int)(implicit sourceInfo: SourceInfo): UInt = {
val w = BigInt(n-1).bitLength
if (n <= 1) 0.U
else if (idx.width.known && idx.width.get <= w) idx
else if (idx.width.known) idx(w-1,0)
else (idx | 0.U(w.W))(w-1,0)
}
}
/** A vector (array) of [[Data]] elements. Provides hardware versions of various
* collection transformation functions found in software array implementations.
*
* Careful consideration should be given over the use of [[Vec]] vs [[Seq]] or some other scala collection. In
* general [[Vec]] only needs to be used when there is a need to express the hardware collection in a [[Reg]]
* or IO [[Bundle]] or when access to elements of the array is indexed via a hardware signal.
*
* Example of indexing into a [[Vec]] using a hardware address and where the [[Vec]] is defined in an IO [[Bundle]]
*
* {{{
* val io = IO(new Bundle {
* val in = Input(Vec(20, UInt(16.W)))
* val addr = UInt(5.W)
* val out = Output(UInt(16.W))
* })
* io.out := io.in(io.addr)
* }}}
*
* @tparam T type of elements
*
* @note
* - when multiple conflicting assignments are performed on a Vec element, the last one takes effect (unlike Mem, where the result is undefined)
* - Vecs, unlike classes in Scala's collection library, are propagated intact to FIRRTL as a vector type, which may make debugging easier
*/
sealed class Vec[T <: Data] private (gen: => T, val length: Int)
extends Aggregate with VecLike[T] {
private[core] override def typeEquivalent(that: Data): Boolean = that match {
case that: Vec[T] =>
this.length == that.length &&
(this.sample_element typeEquivalent that.sample_element)
case _ => false
}
// Note: the constructor takes a gen() function instead of a Seq to enforce
// that all elements must be the same and because it makes FIRRTL generation
// simpler.
private val self: Seq[T] = Vector.fill(length)(gen)
/**
* sample_element 'tracks' all changes to the elements.
* For consistency, sample_element is always used for creating dynamically
* indexed ports and outputing the FIRRTL type.
*
* Needed specifically for the case when the Vec is length 0.
*/
private[core] val sample_element: T = gen
// allElements current includes sample_element
// This is somewhat weird although I think the best course of action here is
// to deprecate allElements in favor of dispatched functions to Data or
// a pattern matched recursive descent
private[chisel3] final override def allElements: Seq[Element] =
(sample_element +: self).flatMap(_.allElements)
/** Strong bulk connect, assigning elements in this Vec from elements in a Seq.
*
* @note the length of this Vec must match the length of the input Seq
*/
def <> (that: Seq[T])(implicit sourceInfo: SourceInfo, moduleCompileOptions: CompileOptions): Unit = {
require(this.length == that.length)
for ((a, b) <- this zip that)
a <> b
}
// TODO: eliminate once assign(Seq) isn't ambiguous with assign(Data) since Vec extends Seq and Data
def <> (that: Vec[T])(implicit sourceInfo: SourceInfo, moduleCompileOptions: CompileOptions): Unit = this bulkConnect that.asInstanceOf[Data]
/** Strong bulk connect, assigning elements in this Vec from elements in a Seq.
*
* @note the length of this Vec must match the length of the input Seq
*/
def := (that: Seq[T])(implicit sourceInfo: SourceInfo, moduleCompileOptions: CompileOptions): Unit = {
require(this.length == that.length)
for ((a, b) <- this zip that)
a := b
}
// TODO: eliminate once assign(Seq) isn't ambiguous with assign(Data) since Vec extends Seq and Data
def := (that: Vec[T])(implicit sourceInfo: SourceInfo, moduleCompileOptions: CompileOptions): Unit = this connect that
/** Creates a dynamically indexed read or write accessor into the array.
