summaryrefslogtreecommitdiff
path: root/src/c_backend.ml
blob: a1050972e9ca38a4a7be81a0733002648c5d533c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
(**************************************************************************)
(*     Sail                                                               *)
(*                                                                        *)
(*  Copyright (c) 2013-2017                                               *)
(*    Kathyrn Gray                                                        *)
(*    Shaked Flur                                                         *)
(*    Stephen Kell                                                        *)
(*    Gabriel Kerneis                                                     *)
(*    Robert Norton-Wright                                                *)
(*    Christopher Pulte                                                   *)
(*    Peter Sewell                                                        *)
(*    Alasdair Armstrong                                                  *)
(*    Brian Campbell                                                      *)
(*    Thomas Bauereiss                                                    *)
(*    Anthony Fox                                                         *)
(*    Jon French                                                          *)
(*    Dominic Mulligan                                                    *)
(*    Stephen Kell                                                        *)
(*    Mark Wassell                                                        *)
(*                                                                        *)
(*  All rights reserved.                                                  *)
(*                                                                        *)
(*  This software was developed by the University of Cambridge Computer   *)
(*  Laboratory as part of the Rigorous Engineering of Mainstream Systems  *)
(*  (REMS) project, funded by EPSRC grant EP/K008528/1.                   *)
(*                                                                        *)
(*  Redistribution and use in source and binary forms, with or without    *)
(*  modification, are permitted provided that the following conditions    *)
(*  are met:                                                              *)
(*  1. Redistributions of source code must retain the above copyright     *)
(*     notice, this list of conditions and the following disclaimer.      *)
(*  2. Redistributions in binary form must reproduce the above copyright  *)
(*     notice, this list of conditions and the following disclaimer in    *)
(*     the documentation and/or other materials provided with the         *)
(*     distribution.                                                      *)
(*                                                                        *)
(*  THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''    *)
(*  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED     *)
(*  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A       *)
(*  PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR   *)
(*  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,          *)
(*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT      *)
(*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF      *)
(*  USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND   *)
(*  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,    *)
(*  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT    *)
(*  OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF    *)
(*  SUCH DAMAGE.                                                          *)
(**************************************************************************)

open Ast
open Ast_util
open Bytecode
open Bytecode_util
open Type_check
open PPrint
open Value2

open Anf

module Big_int = Nat_big_num

let c_verbosity = ref 0
let opt_debug_flow_graphs = ref false
let opt_debug_function = ref ""
let opt_trace = ref false
let opt_smt_trace = ref false
let opt_static = ref false
let opt_no_main = ref false
let opt_memo_cache = ref false

(* Optimization flags *)
let optimize_primops = ref false
let optimize_hoist_allocations = ref false
let optimize_struct_updates = ref false
let optimize_alias = ref false
let optimize_experimental = ref false

let c_debug str =
  if !c_verbosity > 0 then prerr_endline (Lazy.force str) else ()

let c_error ?loc:(l=Parse_ast.Unknown) message =
  raise (Reporting.err_general l ("\nC backend: " ^ message))

let zencode_id = function
  | Id_aux (Id str, l) -> Id_aux (Id (Util.zencode_string str), l)
  | Id_aux (DeIid str, l) -> Id_aux (Id (Util.zencode_string ("op " ^ str)), l)

(**************************************************************************)
(* 2. Converting sail types to C types                                    *)
(**************************************************************************)

let max_int64 = Big_int.of_int64 Int64.max_int
let min_int64 = Big_int.of_int64 Int64.min_int

(** The context type contains two type-checking
   environments. ctx.local_env contains the closest typechecking
   environment, usually from the expression we are compiling, whereas
   ctx.tc_env is the global type checking environment from
   type-checking the entire AST. We also keep track of local variables
   in ctx.locals, so we know when their type changes due to flow
   typing. *)
type ctx =
  { records : (ctyp Bindings.t) Bindings.t;
    enums : IdSet.t Bindings.t;
    variants : (ctyp Bindings.t) Bindings.t;
    tc_env : Env.t;
    local_env : Env.t;
    locals : (mut * ctyp) Bindings.t;
    letbinds : int list;
    recursive_functions : IdSet.t;
    no_raw : bool;
    optimize_z3 : bool;
  }

let initial_ctx env =
  { records = Bindings.empty;
    enums = Bindings.empty;
    variants = Bindings.empty;
    tc_env = env;
    local_env = env;
    locals = Bindings.empty;
    letbinds = [];
    recursive_functions = IdSet.empty;
    no_raw = false;
    optimize_z3 = true;
  }

