diff options
| author | Jim Lawson | 2015-05-11 10:04:01 -0700 |
|---|---|---|
| committer | Jim Lawson | 2015-07-24 15:50:53 -0700 |
| commit | b208bfb5691c7b5921dd47d0b599726872acd1cd (patch) | |
| tree | 5d8695f13db41a807622dfdc93c1b6841911acc8 /src/main/scala/Chisel/utils.scala | |
| parent | caa7602b878c03c47fd263550e37715f1a67f854 (diff) | |
move source files under Chisel folder - eclipse compatibility
Diffstat (limited to 'src/main/scala/Chisel/utils.scala')
| -rw-r--r-- | src/main/scala/Chisel/utils.scala | 561 |
1 files changed, 561 insertions, 0 deletions
diff --git a/src/main/scala/Chisel/utils.scala b/src/main/scala/Chisel/utils.scala new file mode 100644 index 00000000..3bbea34a --- /dev/null +++ b/src/main/scala/Chisel/utils.scala @@ -0,0 +1,561 @@ +package Chisel +import Builder._ +import scala.math._ + +object log2Up +{ + def apply(in: Int): Int = if(in == 1) 1 else ceil(log(in)/log(2)).toInt +} + +object log2Ceil +{ + def apply(in: Int): Int = ceil(log(in)/log(2)).toInt +} + + +object log2Down +{ + def apply(x : Int): Int = if (x == 1) 1 else floor(log(x)/log(2.0)).toInt +} + +object log2Floor +{ + def apply(x : Int): Int = floor(log(x)/log(2.0)).toInt +} + + +object isPow2 +{ + def apply(in: Int): Boolean = in > 0 && ((in & (in-1)) == 0) +} + +object FillInterleaved +{ + def apply(n: Int, in: UInt): UInt = apply(n, in.toBools) + def apply(n: Int, in: Seq[Bool]): UInt = Vec(in.map(Fill(n, _))).toBits +} + +/** Returns the number of bits set (i.e value is 1) in the input signal. + */ +object PopCount +{ + def apply(in: Iterable[Bool]): UInt = { + if (in.size == 0) { + UInt(0) + } else if (in.size == 1) { + in.head + } else { + apply(in.slice(0, in.size/2)) + Cat(UInt(0), apply(in.slice(in.size/2, in.size))) + } + } + def apply(in: Bits): UInt = apply((0 until in.getWidth).map(in(_))) +} + +object RegNext { + + def apply[T <: Data](next: T): T = Reg[T](next, next, null.asInstanceOf[T]) + + def apply[T <: Data](next: T, init: T): T = Reg[T](next, next, init) + +} + +object RegInit { + + def apply[T <: Data](init: T): T = Reg[T](init, null.asInstanceOf[T], init) + +} + +object RegEnable +{ + def apply[T <: Data](updateData: T, enable: Bool) = { + val r = Reg(updateData) + when (enable) { r := updateData } + r + } + def apply[T <: Data](updateData: T, resetData: T, enable: Bool) = { + val r = RegInit(resetData) + when (enable) { r := updateData } + r + } +} + +/** Builds a Mux tree out of the input signal vector using a one hot encoded + select signal. Returns the output of the Mux tree. + */ +object Mux1H +{ + def apply[T <: Data](sel: Iterable[Bool], in: Iterable[T]): T = { + if (in.tail.isEmpty) in.head + else { + val masked = (sel, in).zipped map ((s, i) => Mux(s, i.toBits, Bits(0))) + in.head.fromBits(masked.reduceLeft(_|_)) + } + } + def apply[T <: Data](in: Iterable[(Bool, T)]): T = { + val (sel, data) = in.unzip + apply(sel, data) + } + def apply[T <: Data](sel: Bits, in: Iterable[T]): T = + apply((0 until in.size).map(sel(_)), in) + def apply(sel: Bits, in: Bits): Bool = (sel & in).orR +} + +/** Builds a Mux tree under the assumption that multiple select signals + can be enabled. Priority is given to the first select signal. + + Returns