*/
def apply(idx: UInt): T = {
Binding.checkSynthesizable(idx ,s"'idx' ($idx)")
val port = gen
val i = Vec.truncateIndex(idx, length)(UnlocatableSourceInfo)
port.setRef(this, i)
// Bind each element of port to being whatever the base type is
// Using the head element as the sample_element
for((port_elem, model_elem) <- port.allElements zip sample_element.allElements) {
port_elem.binding = model_elem.binding
}
port
}
/** Creates a statically indexed read or write accessor into the array.
*/
def apply(idx: Int): T = self(idx)
@deprecated("Use Vec.apply instead", "chisel3")
def read(idx: UInt): T = apply(idx)
@deprecated("Use Vec.apply instead", "chisel3")
def write(idx: UInt, data: T): Unit = {
apply(idx).:=(data)(DeprecatedSourceInfo, chisel3.core.ExplicitCompileOptions.NotStrict)
}
override def cloneType: this.type = {
new Vec(gen.cloneType, length).asInstanceOf[this.type]
}
private[chisel3] def toType: String = s"${sample_element.toType}[$length]"
override def getElements: Seq[Data] =
(0 until length).map(apply(_))
for ((elt, i) <- self.zipWithIndex)
elt.setRef(this, i)
/** Default "pretty-print" implementation
* Analogous to printing a Seq
* Results in "Vec(elt0, elt1, ...)"
*/
def toPrintable: Printable = {
val elts =
if (length == 0) List.empty[Printable]
else self flatMap (e => List(e.toPrintable, PString(", "))) dropRight 1
PString("Vec(") + Printables(elts) + PString(")")
}
}
/** A trait for [[Vec]]s containing common hardware generators for collection
* operations.
*/
trait VecLike[T <: Data] extends collection.IndexedSeq[T] with HasId {
def apply(idx: UInt): T
// IndexedSeq has its own hashCode/equals that we must not use
override def hashCode: Int = super[HasId].hashCode
override def equals(that: Any): Boolean = super[HasId].equals(that)
@deprecated("Use Vec.apply instead", "chisel3")
def read(idx: UInt): T
@deprecated("Use Vec.apply instead", "chisel3")
def write(idx: UInt, data: T): Unit
/** Outputs true if p outputs true for every element.
*/
def forall(p: T => Bool): Bool = macro SourceInfoTransform.pArg
def do_forall(p: T => Bool)(implicit sourceInfo: SourceInfo): Bool =
(this map p).fold(true.B)(_ && _)
/** Outputs true if p outputs true for at least one element.
*/
def exists(p: T => Bool): Bool = macro SourceInfoTransform.pArg
def do_exists(p: T => Bool)(implicit sourceInfo: SourceInfo): Bool =
(this map p).fold(false.B)(_ || _)
/** Outputs true if the vector contains at least one element equal to x (using
* the === operator).
*/
def contains(x: T)(implicit ev: T <:< UInt): Bool = macro VecTransform.contains
def do_contains(x: T)(implicit sourceInfo: SourceInfo, ev: T <:< UInt): Bool =
this.exists(_ === x)
/** Outputs the number of elements for which p is true.
*/
def count(p: T => Bool): UInt = macro SourceInfoTransform.pArg
def do_count(p: T => Bool)(implicit sourceInfo: SourceInfo): UInt =
SeqUtils.count(this map p)
/** Helper function that appends an index (literal value) to each element,
* useful for hardware generators which output an index.
*/
private def indexWhereHelper(p: T => Bool) = this map p zip (0 until length).map(i => i.asUInt)
/** Outputs the index of the first element for which p outputs true.
*/
def indexWhere(p: T => Bool): UInt = macro CompileOptionsTransform.pArg
def do_indexWhere(p: T => Bool)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): UInt =
SeqUtils.priorityMux(indexWhereHelper(p))
/** Outputs the index of the last element for which p outputs true.
*/
def lastIndexWhere(p: T => Bool): UInt = macro CompileOptionsTransform.pArg
def do_lastIndexWhere(p: T => Bool)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): UInt =
SeqUtils.priorityMux(indexWhereHelper(p).reverse)
/** Outputs the index of the element for which p outputs true, assuming that
* the there is exactly one such element.