(** Convert a sail type into a C-type. This function can be quite
   slow, because it uses ctx.local_env and Z3 to analyse the Sail
   types and attempts to fit them into the smallest possible C
   types, provided ctx.optimize_z3 is true (default) **)
let rec ctyp_of_typ ctx typ =
  let Typ_aux (typ_aux, l) as typ = Env.expand_synonyms ctx.tc_env typ in
  match typ_aux with
  | Typ_id id when string_of_id id = "bit"    -> CT_bit
  | Typ_id id when string_of_id id = "bool"   -> CT_bool
  | Typ_id id when string_of_id id = "int"    -> CT_int
  | Typ_id id when string_of_id id = "nat"    -> CT_int
  | Typ_id id when string_of_id id = "unit"   -> CT_unit
  | Typ_id id when string_of_id id = "string" -> CT_string
  | Typ_id id when string_of_id id = "real"   -> CT_real

  | Typ_app (id, _) when string_of_id id = "atom_bool" -> CT_bool

  | Typ_app (id, _) when string_of_id id = "range" || string_of_id id = "atom" || string_of_id id = "implicit" ->
     begin match destruct_range Env.empty typ with
     | None -> assert false (* Checked if range type in guard *)
     | Some (kids, constr, n, m) ->
        match nexp_simp n, nexp_simp m with
        | Nexp_aux (Nexp_constant n, _), Nexp_aux (Nexp_constant m, _)
             when Big_int.less_equal min_int64 n && Big_int.less_equal m max_int64 ->
           CT_int64
        | n, m when ctx.optimize_z3 ->
           if prove __POS__ ctx.local_env (nc_lteq (nconstant min_int64) n) && prove __POS__ ctx.local_env (nc_lteq m (nconstant max_int64)) then
             CT_int64
           else
             CT_int
        | _ -> CT_int
     end

  | Typ_app (id, [A_aux (A_typ typ, _)]) when string_of_id id = "list" ->
     CT_list (ctyp_of_typ ctx typ)

  (* When converting a sail bitvector type into C, we have three options in order of efficiency:
     - If the length is obviously static and smaller than 64, use the fixed bits type (aka uint64_t), fbits.
     - If the length is less than 64, then use a small bits type, sbits.
     - If the length may be larger than 64, use a large bits type lbits. *)
  | Typ_app (id, [A_aux (A_nexp n, _);
                  A_aux (A_order ord, _);
                  A_aux (A_typ (Typ_aux (Typ_id vtyp_id, _)), _)])
       when string_of_id id = "vector" && string_of_id vtyp_id = "bit" ->
     let direction = match ord with Ord_aux (Ord_dec, _) -> true | Ord_aux (Ord_inc, _) -> false | _ -> assert false in
     begin match nexp_simp n with
     | Nexp_aux (Nexp_constant n, _) when Big_int.less_equal n (Big_int.of_int 64) -> CT_fbits (Big_int.to_int n, direction)
     | n when ctx.optimize_z3 && prove __POS__ ctx.local_env (nc_lteq n (nint 64)) -> CT_sbits direction
     | _ -> CT_lbits direction
     end

  | Typ_app (id, [A_aux (A_nexp n, _);
                  A_aux (A_order ord, _);
                  A_aux (A_typ typ, _)])
       when string_of_id id = "vector" ->
     let direction = match ord with Ord_aux (Ord_dec, _) -> true | Ord_aux (Ord_inc, _) -> false | _ -> assert false in
     CT_vector (direction, ctyp_of_typ ctx typ)

  | Typ_app (id, [A_aux (A_typ typ, _)]) when string_of_id id = "register" ->
     CT_ref (ctyp_of_typ ctx typ)

  | Typ_id id | Typ_app (id, _) when Bindings.mem id ctx.records  -> CT_struct (id, Bindings.find id ctx.records |> Bindings.bindings)
  | Typ_id id | Typ_app (id, _) when Bindings.mem id ctx.variants -> CT_variant (id, Bindings.find id ctx.variants |> Bindings.bindings)
  | Typ_id id when Bindings.mem id ctx.enums -> CT_enum (id, Bindings.find id ctx.enums |> IdSet.elements)

  | Typ_tup typs -> CT_tup (List.map (ctyp_of_typ ctx) typs)

  | Typ_exist _ when ctx.optimize_z3 ->
     (* Use Type_check.destruct_exist when optimising with z3, to
        ensure that we don't cause any type variable clashes in
        local_env, and that we can optimize the existential based upon
        it's constraints. *)
     begin match destruct_exist (Env.expand_synonyms ctx.local_env typ) with
     | Some (kids, nc, typ) ->
        let env = add_existential l kids nc ctx.local_env in
        ctyp_of_typ { ctx with local_env = env } typ
     | None -> raise (Reporting.err_unreachable l __POS__ "Existential cannot be destructured!")
     end

  | Typ_exist (_, _, typ) -> ctyp_of_typ ctx typ

  | Typ_var kid -> CT_poly

  | _ -> c_error ~loc:l ("No C type for type " ^ string_of_typ typ)

let rec is_stack_ctyp ctyp = match ctyp with
  | CT_fbits _ | CT_sbits _ | CT_int64 | CT_bit | CT_unit | CT_bool | CT_enum _ -> true
  | CT_lbits _ | CT_int | CT_real | CT_string | CT_list _ | CT_vector _ -> false
  | CT_struct (_, fields) -> List.for_all (fun (_, ctyp) -> is_stack_ctyp ctyp) fields
  | CT_variant (_, ctors) -> false (* List.for_all (fun (_, ctyp) -> is_stack_ctyp ctyp) ctors *) (* FIXME *)
  | CT_tup ctyps -> List.for_all is_stack_ctyp ctyps
  | CT_ref ctyp -> true
  | CT_poly -> true

let is_stack_typ ctx typ = is_stack_ctyp (ctyp_of_typ ctx typ)

let is_fbits_typ ctx typ =
  match ctyp_of_typ ctx typ with
  | CT_fbits _ -> true
  | _ -> false

let is_sbits_typ ctx typ =
  match ctyp_of_typ ctx typ with
  | CT_sbits _ -> true
  | _ -> false

let ctor_bindings = List.fold_left (fun map (id, ctyp) -> Bindings.add id ctyp map) Bindings.empty

(**************************************************************************)
(* 3. Optimization of primitives and literals                             *)
(**************************************************************************)

let hex_char =
  let open Sail2_values in
  function
  | '0' -> [B0; B0; B0; B0]
  | '1' -> [B0; B0; B0; B1]
  | '2' -> [B0; B0; B1; B0]
  | '3' -> [B0; B0; B1; B1]
  | '4' -> [B0; B1; B0; B0]
  | '5' -> [B0; B1; B0; B1]
  | '6' -> [B0; B1; B1; B0]
  | '7' -> [B0; B1; B1; B1]
  | '8' -> [B1; B0; B0; B0]
  | '9' -> [B1; B0; B0; B1]
  | 'A' | 'a' -> [B1; B0; B1; B0]
  | 'B' | 'b' -> [B1; B0; B1; B1]
  | 'C' | 'c' -> [B1; B1; B0; B0]
  | 'D' | 'd' -> [B1; B1; B0; B1]
  | 'E' | 'e' -> [B1; B1; B1; B0]
  | 'F' | 'f' -> [B1; B1; B1; B1]
  | _ -> failwith "Invalid hex character"

let literal_to_fragment (L_aux (l_aux, _) as lit) =
  match l_aux with
  | L_num n when Big_int.less_equal min_int64 n && Big_int.less_equal n max_int64 ->
     Some (F_lit (V_int n), CT_int64)
  | L_hex str when String.length str <= 16 ->
     let padding = 16 - String.length str in
     let padding = Util.list_init padding (fun _ -> Sail2_values.B0) in
     let content = Util.string_to_list str |> List.map hex_char |> List.concat in
     Some (F_lit (V_bits (padding @ content)), CT_fbits (String.length str * 4, true))
  | L_unit -> Some (F_lit V_unit, CT_unit)
  | L_true -> Some (F_lit (V_bool true), CT_bool)
  | L_false -> Some (F_lit (V_bool false), CT_bool)
  | _ -> None

let c_literals ctx =
  let rec c_literal env l = function
    | AV_lit (lit, typ) as v when is_stack_ctyp (ctyp_of_typ { ctx with local_env = env } typ) ->
       begin
         match literal_to_fragment lit with
         | Some (frag, ctyp) -> AV_C_fragment (frag, typ, ctyp)
         | None -> v
       end
    | AV_tuple avals -> AV_tuple (List.map (c_literal env l) avals)
    | v -> v
  in
  map_aval c_literal

let mask m =
  if Big_int.less_equal m (Big_int.of_int 64) then
    let n = Big_int.to_int m in
    if n = 0 then
      "UINT64_C(0)"
    else if n mod 4 = 0 then
      "UINT64_C(0x" ^ String.make (16 - n / 4) '0' ^ String.make (n / 4) 'F' ^ ")"
    else
      "UINT64_C(" ^ String.make (64 - n) '0' ^ String.make n '1' ^ ")"
  else
    failwith "Tried to create a mask literal for a vector greater than 64 bits."

let rec is_bitvector = function
  | [] -> true
  | AV_lit (L_aux (L_zero, _), _) :: avals -> is_bitvector avals
  | AV_lit (L_aux (L_one, _), _) :: avals -> is_bitvector avals
  | _ :: _ -> false

let rec value_of_aval_bit = function
  | AV_lit (L_aux (L_zero, _), _) -> Sail2_values.B0
  | AV_lit (L_aux (L_one, _), _) -> Sail2_values.B1
  | _ -> assert false

let rec c_aval ctx = function
  | AV_lit (lit, typ) as v ->
     begin
       match literal_to_fragment lit with
       | Some (frag, ctyp) -> AV_C_fragment (frag, typ, ctyp)
       | None -> v
     end
  | AV_C_fragment (str, typ, ctyp) -> AV_C_fragment (str, typ, ctyp)
  (* An id can be converted to a C fragment if it's type can be
     stack-allocated. *)
  | AV_id (id, lvar) as v ->
     begin
       match lvar with
       | Local (_, typ) ->
          let ctyp = ctyp_of_typ ctx typ in
          if is_stack_ctyp ctyp then
            begin
              try
                (* We need to check that id's type hasn't changed due to flow typing *)
                let _, ctyp' = Bindings.find id ctx.locals in
                if ctyp_equal ctyp ctyp' then
                  AV_C_fragment (F_id id, typ, ctyp)
                else
                  (* id's type changed due to flow
                     typing, so it's really still heap allocated!  *)
                  v
              with
                (* Hack: Assuming global letbindings don't change from flow typing... *)
                Not_found -> AV_C_fragment (F_id id, typ, ctyp)
            end
          else
            v
       | Register (_, _, typ) when is_stack_typ ctx typ ->
          let ctyp = ctyp_of_typ ctx typ in
          if is_stack_ctyp ctyp then
            AV_C_fragment (F_id id, typ, ctyp)
          else
            v
       | _ -> v
     end
  | AV_vector (v, typ) when is_bitvector v && List.length v <= 64 ->
     let bitstring = F_lit (V_bits (List.map value_of_aval_bit v)) in
     AV_C_fragment (bitstring, typ, CT_fbits (List.length v, true))
  | AV_tuple avals -> AV_tuple (List.map (c_aval ctx) avals)
  | aval -> aval

let is_c_fragment = function
  | AV_C_fragment _ -> true
  | _ -> false

let c_fragment = function
  | AV_C_fragment (frag, _, _) -> frag
  | _ -> assert false

let v_mask_lower i = F_lit (V_bits (Util.list_init i (fun _ -> Sail2_values.B1)))

(* Map over all the functions in an aexp. *)
let rec analyze_functions ctx f (AE_aux (aexp, env, l)) =
  let ctx = { ctx with local_env = env } in
  let aexp = match aexp with
    | AE_app (id, vs, typ) -> f ctx id vs typ

    | AE_cast (aexp, typ) -> AE_cast (analyze_functions ctx f aexp, typ)

    | AE_assign (id, typ, aexp) -> AE_assign (id, typ, analyze_functions ctx f aexp)

    | AE_short_circuit (op, aval, aexp) -> AE_short_circuit (op, aval, analyze_functions ctx f aexp)

    | AE_let (mut, id, typ1, aexp1, (AE_aux (_, env2, _) as aexp2), typ2) ->
       let aexp1 = analyze_functions ctx f aexp1 in
       (* Use aexp2's environment because it will contain constraints for id *)
       let ctyp1 = ctyp_of_typ { ctx with local_env = env2 } typ1 in
       let ctx = { ctx with locals = Bindings.add id (mut, ctyp1) ctx.locals } in
       AE_let (mut, id, typ1, aexp1, analyze_functions ctx f aexp2, typ2)

    | AE_block (aexps, aexp, typ) -> AE_block (List.map (analyze_functions ctx f) aexps, analyze_functions ctx f aexp, typ)

