summaryrefslogtreecommitdiff
path: root/src/main/scala/Chisel/utils.scala
diff options
context:
space:
mode:
authorJim Lawson2015-05-11 10:04:01 -0700
committerJim Lawson2015-07-24 15:50:53 -0700
commitb208bfb5691c7b5921dd47d0b599726872acd1cd (patch)
tree5d8695f13db41a807622dfdc93c1b6841911acc8 /src/main/scala/Chisel/utils.scala
parentcaa7602b878c03c47fd263550e37715f1a67f854 (diff)
move source files under Chisel folder - eclipse compatibility
Diffstat (limited to 'src/main/scala/Chisel/utils.scala')
-rw-r--r--src/main/scala/Chisel/utils.scala561
1 files changed, 561 insertions, 0 deletions
diff --git a/src/main/scala/Chisel/utils.scala b/src/main/scala/Chisel/utils.scala
new file mode 100644
index 00000000..3bbea34a
--- /dev/null
+++ b/src/main/scala/Chisel/utils.scala
@@ -0,0 +1,561 @@
+package Chisel
+import Builder._
+import scala.math._
+
+object log2Up
+{
+ def apply(in: Int): Int = if(in == 1) 1 else ceil(log(in)/log(2)).toInt
+}
+
+object log2Ceil
+{
+ def apply(in: Int): Int = ceil(log(in)/log(2)).toInt
+}
+
+
+object log2Down
+{
+ def apply(x : Int): Int = if (x == 1) 1 else floor(log(x)/log(2.0)).toInt
+}
+
+object log2Floor
+{
+ def apply(x : Int): Int = floor(log(x)/log(2.0)).toInt
+}
+
+
+object isPow2
+{
+ def apply(in: Int): Boolean = in > 0 && ((in & (in-1)) == 0)
+}
+
+object FillInterleaved
+{
+ def apply(n: Int, in: UInt): UInt = apply(n, in.toBools)
+ def apply(n: Int, in: Seq[Bool]): UInt = Vec(in.map(Fill(n, _))).toBits
+}
+
+/** Returns the number of bits set (i.e value is 1) in the input signal.
+ */
+object PopCount
+{
+ def apply(in: Iterable[Bool]): UInt = {
+ if (in.size == 0) {
+ UInt(0)
+ } else if (in.size == 1) {
+ in.head
+ } else {
+ apply(in.slice(0, in.size/2)) + Cat(UInt(0), apply(in.slice(in.size/2, in.size)))
+ }
+ }
+ def apply(in: Bits): UInt = apply((0 until in.getWidth).map(in(_)))
+}
+
+object RegNext {
+
+ def apply[T <: Data](next: T): T = Reg[T](next, next, null.asInstanceOf[T])
+
+ def apply[T <: Data](next: T, init: T): T = Reg[T](next, next, init)
+
+}
+
+object RegInit {
+
+ def apply[T <: Data](init: T): T = Reg[T](init, null.asInstanceOf[T], init)
+
+}
+
+object RegEnable
+{
+ def apply[T <: Data](updateData: T, enable: Bool) = {
+ val r = Reg(updateData)
+ when (enable) { r := updateData }
+ r
+ }
+ def apply[T <: Data](updateData: T, resetData: T, enable: Bool) = {
+ val r = RegInit(resetData)
+ when (enable) { r := updateData }
+ r
+ }
+}
+
+/** Builds a Mux tree out of the input signal vector using a one hot encoded
+ select signal. Returns the output of the Mux tree.
+ */
+object Mux1H
+{
+ def apply[T <: Data](sel: Iterable[Bool], in: Iterable[T]): T = {
+ if (in.tail.isEmpty) in.head
+ else {
+ val masked = (sel, in).zipped map ((s, i) => Mux(s, i.toBits, Bits(0)))
+ in.head.fromBits(masked.reduceLeft(_|_))
+ }
+ }
+ def apply[T <: Data](in: Iterable[(Bool, T)]): T = {
+ val (sel, data) = in.unzip
+ apply(sel, data)
+ }
+ def apply[T <: Data](sel: Bits, in: Iterable[T]): T =
+ apply((0 until in.size).map(sel(_)), in)
+ def apply(sel: Bits, in: Bits): Bool = (sel & in).orR
+}
+
+/** Builds a Mux tree under the assumption that multiple select signals
+ can be enabled. Priority is given to the first select signal.
+
+ Returns the output of the Mux tree.
+ */
+object PriorityMux
+{
+ def apply[T <: Bits](in: Iterable[(Bool, T)]): T = {
+ if (in.size == 1) {
+ in.head._2
+ } else {
+ Mux(in.head._1, in.head._2, apply(in.tail))
+ }
+ }
+ def apply[T <: Bits](sel: Iterable[Bool], in: Iterable[T]): T = apply(sel zip in)
+ def apply[T <: Bits](sel: Bits, in: Iterable[T]): T = apply((0 until in.size).map(sel(_)), in)
+}
+
+object unless {
+ def apply(c: Bool)(block: => Unit) {
+ when (!c) { block }
+ }
+}
+
+object switch {
+ def apply(c: Bits)(block: => Unit) {
+ switchKeys.push(c)
+ block
+ switchKeys.pop()
+ }
+}
+
+object is {
+ def apply(v: Bits)(block: => Unit): Unit =
+ apply(Seq(v))(block)
+ def apply(v: Bits, vr: Bits*)(block: => Unit): Unit =
+ apply(v :: vr.toList)(block)
+ def apply(v: Iterable[Bits])(block: => Unit): Unit = {
+ val keys = switchKeys
+ if (keys.isEmpty) ChiselError.error("The 'is' keyword may not be used outside of a switch.")
+ else if (!v.isEmpty) when (v.map(_ === keys.top).reduce(_||_)) { block }
+ }
+}
+
+object MuxLookup {
+ def apply[S <: UInt, T <: Bits] (key: S, default: T, mapping: Seq[(S, T)]): T = {
+ var res = default;
+ for ((k, v) <- mapping.reverse)
+ res = Mux(k === key, v, res);
+ res
+ }
+
+}
+
+object Fill {
+ def apply(n: Int, x: Bool): UInt = n match {
+ case 0 => UInt(width=0)
+ case 1 => x
+ case x if n > 1 => UInt(0,n) - UInt(x)
+ case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.")
+ }
+ def apply(n: Int, y: UInt): UInt = {
+ n match {
+ case 0 => UInt(width=0)
+ case 1 => y
+ case x if n > 1 =>
+ val p2 = Array.ofDim[UInt](log2Up(n+1))
+ p2(0) = y
+ for (i <- 1 until p2.length)
+ p2(i) = Cat(p2(i-1), p2(i-1))
+ Cat((0 until log2Up(x+1)).filter(i => (x & (1 << i)) != 0).map(p2(_)))
+ case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.")
+ }
+ }
+}
+
+object MuxCase {
+ def apply[T <: Bits] (default: T, mapping: Seq[(Bool, T)]): T = {
+ var res = default;
+ for ((t, v) <- mapping.reverse){
+ res = Mux(t, v, res);
+ }
+ res
+ }
+}
+
+object ListLookup {
+ def apply[T <: Data](addr: UInt, default: List[T], mapping: Array[(BitPat, List[T])]): List[T] = {
+ val map = mapping.map(m => (m._1 === addr, m._2))
+ default.zipWithIndex map { case (d, i) =>
+ map.foldRight(d)((m, n) => Mux(m._1, m._2(i), n))
+ }
+ }
+}
+
+object Lookup {
+ def apply[T <: Bits](addr: UInt, default: T, mapping: Seq[(BitPat, T)]): T =
+ ListLookup(addr, List(default), mapping.map(m => (m._1, List(m._2))).toArray).head
+}
+
+/** Litte/big bit endian convertion: reverse the order of the bits in a UInt.
+*/
+object Reverse
+{
+ private def doit(in: UInt, length: Int): UInt = {
+ if (length == 1) {
+ in
+ } else if (isPow2(length) && length >= 8 && length <= 64) {
+ // Do it in logarithmic time to speed up C++. Neutral for real HW.
+ var res = in
+ var shift = length >> 1
+ var mask = UInt((BigInt(1) << length) - 1, length)
+ do {
+ mask = mask ^ (mask(length-shift-1,0) << UInt(shift))
+ res = ((res >> UInt(shift)) & mask) | (res(length-shift-1,0) << UInt(shift) & ~mask)
+ shift = shift >> 1
+ } while (shift > 0)
+ res
+ } else {
+ val half = (1 << log2Up(length))/2
+ Cat(doit(in(half-1,0), half), doit(in(length-1,half), length-half))
+ }
+ }
+ def apply(in: UInt): UInt = doit(in, in.getWidth)
+}
+
+/** Returns the n-cycle delayed version of the input signal.