*
* The implementation may be more efficient than a priority mux, but
* incorrect results are possible if there is not exactly one true element.
*
* @note the assumption that there is only one element for which p outputs
* true is NOT checked (useful in cases where the condition doesn't always
* hold, but the results are not used in those cases)
*/
def onlyIndexWhere(p: T => Bool): UInt = macro CompileOptionsTransform.pArg
def do_onlyIndexWhere(p: T => Bool)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): UInt =
SeqUtils.oneHotMux(indexWhereHelper(p))
}
/** Base class for Aggregates based on key values pairs of String and Data
*
* Record should only be extended by libraries and fairly sophisticated generators.
* RTL writers should use [[Bundle]]. See [[Record#elements]] for an example.
*/
abstract class Record extends Aggregate {
/** The collection of [[Data]]
*
* This underlying datastructure is a ListMap because the elements must
* remain ordered for serialization/deserialization. Elements added later
* are higher order when serialized (this is similar to [[Vec]]). For example:
* {{{
* // Assume we have some type MyRecord that creates a Record from the ListMap
* val record = MyRecord(ListMap("fizz" -> UInt(16.W), "buzz" -> UInt(16.W)))
* // "buzz" is higher order because it was added later than "fizz"
* record("fizz") := "hdead".U
* record("buzz") := "hbeef".U
* val uint = record.asUInt
* assert(uint === "hbeefdead".U) // This will pass
* }}}
*/
val elements: ListMap[String, Data]
/** Name for Pretty Printing */
def className: String = this.getClass.getSimpleName
private[chisel3] def toType = {
def eltPort(elt: Data): String = {
val flipStr: String = if(Data.isFirrtlFlipped(elt)) "flip " else ""
s"${flipStr}${elt.getRef.name} : ${elt.toType}"
}
elements.toIndexedSeq.reverse.map(e => eltPort(e._2)).mkString("{", ", ", "}")
}
private[core] override def typeEquivalent(that: Data): Boolean = that match {
case that: Record =>
this.getClass == that.getClass &&
this.elements.size == that.elements.size &&
this.elements.forall{case (name, model) =>
that.elements.contains(name) &&
(that.elements(name) typeEquivalent model)}
case _ => false
}
// NOTE: This sets up dependent references, it can be done before closing the Module
private[chisel3] override def _onModuleClose: Unit = { // scalastyle:ignore method.name
// Since Bundle names this via reflection, it is impossible for two elements to have the same
// identifier; however, Namespace sanitizes identifiers to make them legal for Firrtl/Verilog
// which can cause collisions
val _namespace = Namespace.empty
for ((name, elt) <- elements) { elt.setRef(this, _namespace.name(name, leadingDigitOk=true)) }
}
private[chisel3] final def allElements: Seq[Element] = elements.toIndexedSeq.flatMap(_._2.allElements)
override def getElements: Seq[Data] = elements.toIndexedSeq.map(_._2)
// Helper because Bundle elements are reversed before printing
private[chisel3] def toPrintableHelper(elts: Seq[(String, Data)]): Printable = {
val xs =
if (elts.isEmpty) List.empty[Printable] // special case because of dropRight below
else elts flatMap { case (name, data) =>
List(PString(s"$name -> "), data.toPrintable, PString(", "))
} dropRight 1 // Remove trailing ", "
PString(s"$className(") + Printables(xs) + PString(")")
}
/** Default "pretty-print" implementation
* Analogous to printing a Map
* Results in "$className(elt0.name -> elt0.value, ...)"
*/
def toPrintable: Printable = toPrintableHelper(elements.toList)
}
/** Base class for data types defined as a bundle of other data types.
*
* Usage: extend this class (either as an anonymous or named class) and define
* members variables of [[Data]] subtypes to be elements in the Bundle.
