/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include #include #include "handshake.pb.h" #include "devices.h" #include "config.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ #define device_MDR s2m_MDR_response #define GET_IDX_FROM_ADDR(i2c_addr) i2c_addr-1 #define GET_BIT_FROM_IDX(a, b) a[b>>5]&(1<<(b%32)) #define SET_BIT_FROM_IDX(a, b) a[b>>5]|=(1<<(b%32)) #define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__))) #define I2C_ADDRESS 0x05 #define BUS_DEVICE_LIMIT 128 /* Macro to toggle between master and slave firmware */ #define MASTER /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c1; UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ device_info_t *device_info[BUS_DEVICE_LIMIT] = {NULL}; subscription_info_t* subs_info[BUS_DEVICE_LIMIT]; uint32_t allocated[4]={0}; /* uint8_t dev_sts[128] = {OFFLINE}; */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_USART1_UART_Init(void); /* USER CODE BEGIN PFP */ bool decode_subscriptions_callback(pb_istream_t *istream, const pb_field_t *field, void **args); int handshake(uint32_t i2c_addr); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ #ifdef TESTING_ENABLE #ifdef MASTER uint8_t reset_string[] = "\r\n\n==========MASTER RESET=========\r\n\n"; HAL_UART_Transmit(&huart1, reset_string, sizeof(reset_string), 100); #else uint8_t reset_string[] = "\r\n\n==========SLAVE RESET=========\r\n\n"; HAL_UART_Transmit(&huart1, reset_string, sizeof(reset_string), 100); #endif /* MASTER */ #endif /* TESTING_ENABLE */ for (int i=0; i < 0x10; i++) handshake(i); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = I2C_ADDRESS; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0xFF; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(led_GPIO_Port, led_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : led_Pin */ GPIO_InitStruct.Pin = led_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(led_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ int handshake(uint32_t i2c_addr) { /* Handshake variables */ uint8_t hs_sts = IDLE; uint8_t *MDR_req_buf, *MDR_ACK_buf, *MDR_CTS_buf, *MDR_buf; uint32_t AF_error_counter = 0; uint32_t dev_idx = GET_IDX_FROM_ADDR(i2c_addr); uint32_t MDR_len = 0; m2s_MDR_request MDR_req_message; s2m_MDR_req_ACK MDR_ACK; m2s_MDR_res_CTS MDR_CTS; s2m_MDR_response MDR_res_message; #if defined(TESTING_ENABLE) || defined(DEBUG_ENABLE) uint8_t debug_buf[128]; #endif #ifdef TESTING_ENABLE uint8_t term[] = "\r\n"; size_t MDR_req_size, MDR_CTS_size; #endif while (hs_sts != HS_FAILED && hs_sts != HS_REGISTERED) { switch (hs_sts) { case (IDLE): { MDR_req_buf = malloc(8); pb_ostream_t MDR_req_stream = pb_ostream_from_buffer(MDR_req_buf, 2); MDR_req_message.record_type = 7; /* Placeholder for default record type */ if(!pb_encode(&MDR_req_stream, m2s_MDR_request_fields, &MDR_req_message)) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __MDR_REQ_ENC_FAIL; __MDR_REQ_ENC_FAIL_END: __asm__("nop"); #endif } else { #ifdef TESTING_ENABLE MDR_req_size = MDR_req_stream.bytes_written; goto __HS_IDLE_TESTING; __HS_IDLE_TESTING_END: __asm__("nop"); #endif if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)MDR_req_buf, MDR_req_buf_len, 10000) != HAL_OK) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __HS_MDR_REQ_I2C_ERROR; __HS_MDR_REQ_I2C_ERROR_END: __asm__("nop"); #endif } else { hs_sts = HS_MDR_ACK; } free(MDR_req_buf); break; } } case (HS_MDR_ACK): { MDR_ACK_buf = malloc(8); AF_error_counter = 0; while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)MDR_ACK_buf, s2m_MDR_req_ACK_size, 100) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { hs_sts = HS_FAILED; } if (++AF_error_counter > 1500) { hs_sts = HS_FAILED; } if (hs_sts == HS_FAILED) { #ifdef DEBUG_ENABLE goto __HS_MDR_ACK_I2C_ERROR; __HS_MDR_ACK_I2C_ERROR_END: __asm__("nop"); #endif break; } } if (hs_sts != HS_FAILED) { pb_istream_t MDR_ACK_istream = pb_istream_from_buffer(MDR_ACK_buf, 2); if (!pb_decode(&MDR_ACK_istream, s2m_MDR_req_ACK_fields, &MDR_ACK)) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __MDR_ACK_DEC_ERROR; __MDR_ACK_DEC_ERROR_END: __asm__("nop"); #endif } else { MDR_len = MDR_ACK.MDR_res_length; hs_sts = HS_MDR_CTS; #ifdef TESTING_ENABLE goto __HS_MDR_ACK_TESTING; __HS_MDR_ACK_TESTING_END: __asm__("nop"); #endif } free(MDR_ACK_buf); } break; } case (HS_MDR_CTS): { MDR_CTS_buf = (uint8_t*)malloc(8); pb_ostream_t MDR_CTS_ostream = pb_ostream_from_buffer(MDR_CTS_buf, sizeof(MDR_CTS_buf)); MDR_CTS.timeout = 100; if (!pb_encode(&MDR_CTS_ostream, m2s_MDR_res_CTS_fields, &MDR_CTS)) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __MDR_CTS_ENC_ERROR; __MDR_CTS_ENC_ERROR_END: __asm__("nop"); #endif } else { #ifdef TESTING_ENABLE MDR_CTS_size = MDR_CTS_ostream.bytes_written; goto __HS_MDR_CTS_TESTING; __HS_MDR_CTS_TESTING_END: __asm__("nop"); #endif if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)MDR_CTS_buf, 2, 10000) != HAL_OK) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __HS_CTS_I2C_ERROR; __HS_CTS_I2C_ERROR_END: __asm__("nop"); #endif } else { hs_sts = HS_MDR_MDR; free(MDR_CTS_buf); } } break; } case (HS_MDR_MDR): { MDR_buf = (uint8_t*)malloc(MDR_len); AF_error_counter = 0; while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)MDR_buf, MDR_len, 1000) != HAL_OK) { if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) { hs_sts = HS_FAILED; #ifdef DEBUG_ENABLE goto __HS_MDR_I2C_ERROR; __HS_MDR_I2C_ERROR_END: __asm__("nop"); #endif break; } else if (++AF_error_counter > 1500) { hs_sts = HS_FAILED; break; } } if (hs_sts != HS_FAILED) { #ifdef TESTING_ENABLE goto __HS_MDR_MDR_TESTING; __HS_MDR_MDR_TESTING_END: __asm__("nop"); #endif MDR_res_message.subscriptions.funcs.decode = decode_subscriptions_callback; MDR_res_message.subscriptions.arg = (void*)dev_idx; pb_istream_t MDR_res_stream = pb_istream_from_buffer(MDR_buf, MDR_len); if (!pb_decode(&MDR_res_stream, s2m_MDR_response_fields, &MDR_res_message)) { #ifdef DEBUG_ENABLE goto __HS_MDR_DEC_ERROR; __HS_MDR_DEC_ERROR_END: __asm__("nop"); #endif } else { #ifdef TESTING_ENABLE goto __MDR_DEC_TESTING; __MDR_DEC_TESTING_END: __asm__("nop"); #endif hs_sts = HS_REGISTERED; } } break; } } } #ifdef TESTING_ENABLE { goto __TESTING_BLOCK_END; __HS_IDLE_TESTING: sprintf((char*)debug_buf, "MDR req length: %d\r\n", MDR_req_size); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); uint8_t bufbuf[] = "MDR req buffer: "; HAL_UART_Transmit(&huart1, bufbuf, sizeof(bufbuf), 100); for(int x=0; xmodule_ids[1]); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __MDR_DEC_TESTING_END; } __TESTING_BLOCK_END: __asm__("nop"); #endif #ifdef DEBUG_ENABLE { goto __DEBUG_BLOCK_END; __MDR_REQ_ENC_FAIL: sprintf((char*)debug_buf, "MDR reqest encoding error\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __MDR_REQ_ENC_FAIL_END; __HS_MDR_REQ_I2C_ERROR: sprintf((char*)debug_buf, "Unable to send MDR request. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1)); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_REQ_I2C_ERROR_END; __HS_MDR_ACK_I2C_ERROR: sprintf((char*)debug_buf, "Unable to get MDR ACK. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1)); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_ACK_I2C_ERROR_END; __MDR_ACK_DEC_ERROR: sprintf((char*)debug_buf, "MDR ACK decoding error\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __MDR_ACK_DEC_ERROR_END; __MDR_CTS_ENC_ERROR: sprintf((char*)debug_buf, "MDR encoding error\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __MDR_CTS_ENC_ERROR_END; __HS_CTS_I2C_ERROR: sprintf((char*)debug_buf, "Unable to send MDR CTS. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1)); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_CTS_I2C_ERROR_END; __HS_MDR_I2C_ERROR: sprintf((char*)debug_buf, "Unable to get MDR. I2C error: %ld\n\tError counter: %ld\r\n", HAL_I2C_GetError(&hi2c1), AF_error_counter); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_I2C_ERROR_END; } __HS_MDR_DEC_ERROR: sprintf((char*)debug_buf, "MDR decode error\r\n"); HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100); memset(debug_buf, 0, 128); goto __HS_MDR_DEC_ERROR_END; __DEBUG_BLOCK_END: __asm__("nop"); #endif return 1; } bool decode_subscriptions_callback(pb_istream_t *istream, const pb_field_t *field, void **args) { _subscriptions subs; int *subs_idx = (int*)args; /* Check is storage is allocated; if not, allocate it */ if ((GET_BIT_FROM_IDX(allocated, *subs_idx)) == 0) { subs_info[*subs_idx] = (subscription_info_t*)malloc(sizeof(subscription_info_t)); SET_BIT_FROM_IDX(allocated, *subs_idx); subs_info[*subs_idx]->mod_idx = subs_info[*subs_idx]->entity_idx = subs_info[*subs_idx]->class_idx = subs_info[*subs_idx]->i2c_idx = 0; } if(!pb_decode(istream, _subscriptions_fields, &subs)) return false; /* Parse all fields if they're included */ if (subs.has_module_id) subs_info[*subs_idx]->module_ids[subs_info[*subs_idx]->mod_idx++] = subs.module_id; if (subs.has_entity_id) subs_info[*subs_idx]->entity_ids[subs_info[*subs_idx]->entity_idx++] = subs.entity_id; if (subs.has_module_class) subs_info[*subs_idx]->module_class[subs_info[*subs_idx]->class_idx++] = subs.module_class; if (subs.has_i2c_address) subs_info[*subs_idx]->i2c_address[subs_info[*subs_idx]->i2c_idx++] = subs.i2c_address; return true; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while (1) { HAL_GPIO_TogglePin(led_GPIO_Port, led_Pin); HAL_Delay(1000); } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/