+ */
+object ShiftRegister
+{
+ def apply[T <: Data](in: T, n: Int, en: Bool = Bool(true)): T =
+ {
+ // The order of tests reflects the expected use cases.
+ if (n == 1) {
+ RegEnable(in, en)
+ } else if (n != 0) {
+ RegNext(apply(in, n-1, en))
+ } else {
+ in
+ }
+ }
+}
+
+/** Returns the one hot encoding of the input UInt.
+ */
+object UIntToOH
+{
+ def apply(in: UInt, width: Int = -1): UInt =
+ if (width == -1) UInt(1) << in
+ else (UInt(1) << in(log2Up(width)-1,0))(width-1,0)
+}
+
+class Counter(val n: Int) {
+ val value = if (n == 1) UInt(0) else Reg(init=UInt(0, log2Up(n)))
+ def inc(): Bool = {
+ if (n == 1) Bool(true)
+ else {
+ val wrap = value === UInt(n-1)
+ value := Mux(Bool(!isPow2(n)) && wrap, UInt(0), value + UInt(1))
+ wrap
+ }
+ }
+}
+
+object Counter
+{
+ def apply(n: Int): Counter = new Counter(n)
+ def apply(cond: Bool, n: Int): (UInt, Bool) = {
+ val c = new Counter(n)
+ var wrap: Bool = null
+ when (cond) { wrap = c.inc() }
+ (c.value, cond && wrap)
+ }
+}
+
+class ValidIO[+T <: Data](gen2: T) extends Bundle
+{
+ val valid = Bool(OUTPUT)
+ val bits = gen2.cloneType.asOutput
+ def fire(dummy: Int = 0): Bool = valid
+ override def doCloneType: this.type = new ValidIO(gen2).asInstanceOf[this.type]
+}
+
+/** Adds a valid protocol to any interface. The standard used is
+ that the consumer uses the flipped interface.
+*/
+object Valid {
+ def apply[T <: Data](gen: T): ValidIO[T] = new ValidIO(gen)
+}
+
+class DecoupledIO[+T <: Data](gen: T) extends Bundle
+{
+ val ready = Bool(INPUT)
+ val valid = Bool(OUTPUT)
+ val bits = gen.cloneType.asOutput
+ def fire(dummy: Int = 0): Bool = ready && valid
+ override def doCloneType: this.type = new DecoupledIO(gen).asInstanceOf[this.type]
+}
+
+/** Adds a ready-valid handshaking protocol to any interface.
+ The standard used is that the consumer uses the flipped
+ interface.
+ */
+object Decoupled {
+ def apply[T <: Data](gen: T): DecoupledIO[T] = new DecoupledIO(gen)
+}
+
+class EnqIO[T <: Data](gen: T) extends DecoupledIO(gen)
+{
+ def enq(dat: T): T = { valid := Bool(true); bits := dat; dat }
+ override def init(dummy: Int = 0) = {
+ valid := Bool(false);
+ for (io <- bits.flatten)
+ io := UInt(0)
+ }
+ override def doCloneType: this.type = { new EnqIO(gen).asInstanceOf[this.type]; }
+}
+
+class DeqIO[T <: Data](gen: T) extends DecoupledIO(gen)
+{
+ flip()
+ override def init(dummy: Int = 0) = {
+ ready := Bool(false)
+ }
+ def deq(b: Boolean = false): T = { ready := Bool(true); bits }
+ override def doCloneType: this.type = { new DeqIO(gen).asInstanceOf[this.type]; }
+}
+
+
+class DecoupledIOC[+T <: Data](gen: T) extends Bundle
+{
+ val ready = Bool(INPUT)
+ val valid = Bool(OUTPUT)
+ val bits = gen.cloneType.asOutput
+}
+
+class QueueIO[T <: Data](gen: T, entries: Int) extends Bundle
+{
+ val enq = Decoupled(gen.cloneType).flip
+ val deq = Decoupled(gen.cloneType)
+ val count = UInt(OUTPUT, log2Up(entries + 1))
+}
+
+class Queue[T <: Data](gen: T, val entries: Int, pipe: Boolean = false, flow: Boolean = false, _reset: Bool = null) extends Module(_reset=_reset)
+{
+ val io = new QueueIO(gen, entries)
+
+ val ram = Mem(gen, entries)
+ val enq_ptr = Counter(entries)
+ val deq_ptr = Counter(entries)
+ val maybe_full = Reg(init=Bool(false))
+
+ val ptr_match = enq_ptr.value === deq_ptr.value
+ val empty = ptr_match && !maybe_full
+ val full = ptr_match && maybe_full
+ val maybe_flow = Bool(flow) && empty
+ val do_flow = maybe_flow && io.deq.ready
+
+ val do_enq = io.enq.ready && io.enq.valid && !do_flow
+ val do_deq = io.deq.ready && io.deq.valid && !do_flow
+ when (do_enq) {
+ ram(enq_ptr.value) := io.enq.bits
+ enq_ptr.inc()
+ }
+ when (do_deq) {
+ deq_ptr.inc()
+ }
+ when (do_enq != do_deq) {
+ maybe_full := do_enq
+ }
+
+ io.deq.valid := !empty || Bool(flow) && io.enq.valid
+ io.enq.ready := !full || Bool(pipe) && io.deq.ready
+ io.deq.bits := Mux(maybe_flow, io.enq.bits, ram(deq_ptr.value))
+
+ val ptr_diff = enq_ptr.value - deq_ptr.value
+ if (isPow2(entries)) {
+ io.count := Cat(maybe_full && ptr_match, ptr_diff)
+ } else {
+ io.count := Mux(ptr_match, Mux(maybe_full, UInt(entries), UInt(0)), Mux(deq_ptr.value > enq_ptr.value, UInt(entries) + ptr_diff, ptr_diff))
+ }
+}
+
+/** Generic hardware queue. Required parameter entries controls
+ the depth of the queues. The width of the queue is determined
+ from the inputs.
+
+ Example usage:
+ val q = new Queue(UInt(), 16)
+ q.io.enq <> producer.io.out
+ consumer.io.in <> q.io.deq
+ */
+object Queue
+{
+ def apply[T <: Data](enq: DecoupledIO[T], entries: Int = 2, pipe: Boolean = false): DecoupledIO[T] = {
+ val q = Module(new Queue(enq.bits.cloneType, entries, pipe))
+ q.io.enq.valid := enq.valid // not using <> so that override is allowed
+ q.io.enq.bits := enq.bits
+ enq.ready := q.io.enq.ready
+ q.io.deq
+ }
+}
+
+object PriorityEncoderOH
+{
+ private def encode(in: Seq[Bool]): UInt = {
+ val outs = Vec.tabulate(in.size)(i => UInt(BigInt(1) << i, in.size))
+ PriorityMux(in :+ Bool(true), outs :+ UInt(0, in.size))
+ }
+ def apply(in: Seq[Bool]): Vec[Bool] = {
+ val enc = encode(in)
+ Vec.tabulate(in.size)(enc(_))
+ }
+ def apply(in: Bits): UInt = encode((0 until in.getWidth).map(i => in(i)))
+}
+
+class ArbiterIO[T <: Data](gen: T, n: Int) extends Bundle {
+ val in = Vec(Decoupled(gen), n).flip
+ val out = Decoupled(gen)
+ val chosen = UInt(OUTPUT, log2Up(n))
+}
+
+object ArbiterCtrl
+{
+ def apply(request: Seq[Bool]): Seq[Bool] = {
+ Bool(true) +: (1 until request.length).map(i => !request.slice(0, i).foldLeft(Bool(false))(_ || _))
+ }
+}
+
+abstract class LockingArbiterLike[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends Module {
+ require(isPow2(count))
+ def grant: Seq[Bool]
+ val io = new ArbiterIO(gen, n)
+ val locked = if(count > 1) Reg(init=Bool(false)) else Bool(false)
+ val lockIdx = if(count > 1) Reg(init=UInt(n-1)) else UInt(n-1)
+ val chosen = Wire(UInt(width = log2Up(n)))
+
+ for ((g, i) <- grant.zipWithIndex)
+ io.in(i).ready := Mux(locked, lockIdx === UInt(i), g) && io.out.ready
+ io.out.valid := io.in(chosen).valid
+ io.out.bits := io.in(chosen).bits
+ io.chosen := chosen
+
+ if(count > 1){
+ val cnt = Reg(init=UInt(0, width = log2Up(count)))
+ val cnt_next = cnt + UInt(1)
+ when(io.out.fire()) {
+ when(needsLock.map(_(io.out.bits)).getOrElse(Bool(true))) {
+ cnt := cnt_next
