/** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * ****************************************************************************** */ /* Standard library includes */ #include /* Library includes */ #include #include /* Project includes */ #include "main.h" #include "devices.h" #include "config.h" #include "dataflow.h" #include "handshake.pb.h" #include "data.pb.h" /* Private Macros */ #define device_MDR s2m_MDR_response #define GET_IDX_FROM_ADDR(i2c_addr) (i2c_addr>>1)-1 #define GET_ADDR_FROM_IDX(idx) (idx+1)<<1 #define GET_BIT_FROM_IDX(a, b) a[b>>5]&(1<<(b%32)) #define SET_BIT_FROM_IDX(a, b) a[b>>5]|=(1<<(b%32)) #define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__))) /* #define I2C_ADDRESS 0x05 */ #define BUS_DEVICE_LIMIT 16 /* Macro to toggle between master and slave firmware */ #define MASTER /* Private globals */ I2C_HandleTypeDef hi2c1; UART_HandleTypeDef huart1; device_info_t *device_info[BUS_DEVICE_LIMIT] = {NULL}; subscription_info_t* subs_info[BUS_DEVICE_LIMIT]; uint32_t allocated[4]={0}; uint8_t dev_sts[BUS_DEVICE_LIMIT] = {OFFLINE}; uint8_t data_idx; _datapoint routing_buffer[ROUTING_BUFSIZE]; /* Index information for each datapoint */ uint8_t routing_idx_buffer[ROUTING_BUFSIZE]; /* Pointer to tail of both data and idx buffers */ uint32_t routing_ptr = 0; /* Function prototypes */ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_USART1_UART_Init(void); hs_status_t handshake(uint32_t i2c_addr); dataflow_status_t device_dataflow(uint8_t i2c_addr, uint32_t SOR_code, uint8_t routing_buf_idx); bool routing(void); bool todo_hs_or_not_todo_hs(uint8_t i2c_addr); state_t get_state_from_hs_status(uint16_t device_addr, hs_status_t hs_status); bool decode_subscriptions_callback(pb_istream_t *istream, const pb_field_t *field, void **args); bool encode_subscription_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg); bool encode_datapoint_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg); bool decode_data_callback(pb_istream_t *istream, const pb_field_t *field, void **args); bool master_encode_MDR_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg); /** * @brief The application entry point. * @retval int */ int main(void) { /* MCU Configuration */ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* Configure the system clock */ SystemClock_Config(); /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_USART1_UART_Init(); #ifdef TESTING_ENABLE #ifdef MASTER uint8_t reset_string[] = "\r\n\n==========MASTER RESET=========\r\n\n"; HAL_UART_Transmit(&huart1, reset_string, sizeof(reset_string), 100); #else uint8_t reset_string[] = "\r\n\n==========SLAVE RESET=========\r\n\n"; HAL_UART_Transmit(&huart1, reset_string, sizeof(reset_string), 100); #endif /* MASTER */ #endif /* TESTING_ENABLE */ uint8_t priority_counter = 0, debug_buf[128]; /* Handshake */ while (1) { if (priority_counter == 0) { hs_status_t hs_status; /* for (uint8_t curr_addr=5; curr_addr == 5; curr_addr++) { */ for (uint8_t curr_addr=0x1; curr_addr <= BUS_DEVICE_LIMIT; curr_addr++) { if (todo_hs_or_not_todo_hs(curr_addr)) { hs_status = handshake(curr_addr); dev_sts[GET_IDX_FROM_ADDR(curr_addr)] = get_state_from_hs_status(curr_addr, hs_status); } } } else if (priority_counter == 5 && routing_ptr > 0) { routing(); } else { for (int device_idx = 0; device_idx < BUS_DEVICE_LIMIT-1; device_idx++) { if (dev_sts[device_idx] == REGISTERED) { device_dataflow(GET_ADDR_FROM_IDX(device_idx), SLAVE_TX, 0); } } } priority_counter = ((priority_counter+1)%10); sprintf((char*)debug_buf, "routing ptr: %ld\r\n", routing_ptr); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); } } hs_status_t handshake(uint32_t i2c_addr) { /* Handshake variables */ uint8_t hs_sts = IDLE; uint8_t *MDR_buf; uint32_t AF_error_counter = 0; uint32_t dev_idx = GET_IDX_FROM_ADDR(i2c_addr); uint16_t MDR_len = 0; s2m_MDR_response MDR_res_message = s2m_MDR_response_init_default; #if defined(TESTING_ENABLE) || defined(DEBUG_ENABLE) uint8_t debug_buf[128]; #endif #ifdef TESTING_ENABLE uint8_t term[] = "\r\n"; #endif while (hs_sts != HS_FAILED && hs_sts != HS_REGISTERED) { switch (hs_sts) { case (IDLE): { uint8_t MDR_req_buf[2] = {0x0, 0x1}; if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, MDR_req_buf, 2, 10000) != HAL_OK) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __HS_MDR_REQ_I2C_ERROR; __HS_MDR_REQ_I2C_ERROR_END: __asm__("nop"); #endif } else { hs_sts = HS_MDR_ACK; } break; } case (HS_MDR_ACK): { HAL_Delay(MASTER_I2C_BUS_INTERVAL); uint8_t MDR_ACK_buf[2] = {0x0, 0x0}; AF_error_counter = 0; while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, MDR_ACK_buf, 2, 100) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { hs_sts = HS_FAILED; } if (++AF_error_counter > 1500) { hs_sts = HS_FAILED; } if (hs_sts == HS_FAILED) { #ifdef DEBUG_ENABLE goto __HS_MDR_ACK_I2C_ERROR; __HS_MDR_ACK_I2C_ERROR_END: __asm__("nop"); #endif break; } } if (hs_sts != HS_FAILED) { uint8_t ACK_flag = MDR_ACK_buf[1]; if (ACK_flag == 0xFF) { MDR_len = MDR_ACK_buf[0]; hs_sts = HS_MDR_CTS; } else { hs_sts = HS_FAILED; } } break; } case (HS_MDR_CTS): { uint8_t MDR_CTS_buf[2] = {0x0, 0x02}; if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, MDR_CTS_buf, 2, 10000) != HAL_OK) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __HS_CTS_I2C_ERROR; __HS_CTS_I2C_ERROR_END: __asm__("nop"); #endif } else { hs_sts = HS_MDR_MDR; } break; } case (HS_MDR_MDR): { MDR_buf = (uint8_t*)malloc(MDR_len); AF_error_counter = 0; while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)MDR_buf, MDR_len, 1000) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __HS_MDR_I2C_ERROR; __HS_MDR_I2C_ERROR_END: __asm__("nop"); #endif break; } else if (++AF_error_counter > 1500) { hs_sts = HS_FAILED; break; } } if (hs_sts != HS_FAILED) { #ifdef TESTING_ENABLE goto __HS_MDR_MDR_TESTING; __HS_MDR_MDR_TESTING_END: __asm__("nop"); #endif MDR_res_message.subscriptions.funcs.decode = decode_subscriptions_callback; MDR_res_message.subscriptions.arg = (void*)dev_idx; pb_istream_t MDR_res_stream = pb_istream_from_buffer(MDR_buf, MDR_len); if (!pb_decode(&MDR_res_stream, s2m_MDR_response_fields, &MDR_res_message)) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __HS_MDR_DEC_ERROR; __HS_MDR_DEC_ERROR_END: __asm__("nop"); #endif } else { #ifdef TESTING_ENABLE goto __MDR_DEC_TESTING; __MDR_DEC_TESTING_END: __asm__("nop"); #endif device_info[dev_idx] = malloc(sizeof(device_info_t)); device_info[dev_idx]->i2c_addr = i2c_addr; device_info[dev_idx]->device_id = dev_idx; device_info[dev_idx]->MDR = MDR_res_message; hs_sts = HS_REGISTERED; } } break; } } } #ifdef TESTING_ENABLE { goto __TESTING_BLOCK_END; __HS_MDR_MDR_TESTING: for (int x=0; xmodule_ids[1]); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __MDR_DEC_TESTING_END; } __TESTING_BLOCK_END: __asm__("nop"); #endif #ifdef DEBUG_ENABLE { goto __DEBUG_BLOCK_END; __HS_MDR_REQ_I2C_ERROR: sprintf((char*)debug_buf, "Unable to send MDR request to %lx. I2C error: %ld\r\n", i2c_addr, HAL_I2C_GetError(&hi2c1)); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_REQ_I2C_ERROR_END; __HS_MDR_ACK_I2C_ERROR: sprintf((char*)debug_buf, "Unable to get MDR ACK. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1)); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_ACK_I2C_ERROR_END; __HS_CTS_I2C_ERROR: sprintf((char*)debug_buf, "Unable to send MDR CTS. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1)); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_CTS_I2C_ERROR_END; __HS_MDR_I2C_ERROR: sprintf((char*)debug_buf, "Unable to get MDR. I2C error: %ld\n\tError counter: %ld\r\n", HAL_I2C_GetError(&hi2c1), AF_error_counter); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_I2C_ERROR_END; __HS_MDR_DEC_ERROR: sprintf((char*)debug_buf, "MDR decode error\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_DEC_ERROR_END; __DEBUG_BLOCK_END: __asm__("nop"); } #endif return hs_sts; } dataflow_status_t device_dataflow(uint8_t i2c_addr, uint32_t SOR_code, uint8_t rbuf_data_idx) { uint8_t dev_idx = GET_IDX_FROM_ADDR(i2c_addr); dataflow_status_t df_status = DF_IDLE; uint8_t DOC_buf[4]; uint8_t *data_buf; uint32_t AF_error_counter = 0; uint32_t data_len = 0; _datapoint datapoints[16]; /* TODO Add default values to the CTS message in proto */ s2m_data data_message = s2m_data_init_zero; #if defined(TESTING_ENABLE) || defined(DEBUG_ENABLE) uint8_t debug_buf[128]; #endif #ifdef TESTING_ENABLE uint8_t term[] = "\r\n"; #endif while (df_status != DF_SUCCESS && df_status != DF_FAIL) { switch (df_status) { case (DF_IDLE): { HAL_Delay(MASTER_I2C_BUS_INTERVAL); uint8_t SOR_buf[2] = {SOR_code, 0x0}; if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, SOR_buf, 2, 500) != HAL_OK) { df_status = DF_FAIL; #ifdef DEBUG_ENABLE goto __DF_SOR_I2C_ERROR; __DF_SOR_I2C_ERROR_END: __asm__("nop"); #endif } else { if (SOR_code == SLAVE_TX) { df_status = DF_RX_DOC; } else if (SOR_code == SLAVE_RX_DATAPOINT) { /* TODO */ df_status = DF_LEN_TX; } else if (SOR_code == SLAVE_RX_COMMAND) { /* TODO */ } } break; } case (DF_RX_DOC): { HAL_Delay(MASTER_I2C_BUS_INTERVAL); AF_error_counter = 0; while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)DOC_buf, 4, 10000) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { df_status = DF_FAIL; #ifdef DEBUG_ENABLE goto __DF_DOC_I2C_ERROR; __DF_DOC_I2C_ERROR_END: __asm__("nop"); #endif break; } else if (++AF_error_counter > 1500) { df_status = DF_FAIL; break; } } if (df_status != DF_FAIL) { if (DOC_buf[1] == DATA) { df_status = DF_CTS; data_len = DOC_buf[3]; } else if (DOC_buf[1] == CMD_UNICAST) { /* TODO */ } else if (DOC_buf[1] == CMD_MULTICAST) { /* TODO */ } else if (DOC_buf[1] == CMD_BROADCAST) { /* TODO */ } else { df_status = DF_FAIL; } } break; } case (DF_CTS): { HAL_Delay(MASTER_I2C_BUS_INTERVAL); uint8_t CTS_buf[2] = {0x2, 0xFF}; if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, CTS_buf, 2, 10000) != HAL_OK) { df_status = DF_FAIL; #ifdef DEBUG_ENABLE goto __DF_CTS_I2C_ERROR; __DF_CTS_I2C_ERROR_END: __asm__("nop"); #endif } else { if (DOC_buf[1] == DATA) { df_status = DF_RX_DATA; } else { /* TODO RX CMD stuff */ } } break; } case (DF_RX_DATA): { HAL_Delay(MASTER_I2C_BUS_INTERVAL); sprintf((char*)debug_buf, "data len: %ld\r\n", data_len); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); data_buf = (uint8_t*)malloc(128); AF_error_counter = 0; while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)data_buf, data_len, 1000) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { df_status = DF_FAIL; #ifdef DEBUG_ENABLE goto __DF_DATA_I2C_ERROR; __DF_DATA_I2C_ERROR_END: __asm__("nop"); #endif break; } else if (++AF_error_counter > 1500) { df_status = DF_FAIL; break; } } if (df_status != DF_FAIL) { data_idx = 0; data_message.datapoints.funcs.decode = decode_data_callback; data_message.datapoints.arg = (void*)datapoints; pb_istream_t data_istream = pb_istream_from_buffer(data_buf, data_len); if (!pb_decode(&data_istream, s2m_data_fields, &data_message)) { df_status = DF_FAIL; #ifdef DEBUG_ENABLE goto __DF_DATA_DECODE_ERROR; __DF_DATA_DECODE_ERROR_END: __asm__("nop"); #endif } else { /* This could be done in the callback itself */ for (int i = 0; i < data_idx && routing_ptr < ROUTING_BUFSIZE; i++) { routing_idx_buffer[routing_ptr] = dev_idx; routing_buffer[routing_ptr++] = datapoints[i]; } df_status = DF_SUCCESS; } } break; } case (DF_LEN_TX): { HAL_Delay(MASTER_I2C_BUS_INTERVAL); /* TODO error checking */ /* Will need to package datapoint and MDR to know their lengths Once cached, will not need to do this */ /* Do this after handshake to cache ================================================== */ uint8_t MDR_buf[128], data_buf[128], CTS_buf[2]; uint8_t src_device_idx = routing_idx_buffer[rbuf_data_idx]; s2m_MDR_response data_src_MDR = device_info[src_device_idx]->MDR; pb_ostream_t MDR_ostream = pb_ostream_from_buffer(MDR_buf, sizeof(MDR_buf)); data_src_MDR.subscriptions.funcs.encode=master_encode_MDR_callback; pb_encode(&MDR_ostream, s2m_MDR_response_fields, &data_src_MDR); uint8_t MDR_len = MDR_ostream.bytes_written; /* =================================================================================== */ _datapoint data = routing_buffer[rbuf_data_idx]; pb_ostream_t data_ostream = pb_ostream_from_buffer(data_buf, sizeof(data_buf)); pb_encode(&data_ostream, _datapoint_fields, &data); uint8_t data_len = data_ostream.bytes_written; uint8_t data_MDR_len_buf[4] = {0, MDR_len, 0, data_len}; AF_error_counter = 0; while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, CTS_buf, 2, 10000) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { df_status = DF_FAIL; } if (++AF_error_counter > 3000) { df_status = DF_FAIL; } if (df_status == DF_FAIL) { sprintf((char*)debug_buf, "Failed to get LEN CTS\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); break; } } HAL_Delay(MASTER_I2C_BUS_INTERVAL); if (df_status != DF_FAIL && HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, data_MDR_len_buf, 4, 10000) == HAL_OK) { sprintf((char*)debug_buf, "MDR len: %d data len: %d SENT\r\n", MDR_len, data_len); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); } else { sprintf((char*)debug_buf, "Failed to send lengths\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); } AF_error_counter = 0; while (df_status != DF_FAIL && HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, CTS_buf, 2, 10000) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { df_status = DF_FAIL; } if (++AF_error_counter > 3000) { df_status = DF_FAIL; } if (df_status == DF_FAIL) { sprintf((char*)debug_buf, "Failed to get TX CTS\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); break; } } #ifdef TESTING_ENABLE uint8_t buf_title[64]; sprintf((char*)buf_title, "MDR buffer: "); HAL_UART_Transmit(&huart1, buf_title, sizeof(buf_title), 100); memset(buf_title, 0, 64); for(int x=0; xmod_idx && !alloc; dev_sub_idx++) { if (subs_info[dev_idx]->module_ids[dev_sub_idx] == device_info[src_module_idx]->MDR.module_id) { SET_BIT_FROM_IDX(routing_table[rbuf_data_idx], dev_idx); alloc = true; } } /* TODO entity ID, I2C addr and class routing, should go in the if condition above */ } } for (uint8_t rbuf_data_idx = 0; rbuf_data_idx < routing_ptr; rbuf_data_idx++) { for (uint8_t device_idx = 0; device_idx < BUS_DEVICE_LIMIT; device_idx++) { if (GET_BIT_FROM_IDX(allocated, device_idx) && GET_BIT_FROM_IDX(routing_table[rbuf_data_idx], device_idx)) { device_dataflow(GET_ADDR_FROM_IDX(device_idx), SLAVE_RX_DATAPOINT, rbuf_data_idx); } } } /* Reset the routing pointer, since all data in buffer should have been routed */ routing_ptr = 0; return true; } bool decode_subscriptions_callback(pb_istream_t *istream, const pb_field_t *field, void **args) { _subscriptions subs; int *subs_idx = (int*)args; /* Check is storage is allocated; if not, allocate it */ if ((GET_BIT_FROM_IDX(allocated, *subs_idx)) == 0) { subs_info[*subs_idx] = (subscription_info_t*)malloc(sizeof(subscription_info_t)); SET_BIT_FROM_IDX(allocated, *subs_idx); subs_info[*subs_idx]->mod_idx = subs_info[*subs_idx]->entity_idx = subs_info[*subs_idx]->class_idx = subs_info[*subs_idx]->i2c_idx = 0; } if(!pb_decode(istream, _subscriptions_fields, &subs)) return false; /* Parse all fields if they're included */ if (subs.has_module_id) subs_info[*subs_idx]->module_ids[subs_info[*subs_idx]->mod_idx++] = subs.module_id; if (subs.has_entity_id) subs_info[*subs_idx]->entity_ids[subs_info[*subs_idx]->entity_idx++] = subs.entity_id; if (subs.has_module_class) subs_info[*subs_idx]->module_class[subs_info[*subs_idx]->class_idx++] = subs.module_class; if (subs.has_i2c_address) subs_info[*subs_idx]->i2c_address[subs_info[*subs_idx]->i2c_idx++] = subs.i2c_address; return true; } bool todo_hs_or_not_todo_hs(uint8_t i2c_addr) { uint8_t device_idx = GET_IDX_FROM_ADDR(i2c_addr); state_t device_curr_state = dev_sts[device_idx]; bool do_hs = false; switch(device_curr_state) { case NO_HS: case CONNECTED: case FAILED: case OFFLINE: do_hs = true; break; case REGISTERED: case NO_DATA: do_hs = false; break; } return do_hs; } state_t get_state_from_hs_status(uint16_t device_addr, hs_status_t hs_status) { state_t device_state = OFFLINE; switch(hs_status) { case IDLE: case HS_FAILED: device_state = OFFLINE; break; case HS_MDR_ACK: case HS_MDR_CTS: case HS_MDR_MDR: device_state = FAILED; break; case HS_REGISTERED: device_state = REGISTERED; break; } return device_state; } bool master_encode_MDR_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg) { if (!pb_encode_tag_for_field(ostream, field)) { return false; } return true; } bool encode_subscription_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg) { if(ostream!=NULL && field->tag == s2m_MDR_response_subscriptions_tag) { for (int x=0; x<2; x++) { _subscriptions subs; subs.module_id = x+10*x; subs.i2c_address = x+1; subs.has_entity_id=false; subs.has_module_class=false; subs.has_module_id=true; subs.has_i2c_address=true; if(!pb_encode_tag_for_field(ostream, field)){ printf("ERR1\n"); return false; } if(!pb_encode_submessage(ostream, _subscriptions_fields, &subs)){ printf("ERR2\n"); return false; } } } else{ return false; } return true; } bool encode_datapoint_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg) { if (ostream != NULL && field->tag == s2m_data_datapoints_tag) { for (int i = 0; i < 4; i++) { _datapoint datapoint = _datapoint_init_zero; datapoint.entity_id = 1; datapoint.data = 20.70+((float)i/100); if (!pb_encode_tag_for_field(ostream, field)) return false; if (!pb_encode_submessage(ostream, _datapoint_fields, &datapoint)) return false; } } else return false; return true; } bool decode_data_callback(pb_istream_t *istream, const pb_field_t *field, void **args) { _datapoint loc_datapoint = _datapoint_init_zero; _datapoint *datapoint = *args; if (!pb_decode(istream, _datapoint_fields, &loc_datapoint)) return false; datapoint[data_idx].data = datapoint[data_idx].entity_id = 0; datapoint[data_idx].entity_id = loc_datapoint.entity_id; datapoint[data_idx].data = loc_datapoint.data; if (loc_datapoint.has_channel_id) { datapoint[data_idx].has_channel_id = true; datapoint[data_idx].channel_id = loc_datapoint.channel_id; } if (loc_datapoint.has_unit_id) { datapoint[data_idx].has_unit_id = true; datapoint[data_idx].unit_id = loc_datapoint.unit_id; } if (loc_datapoint.has_timestamp) { datapoint[data_idx].has_timestamp = true; datapoint[data_idx].timestamp = loc_datapoint.timestamp; } data_idx++; return true; } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0xFF; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; /* hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_ENABLE; */ if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(led_GPIO_Port, led_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : led_Pin */ GPIO_InitStruct.Pin = led_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(led_GPIO_Port, &GPIO_InitStruct); } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while (1) { HAL_GPIO_TogglePin(led_GPIO_Port, led_Pin); HAL_Delay(1000); } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */