1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
(**************************************************************************)
(* Sail *)
(* *)
(* Copyright (c) 2013-2017 *)
(* Kathyrn Gray *)
(* Shaked Flur *)
(* Stephen Kell *)
(* Gabriel Kerneis *)
(* Robert Norton-Wright *)
(* Christopher Pulte *)
(* Peter Sewell *)
(* Alasdair Armstrong *)
(* Brian Campbell *)
(* Thomas Bauereiss *)
(* Anthony Fox *)
(* Jon French *)
(* Dominic Mulligan *)
(* Stephen Kell *)
(* Mark Wassell *)
(* *)
(* All rights reserved. *)
(* *)
(* This software was developed by the University of Cambridge Computer *)
(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in *)
(* the documentation and/or other materials provided with the *)
(* distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
(* SUCH DAMAGE. *)
(**************************************************************************)
module Big_int = Nat_big_num
open Ast
open Ast_util
open Util
let opt_smt_verbose = ref false
(* SMTLIB v2.0 format is based on S-expressions so we have a
lightweight representation of those here. *)
type sexpr = List of (sexpr list) | Atom of string
let sfun (fn : string) (xs : sexpr list) : sexpr = List (Atom fn :: xs)
let rec pp_sexpr : sexpr -> string = function
| List xs -> "(" ^ string_of_list " " pp_sexpr xs ^ ")"
| Atom x -> x
(** Each non-Type/Order kind in Sail mapes to a type in the SMT solver *)
let smt_type l = function
| K_int -> Atom "Int"
| K_bool -> Atom "Bool"
| _ -> raise (Reporting.err_unreachable l __POS__ "Tried to pass Type or Order kinded variable to SMT solver")
let to_smt l vars constr =
(* Numbering all SMT variables v0, ... vn, rather than generating
names based on their Sail names (e.g. using zencode) ensures that
alpha-equivalent constraints generate the same SMT problem, which
is important for the SMT memoisation to work properly. *)
let var_map = ref KBindings.empty in
let vnum = ref (-1) in
let smt_var v =
match KBindings.find_opt v !var_map with
| Some n -> Atom ("v" ^ string_of_int n)
| None ->
let n = !vnum + 1 in
var_map := KBindings.add v n !var_map;
vnum := n;
Atom ("v" ^ string_of_int n)
in
(* var_decs outputs the list of variables to be used by the SMT
solver in SMTLIB v2.0 format. It takes a kind_aux KBindings, as
returned by Type_check.get_typ_vars *)
let var_decs l (vars : kind_aux KBindings.t) : string =
vars
|> KBindings.bindings
|> List.map (fun (v, k) -> sfun "declare-const" [smt_var v; smt_type l k])
|> string_of_list "\n" pp_sexpr
in
let rec smt_nexp (Nexp_aux (aux, l) : nexp) : sexpr =
match aux with
| Nexp_id id -> Atom (Util.zencode_string (string_of_id id))
| Nexp_var v -> smt_var v
| Nexp_constant c -> Atom (Big_int.to_string c)
| Nexp_app (id, nexps) -> sfun (string_of_id id) (List.map smt_nexp nexps)
| Nexp_times (nexp1, nexp2) -> sfun "*" [smt_nexp nexp1; smt_nexp nexp2]
| Nexp_sum (nexp1, nexp2) -> sfun "+" [smt_nexp nexp1; smt_nexp nexp2]
| Nexp_minus (nexp1, nexp2) -> sfun "-" [smt_nexp nexp1; smt_nexp nexp2]
| Nexp_exp (Nexp_aux (Nexp_constant c, _)) when Big_int.greater c Big_int.zero ->
Atom (Big_int.to_string (Big_int.pow_int_positive 2 (Big_int.to_int c)))
| Nexp_exp nexp -> sfun "^" [Atom "2"; smt_nexp nexp]
| Nexp_neg nexp -> sfun "-" [smt_nexp nexp]
in
let rec smt_constraint (NC_aux (aux, l) : n_constraint) : sexpr =
match aux with
| NC_equal (nexp1, nexp2) -> sfun "=" [smt_nexp nexp1; smt_nexp nexp2]
| NC_bounded_le (nexp1, nexp2) -> sfun "<=" [smt_nexp nexp1; smt_nexp nexp2]
| NC_bounded_ge (nexp1, nexp2) -> sfun ">=" [smt_nexp nexp1; smt_nexp nexp2]
| NC_not_equal (nexp1, nexp2) -> sfun "not" [sfun "=" [smt_nexp nexp1; smt_nexp nexp2]]
| NC_set (v, ints) ->
sfun "or" (List.map (fun i -> sfun "=" [smt_var v; Atom (Big_int.to_string i)]) ints)
| NC_or (nc1, nc2) -> sfun "or" [smt_constraint nc1; smt_constraint nc2]
| NC_and (nc1, nc2) -> sfun "and" [smt_constraint nc1; smt_constraint nc2]
| NC_app (id, args) ->
sfun (string_of_id id) (List.map smt_typ_arg args)
| NC_true -> Atom "true"
| NC_false -> Atom "false"
| NC_var v -> smt_var v
and smt_typ_arg (A_aux (aux, l) : typ_arg) : sexpr =
match aux with
| A_nexp nexp -> smt_nexp nexp
| A_bool nc -> smt_constraint nc
| _ ->
raise (Reporting.err_unreachable l __POS__ "Tried to pass Type or Order kind to SMT function")