*
* Example of an anonymous IO bundle
* {{{
* class MyModule extends Module {
* val io = IO(new Bundle {
* val in = Input(UInt(64.W))
* val out = Output(SInt(128.W))
* })
* }
* }}}
*
* Or as a named class
* {{{
* class Packet extends Bundle {
* val header = UInt(16.W)
* val addr = UInt(16.W)
* val data = UInt(32.W)
* }
* class MyModule extends Module {
* val io = IO(new Bundle {
* val inPacket = Input(new Packet)
* val outPacket = Output(new Packet)
* })
* val reg = Reg(new Packet)
* reg <> inPacket
* outPacket <> reg
* }
* }}}
*/
class Bundle extends Record {
override def className = "Bundle"
/** The collection of [[Data]]
*
* Elements defined earlier in the Bundle are higher order upon
* serialization. For example:
* @example
* {{{
* class MyBundle extends Bundle {
* val foo = UInt(16.W)
* val bar = UInt(16.W)
* }
* // Note that foo is higher order because its defined earlier in the Bundle
* val bundle = Wire(new MyBundle)
* bundle.foo := 0x1234.U
* bundle.bar := 0x5678.U
* val uint = bundle.asUInt
* assert(uint === "h12345678".U) // This will pass
* }}}
*/
final lazy val elements: ListMap[String, Data] = {
val nameMap = LinkedHashMap[String, Data]()
val seen = HashSet[Data]()
for (m <- getPublicFields(classOf[Bundle])) {
getBundleField(m) foreach { d =>
if (nameMap contains m.getName) {
require(nameMap(m.getName) eq d)
} else if (!seen(d)) {
nameMap(m.getName) = d
seen += d
}
}
}
ListMap(nameMap.toSeq sortWith { case ((an, a), (bn, b)) => (a._id > b._id) || ((a eq b) && (an > bn)) }: _*)
}
/** Returns a field's contained user-defined Bundle element if it appears to
* be one, otherwise returns None.
*/
private def getBundleField(m: java.lang.reflect.Method): Option[Data] = m.invoke(this) match {
case v: Vec[_] if v.isEmpty => None
case d: Data => Some(d)
case Some(d: Data) => Some(d)
case _ => None
}
override def cloneType : this.type = {
// If the user did not provide a cloneType method, try invoking one of
// the following constructors, not all of which necessarily exist:
// - A zero-parameter constructor
// - A one-paramater constructor, with null as the argument
// - A one-parameter constructor for a nested Bundle, with the enclosing
// parent Module as the argument
val constructor = this.getClass.getConstructors.head
try {
val args = Seq.fill(constructor.getParameterTypes.size)(null)
constructor.newInstance(args:_*).asInstanceOf[this.type]
} catch {
case e: java.lang.reflect.InvocationTargetException if e.getCause.isInstanceOf[java.lang.NullPointerException] =>
try {
constructor.newInstance(_parent.get).asInstanceOf[this.type]
} catch {
case _: java.lang.reflect.InvocationTargetException | _: java.lang.IllegalArgumentException =>
Builder.exception(s"Parameterized Bundle ${this.getClass} needs cloneType method. You are probably using " +
"an anonymous Bundle object that captures external state and hence is un-cloneTypeable")
this
}
case _: java.lang.reflect.InvocationTargetException | _: java.lang.IllegalArgumentException =>
Builder.exception(s"Parameterized Bundle ${this.getClass} needs cloneType method")
this
}
}
/** Default "pretty-print" implementation
* Analogous to printing a Map
* Results in "Bundle(elt0.name -> elt0.value, ...)"
* @note The order is reversed from the order of elements in order to print
* the fields in the order they were defined
*/
override def toPrintable: Printable = toPrintableHelper(elements.toList.reverse)
}
private[core] object Bundle {
val keywords = List("flip", "asInput", "asOutput", "cloneType", "chiselCloneType", "toBits",
"widthOption", "signalName", "signalPathName", "signalParent", "signalComponent")
}
|