the output of the Mux tree. + */ +object PriorityMux +{ + def apply[T <: Bits](in: Iterable[(Bool, T)]): T = { + if (in.size == 1) { + in.head._2 + } else { + Mux(in.head._1, in.head._2, apply(in.tail)) + } + } + def apply[T <: Bits](sel: Iterable[Bool], in: Iterable[T]): T = apply(sel zip in) + def apply[T <: Bits](sel: Bits, in: Iterable[T]): T = apply((0 until in.size).map(sel(_)), in) +} + +object unless { + def apply(c: Bool)(block: => Unit) { + when (!c) { block } + } +} + +object switch { + def apply(c: Bits)(block: => Unit) { + switchKeys.push(c) + block + switchKeys.pop() + } +} + +object is { + def apply(v: Bits)(block: => Unit): Unit = + apply(Seq(v))(block) + def apply(v: Bits, vr: Bits*)(block: => Unit): Unit = + apply(v :: vr.toList)(block) + def apply(v: Iterable[Bits])(block: => Unit): Unit = { + val keys = switchKeys + if (keys.isEmpty) ChiselError.error("The 'is' keyword may not be used outside of a switch.") + else if (!v.isEmpty) when (v.map(_ === keys.top).reduce(_||_)) { block } + } +} + +object MuxLookup { + def apply[S <: UInt, T <: Bits] (key: S, default: T, mapping: Seq[(S, T)]): T = { + var res = default; + for ((k, v) <- mapping.reverse) + res = Mux(k === key, v, res); + res + } + +} + +object Fill { + def apply(n: Int, x: Bool): UInt = n match { + case 0 => UInt(width=0) + case 1 => x + case x if n > 1 => UInt(0,n) - UInt(x) + case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.") + } + def apply(n: Int, y: UInt): UInt = { + n match { + case 0 => UInt(width=0) + case 1 => y + case x if n > 1 => + val p2 = Array.ofDim[UInt](log2Up(n+1)) + p2(0) = y + for (i <- 1 until p2.length) + p2(i) = Cat(p2(i-1), p2(i-1)) + Cat((0 until log2Up(x+1)).filter(i => (x & (1 << i)) != 0).map(p2(_))) + case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.") + } + } +} + +object MuxCase { + def apply[T <: Bits] (default: T, mapping: Seq[(Bool, T)]): T = { + var res = default; + for ((t, v) <- mapping.reverse){ + res = Mux(t, v, res); + } + res + } +} + +object ListLookup { + def apply[T <: Data](addr: UInt, default: List[T], mapping: Array[(BitPat, List[T])]): List[T] = { + val map = mapping.map(m => (m._1 === addr, m._2)) + default.zipWithIndex map { case (d, i) => + map.foldRight(d)((m, n) => Mux(m._1, m._2(i), n)) + } + } +} + +object Lookup { + def apply[T <: Bits](addr: UInt, default: T, mapping: Seq[(BitPat, T)]): T = + ListLookup(addr, List(default), mapping.map(m => (m._1, List(m._2))).toArray).head +} + +/** Litte/big bit endian convertion: reverse the order of the bits in a UInt. +*/ +object Reverse +{ + private def doit(in: UInt, length: Int): UInt = { + if (length == 1) { + in + } else if (isPow2(length) && length >= 8 && length <= 64) { + // Do it in logarithmic time to speed up C++. Neutral for real HW. + var res = in + var shift = length >> 1 + var mask = UInt((BigInt(1) << length) - 1, length) + do { + mask = mask ^ (mask(length-shift-1,0) << UInt(shift)) + res = ((res >> UInt(shift)) & mask) | (res(length-shift-1,0) << UInt(shift) & ~mask) + shift = shift >> 1 + } while (shift > 0) + res + } else { + val half = (1 << log2Up(length))/2 + Cat(doit(in(half-1,0), half), doit(in(length-1,half), length-half)) + } + } + def