in
var_decs l vars, smt_constraint constr, smt_var
let smtlib_of_constraints ?get_model:(get_model=false) l vars constr : string * (kid -> sexpr) =
let variables, problem, var_map = to_smt l vars constr in
"(push)\n"
^ variables ^ "\n"
^ pp_sexpr (sfun "define-fun" [Atom "constraint"; List []; Atom "Bool"; problem])
^ "\n(assert constraint)\n(check-sat)"
^ (if get_model then "\n(get-model)" else "")
^ "\n(pop)",
var_map
type smt_result = Unknown | Sat | Unsat
module DigestMap = Map.Make(Digest)
let known_problems = ref (DigestMap.empty)
let load_digests_err () =
let in_chan = open_in_bin "z3_problems" in
let rec load () =
let digest = Digest.input in_chan in
let result = input_byte in_chan in
begin
match result with
| 0 -> known_problems := DigestMap.add digest Unknown !known_problems
| 1 -> known_problems := DigestMap.add digest Sat !known_problems
| 2 -> known_problems := DigestMap.add digest Unsat !known_problems
| _ -> assert false
end;
load ()
in
try load () with
| End_of_file -> close_in in_chan
let load_digests () =
try load_digests_err () with
| Sys_error _ -> ()
let save_digests () =
let out_chan = open_out_bin "z3_problems" in
let output digest result =
Digest.output out_chan digest;
match result with
| Unknown -> output_byte out_chan 0
| Sat -> output_byte out_chan 1
| Unsat -> output_byte out_chan 2
in
DigestMap.iter output !known_problems;
close_out out_chan
let call_z3' l vars constraints : smt_result =
let problems = [constraints] in
let z3_file, _ = smtlib_of_constraints l vars constraints in
if !opt_smt_verbose then
prerr_endline (Printf.sprintf "SMTLIB2 constraints are: \n%s%!" z3_file)
else ();
let rec input_lines chan = function
| 0 -> []
| n ->
begin
let l = input_line chan in
let ls = input_lines chan (n - 1) in
l :: ls
end
in
let digest = Digest.string z3_file in
try
let result = DigestMap.find digest !known_problems in
result
with
| Not_found ->
begin
let (input_file, tmp_chan) =
try Filename.open_temp_file "constraint_" ".sat" with
| Sys_error msg -> raise (Reporting.err_general l ("Could not open temp file when calling Z3: " ^ msg))
in
output_string tmp_chan z3_file;
close_out tmp_chan;
let z3_output =
try
let z3_chan = Unix.open_process_in ("z3 -t:1000 -T:10 " ^ input_file) in
let z3_output = List.combine problems (input_lines z3_chan (List.length problems)) in
let _ = Unix.close_process_in z3_chan in
z3_output
with
| exn -> raise (Reporting.err_general l ("Error when calling z3: " ^ Printexc.to_string exn))
in
Sys.remove input_file;
try
let (problem, _) = List.find (fun (_, result) -> result = "unsat") z3_output in
known_problems := DigestMap.add digest Unsat !known_problems;
Unsat
with
| Not_found ->
let unsolved = List.filter (fun (_, result) -> result = "unknown") z3_output in
if unsolved == []
then (known_problems := DigestMap.add digest Sat !known_problems; Sat)
else (known_problems := DigestMap.add digest Unknown !known_problems; Unknown)
end
let call_z3 l vars constraints =
let t = Profile.start_z3 () in
let result = call_z3' l vars constraints in
Profile.finish_z3 t;
result
let rec solve_z3 l vars constraints var =
let z3_file, smt_var = smtlib_of_constraints ~get_model:true l vars constraints in
let z3_var = pp_sexpr (smt_var var) in
(* prerr_endline (Printf.sprintf "SMTLIB2 constraints are: \n%s%!" z3_file);
prerr_endline ("Solving for " ^ z3_var); *)
let rec input_all chan =
try
let l = input_line chan in
let ls = input_all chan in
l :: ls
with
End_of_file -> []
in
let (input_file, tmp_chan) = Filename.open_temp_file "constraint_" ".sat" in
output_string tmp_chan z3_file;
close_out tmp_chan;
let z3_output =
try
let z3_chan = Unix.open_process_in ("z3 -t:1000 -T:10 " ^ input_file) in
let z3_output = String.concat " " (input_all z3_chan) in
let _ = Unix.close_process_in z3_chan in
z3_output
with
| exn ->
raise (Reporting.err_general l ("Got error when calling z3: " ^ Printexc.to_string exn))
in
Sys.remove input_file;
let regexp = {|(define-fun |} ^ z3_var ^ {| () Int[ ]+\([0-9]+\))|} in
try
let _ = Str.search_forward (Str.regexp regexp) z3_output 0 in
let result = Big_int.of_string (Str.matched_group 1 z3_output) in
begin match call_z3 l vars (nc_and constraints (nc_neq (nconstant result) (nvar var))) with
| Unsat -> Some result
| _ -> None
end
with
Not_found -> None
|