+ when(!locked) {
+ locked := Bool(true)
+ lockIdx := Vec(io.in.map{ in => in.fire()}).indexWhere{i: Bool => i}
+ }
+ }
+ when(cnt_next === UInt(0)) {
+ locked := Bool(false)
+ }
+ }
+ }
+}
+
+class LockingRRArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) {
+ lazy val last_grant = Reg(init=UInt(0, log2Up(n)))
+ override def grant: Seq[Bool] = {
+ val ctrl = ArbiterCtrl((0 until n).map(i => io.in(i).valid && UInt(i) > last_grant) ++ io.in.map(_.valid))
+ (0 until n).map(i => ctrl(i) && UInt(i) > last_grant || ctrl(i + n))
+ }
+
+ var choose = UInt(n-1)
+ for (i <- n-2 to 0 by -1)
+ choose = Mux(io.in(i).valid, UInt(i), choose)
+ for (i <- n-1 to 1 by -1)
+ choose = Mux(io.in(i).valid && UInt(i) > last_grant, UInt(i), choose)
+ chosen := Mux(locked, lockIdx, choose)
+
+ when (io.out.fire()) { last_grant := chosen }
+}
+
+class LockingArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) {
+ def grant: Seq[Bool] = ArbiterCtrl(io.in.map(_.valid))
+
+ var choose = UInt(n-1)
+ for (i <- n-2 to 0 by -1) {
+ choose = Mux(io.in(i).valid, UInt(i), choose)
+ }
+ chosen := Mux(locked, lockIdx, choose)
+}
+
+/** Hardware module that is used to sequence n producers into 1 consumer.
+ Producers are chosen in round robin order.
+
+ Example usage:
+ val arb = new RRArbiter(2, UInt())
+ arb.io.in(0) <> producer0.io.out
+ arb.io.in(1) <> producer1.io.out
+ consumer.io.in <> arb.io.out
+ */
+class RRArbiter[T <: Data](gen:T, n: Int) extends LockingRRArbiter[T](gen, n, 1)
+
+/** Hardware module that is used to sequence n producers into 1 consumer.
+ Priority is given to lower producer
+
+ Example usage:
+ val arb = Module(new Arbiter(2, UInt()))
+ arb.io.in(0) <> producer0.io.out
+ arb.io.in(1) <> producer1.io.out
+ consumer.io.in <> arb.io.out
+ */
+class Arbiter[T <: Data](gen: T, n: Int) extends LockingArbiter[T](gen, n, 1)
+
+/** linear feedback shift register
+ */
+object LFSR16
+{
+ def apply(increment: Bool = Bool(true)): UInt =
+ {
+ val width = 16
+ val lfsr = Reg(init=UInt(1, width))
+ when (increment) { lfsr := Cat(lfsr(0)^lfsr(2)^lfsr(3)^lfsr(5), lfsr(width-1,1)) }
+ lfsr
+ }
+}
+
+/** A hardware module that delays data coming down the pipeline
+ by the number of cycles set by the latency parameter. Functionality
+ is similar to ShiftRegister but this exposes a Pipe interface.
+
+ Example usage:
+ val pipe = new Pipe(UInt())
+ pipe.io.enq <> produce.io.out
+ consumer.io.in <> pipe.io.deq
+ */
+object Pipe
+{
+ def apply[T <: Data](enqValid: Bool, enqBits: T, latency: Int): ValidIO[T] = {
+ if (latency == 0) {
+ val out = Valid(enqBits)
+ out.valid <> enqValid
+ out.bits <> enqBits
+ out
+ } else {
+ val v = Reg(Bool(), next=enqValid, init=Bool(false))
+ val b = RegEnable(enqBits, enqValid)
+ apply(v, b, latency-1)
+ }
+ }
+ def apply[T <: Data](enqValid: Bool, enqBits: T): ValidIO[T] = apply(enqValid, enqBits, 1)
+ def apply[T <: Data](enq: ValidIO[T], latency: Int = 1): ValidIO[T] = apply(enq.valid, enq.bits, latency)
+}
+
+class Pipe[T <: Data](gen: T, latency: Int = 1) extends Module
+{
+ val io = new Bundle {
+ val enq = Valid(gen).flip
+ val deq = Valid(gen)
+ }
+
+ io.deq <> Pipe(io.enq, latency)
+}