apply(in: UInt): UInt = doit(in, in.getWidth) +} + +/** Returns the n-cycle delayed version of the input signal. + */ +object ShiftRegister +{ + def apply[T <: Data](in: T, n: Int, en: Bool = Bool(true)): T = + { + // The order of tests reflects the expected use cases. + if (n == 1) { + RegEnable(in, en) + } else if (n != 0) { + RegNext(apply(in, n-1, en)) + } else { + in + } + } +} + +/** Returns the one hot encoding of the input UInt. + */ +object UIntToOH +{ + def apply(in: UInt, width: Int = -1): UInt = + if (width == -1) UInt(1) << in + else (UInt(1) << in(log2Up(width)-1,0))(width-1,0) +} + +class Counter(val n: Int) { + val value = if (n == 1) UInt(0) else Reg(init=UInt(0, log2Up(n))) + def inc(): Bool = { + if (n == 1) Bool(true) + else { + val wrap = value === UInt(n-1) + value := Mux(Bool(!isPow2(n)) && wrap, UInt(0), value + UInt(1)) + wrap + } + } +} + +object Counter +{ + def apply(n: Int): Counter = new Counter(n) + def apply(cond: Bool, n: Int): (UInt, Bool) = { + val c = new Counter(n) + var wrap: Bool = null + when (cond) { wrap = c.inc() } + (c.value, cond && wrap) + } +} + +class ValidIO[+T <: Data](gen2: T) extends Bundle +{ + val valid = Bool(OUTPUT) + val bits = gen2.cloneType.asOutput + def fire(dummy: Int = 0): Bool = valid + override def doCloneType: this.type = new ValidIO(gen2).asInstanceOf[this.type] +} + +/** Adds a valid protocol to any interface. The standard used is + that the consumer uses the flipped interface. +*/ +object Valid { + def apply[T <: Data](gen: T): ValidIO[T] = new ValidIO(gen) +} + +class DecoupledIO[+T <: Data](gen: T) extends Bundle +{ + val ready = Bool(INPUT) + val valid = Bool(OUTPUT) + val bits = gen.cloneType.asOutput + def fire(dummy: Int = 0): Bool = ready && valid + override def doCloneType: this.type = new DecoupledIO(gen).asInstanceOf[this.type] +} + +/** Adds a ready-valid handshaking protocol to any interface. + The standard used is that the consumer uses the flipped + interface. + */ +object Decoupled { + def apply[T <: Data](gen: T): DecoupledIO[T] = new DecoupledIO(gen) +} + +class EnqIO[T <: Data](gen: T) extends DecoupledIO(gen) +{ + def enq(dat: T): T = { valid := Bool(true); bits := dat; dat } + override def init(dummy: Int = 0) = { + valid := Bool(false); + for (io <- bits.flatten) + io := UInt(0) + } + override def doCloneType: this.type = { new EnqIO(gen).asInstanceOf[this.type]; } +} + +class DeqIO[T <: Data](gen: T) extends DecoupledIO(gen) +{ + flip() + override def init(dummy: Int = 0) = { + ready := Bool(false) + } + def deq(b: Boolean = false): T = { ready := Bool(true); bits } + override def doCloneType: this.type = { new DeqIO(gen).asInstanceOf[this.type]; } +} + + +class DecoupledIOC[+T <: Data](gen: T) extends Bundle +{ + val ready = Bool(INPUT) + val valid = Bool(OUTPUT) + val bits = gen.cloneType.asOutput +} + +class QueueIO[T <: Data](gen: T, entries: Int) extends Bundle +{ + val enq = Decoupled(gen.cloneType).flip + val deq = Decoupled(gen.cloneType) + val count = UInt(OUTPUT, log2Up(entries + 1)) +} + +class Queue[T <: Data](gen: T, val entries: Int, pipe: Boolean = false, flow: Boolean = false, _reset: Bool = null) extends Module(_reset=_reset) +{ + val io = new QueueIO(gen, entries) + + val ram = Mem(gen, entries) + val enq_ptr = Counter(entries) + val deq_ptr = Counter(entries) + val maybe_full = Reg(init=Bool(false)) + + val ptr_match = enq_ptr.value === deq_ptr.value + val empty = ptr_match && !maybe_full + val full = ptr_match && maybe_full + val maybe_flow = Bool(flow) && empty + val do_flow = maybe_flow && io.deq.ready + + val do_enq = io.enq.ready && io.enq.valid && !do_flow + val do_deq = io.deq.ready && io.deq.valid && !do_flow + when (do_enq) { + ram(enq_ptr.value) := io.enq.bits + enq_ptr.inc() + } + when (do_deq) { + deq_ptr.inc() + } + when (do_enq != do_deq) { + maybe_full := do_enq + } + + io.deq.valid := !empty || Bool(flow) && io.enq.valid + io.enq.ready := !full || Bool(pipe) && io.deq.ready + io.deq.bits := Mux(maybe_flow, io.enq.bits, ram(deq_ptr.value)) + + val ptr_diff = enq_ptr.value - deq_ptr.value + if (isPow2(entries)) { + io.count := Cat(maybe_full && ptr_match, ptr_diff) + } else { + io.count := Mux(ptr_match, Mux(maybe_full, UInt(entries), UInt(0)), Mux(deq_ptr.value > enq_ptr.value, UInt(entries) + ptr_diff, ptr_diff)) + } +} + +/** Generic hardware queue. Required parameter entries controls + the depth of the queues. The width of the queue is determined + from the inputs. + + Example usage: + val q = new Queue(UInt(), 16) + q.io.enq <> producer.io.out + consumer.io.in <> q.io.deq + */ +object Queue +{ + def apply[T <: Data](enq: DecoupledIO[T], entries: Int = 2, pipe: Boolean = false): DecoupledIO[T] = { + val q = Module(new Queue(enq.bits.cloneType, entries, pipe)) + q.io.enq.valid := enq.valid // not using <> so that override is allowed + q.io.enq.bits := enq.bits + enq.ready := q.io.enq.ready + q.io.deq + } +} + +object PriorityEncoderOH +{ + private def encode(in: Seq[Bool]): UInt = { + val outs = Vec.tabulate(in.size)(i => UInt(BigInt(1) << i, in.size)) + PriorityMux(in :+ Bool(true), outs :+ UInt(0, in.size)) + } + def apply(in: Seq[Bool]): Vec[Bool] = { + val enc = encode(in) + Vec.tabulate(in.size)(enc(_)) + } + def apply(in: Bits): UInt = encode((0 until in.getWidth).map(i => in(i))) +} + +class ArbiterIO[T <: Data](gen: T, n: Int) extends Bundle { + val in = Vec(Decoupled(gen), n).flip + val out = Decoupled(gen) + val chosen = UInt(OUTPUT, log2Up(n)) +} + +object ArbiterCtrl +{ + def apply(request: Seq[Bool]): Seq[Bool] = { + Bool(true) +: (1 until request.length).map(i => !request.slice(0, i).foldLeft(Bool(false))(_ || _)) + } +} + +abstract class LockingArbiterLike[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends Module { + require(isPow2(count)) + def grant: Seq[Bool] + val io = new ArbiterIO(gen, n) + val locked = if(count > 1) Reg(init=Bool(false)) else Bool(false) + val lockIdx = if(count > 1) Reg(init=UInt(n-1)) else UInt(n-1) + val chosen = Wire(UInt(width = log2Up(n))) + + for ((g, i) <- grant.zipWithIndex) + io.in(i).ready := Mux(locked, lockIdx === UInt(i), g) && io.out.ready + io.out.valid := io.in(chosen).valid + io.out.bits := io.in(chosen).bits + io.chosen := chosen + + if(count > 1){ + val cnt = Reg(init=UInt(0, width = log2Up(count))) + val cnt_next = cnt + UInt(1) + when(io.out.fire()) { + when(needsLock.map(_(io.out.bits)).getOrElse(Bool(true))) { + cnt := cnt_next + when(!locked) { + locked := Bool(true) + lockIdx := Vec(io.in.map{ in => in.fire()}).indexWhere{i: Bool => i} + } + } + when(cnt_next === UInt(0)) { + locked := Bool(false) + } + } + } +} + +class LockingRRArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) { + lazy val last_grant = Reg(init=UInt(0, log2Up(n))) + override def grant: Seq[Bool] = { + val ctrl = ArbiterCtrl((0 until n).map(i => io.in(i).valid && UInt(i) > last_grant) ++ io.in.map(_.valid)) + (0 until n).map(i => ctrl(i) && UInt(i) > last_grant || ctrl(i + n)) + } + + var choose = UInt(n-1) + for (i <- n-2 to 0 by -1) + choose = Mux(io.in(i).valid, UInt(i), choose) + for (i <- n-1 to 1 by -1) + choose = Mux(io.in(i).valid && UInt(i) > last_grant, UInt(i), choose) + chosen := Mux(locked, lockIdx, choose) + + when (io.out.fire()) { last_grant := chosen } +} + +class LockingArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) { + def grant: Seq[Bool] = ArbiterCtrl(io.in.map(_.valid)) + + var choose = UInt(n-1) + for (i <- n-2 to 0 by -1) { + choose = Mux(io.in(i).valid, UInt(i), choose) + } + chosen := Mux(locked, lockIdx, choose) +} + +/** Hardware module that is used to sequence n producers into 1 consumer. + Producers are chosen in round robin order. + + Example usage: + val arb = new RRArbiter(2, UInt()) + arb.io.in(0) <> producer0.io.out + arb.io.in(1) <> producer1.io.out + consumer.io.in <> arb.io.out + */ +class RRArbiter[T <: Data](gen:T, n: Int) extends LockingRRArbiter[T](gen, n, 1) + +/** Hardware module that is used to sequence n producers into 1 consumer. + Priority is given to lower producer + + Example usage: + val arb = Module(new Arbiter(2, UInt())) + arb.io.in(0) <> producer0.io.out + arb.io.in(1) <> producer1.io.out + consumer.io.in <> arb.io.out + */ +class Arbiter[T <: Data](gen: T, n: Int) extends LockingArbiter[T](gen, n, 1) + +/** linear feedback shift register + */ +object LFSR16 +{ + def apply(increment: Bool = Bool(true)): UInt = + { + val width = 16 + val lfsr = Reg(init=UInt(1, width)) + when (increment) { lfsr := Cat(lfsr(0)^lfsr(2)^lfsr(3)^lfsr(5), lfsr(width-1,1)) } + lfsr + } +} + +/** A hardware module that delays data coming down the pipeline + by the number of cycles set by the latency parameter. Functionality + is similar to ShiftRegister but this exposes a Pipe interface. + + Example usage: + val pipe = new Pipe(UInt()) + pipe.io.enq <> produce.io.out + consumer.io.in <> pipe.io.deq + */ +object Pipe +{ + def apply[T <: Data](enqValid: Bool, enqBits: T, latency: Int): ValidIO[T] = { + if (latency == 0) { + val out = Valid(enqBits) + out.valid <> enqValid + out.bits <> enqBits + out + } else { + val v = Reg(Bool(), next=enqValid, init=Bool(false)) + val b = RegEnable(enqBits, enqValid) + apply(v, b, latency-1) + } + } + def apply[T <: Data](enqValid: Bool, enqBits: T): ValidIO[T] = apply(enqValid, enqBits, 1) + def apply[T <: Data](enq: ValidIO[T], latency: Int = 1): ValidIO[T] = apply(enq.valid, enq.bits, latency) +} + +class Pipe[T <: Data](gen: T, latency: Int = 1) extends Module +{ + val io = new Bundle { + val enq = Valid(gen).flip + val deq = Valid(gen) + } + + io.deq <> Pipe(io.enq, latency) +} |