    | AE_if (aval, aexp1, aexp2, typ) ->
       AE_if (aval, analyze_functions ctx f aexp1, analyze_functions ctx f aexp2, typ)

    | AE_loop (loop_typ, aexp1, aexp2) -> AE_loop (loop_typ, analyze_functions ctx f aexp1, analyze_functions ctx f aexp2)

    | AE_for (id, aexp1, aexp2, aexp3, order, aexp4) ->
       let aexp1 = analyze_functions ctx f aexp1 in
       let aexp2 = analyze_functions ctx f aexp2 in
       let aexp3 = analyze_functions ctx f aexp3 in
       let aexp4 = analyze_functions ctx f aexp4 in
       (* Currently we assume that loop indexes are always safe to put into an int64 *)
       let ctx = { ctx with locals = Bindings.add id (Immutable, CT_int64) ctx.locals } in
       AE_for (id, aexp1, aexp2, aexp3, order, aexp4)

    | AE_case (aval, cases, typ) ->
       let analyze_case (AP_aux (_, env, _) as pat, aexp1, aexp2) =
         let pat_bindings = Bindings.bindings (apat_types pat) in
         let ctx = { ctx with local_env = env } in
         let ctx =
           List.fold_left (fun ctx (id, typ) -> { ctx with locals = Bindings.add id (Immutable, ctyp_of_typ ctx typ) ctx.locals }) ctx pat_bindings
         in
         pat, analyze_functions ctx f aexp1, analyze_functions ctx f aexp2
       in
       AE_case (aval, List.map analyze_case cases, typ)

    | AE_try (aexp, cases, typ) ->
       AE_try (analyze_functions ctx f aexp, List.map (fun (pat, aexp1, aexp2) -> pat, analyze_functions ctx f aexp1, analyze_functions ctx f aexp2) cases, typ)

    | AE_field _ | AE_record_update _ | AE_val _ | AE_return _ | AE_throw _ as v -> v
  in
  AE_aux (aexp, env, l)

let analyze_primop' ctx id args typ =
  let no_change = AE_app (id, args, typ) in
  let args = List.map (c_aval ctx) args in
  let extern = if Env.is_extern id ctx.tc_env "c" then Env.get_extern id ctx.tc_env "c" else failwith "Not extern" in

  let v_one = F_lit (V_int (Big_int.of_int 1)) in
  let v_int n = F_lit (V_int (Big_int.of_int n)) in

  c_debug (lazy ("Analyzing primop " ^ extern ^ "(" ^ Util.string_of_list ", " (fun aval -> Pretty_print_sail.to_string (pp_aval aval)) args ^ ")"));

  match extern, args with
  | "eq_bits", [AV_C_fragment (v1, _, CT_fbits _); AV_C_fragment (v2, _, _)] ->
     AE_val (AV_C_fragment (F_op (v1, "==", v2), typ, CT_bool))
  | "eq_bits", [AV_C_fragment (v1, _, CT_sbits _); AV_C_fragment (v2, _, _)] ->
     AE_val (AV_C_fragment (F_call ("eq_sbits", [v1; v2]), typ, CT_bool))

  | "neq_bits", [AV_C_fragment (v1, _, CT_fbits _); AV_C_fragment (v2, _, _)] ->
     AE_val (AV_C_fragment (F_op (v1, "!=", v2), typ, CT_bool))
  | "neq_bits", [AV_C_fragment (v1, _, CT_sbits _); AV_C_fragment (v2, _, _)] ->
     AE_val (AV_C_fragment (F_call ("neq_sbits", [v1; v2]), typ, CT_bool))

  | "eq_int", [AV_C_fragment (v1, typ1, _); AV_C_fragment (v2, typ2, _)] ->
     AE_val (AV_C_fragment (F_op (v1, "==", v2), typ, CT_bool))

  | "zeros", [_] ->
     begin match destruct_vector ctx.tc_env typ with
     | Some (Nexp_aux (Nexp_constant n, _), _, Typ_aux (Typ_id id, _))
          when string_of_id id = "bit" && Big_int.less_equal n (Big_int.of_int 64) ->
        AE_val (AV_C_fragment (F_raw "0x0", typ, CT_fbits (Big_int.to_int n, true)))
     | _ -> no_change
     end

  | "gteq", [AV_C_fragment (v1, _, _); AV_C_fragment (v2, _, _)] ->
     AE_val (AV_C_fragment (F_op (v1, ">=", v2), typ, CT_bool))

  | "xor_bits", [AV_C_fragment (v1, _, (CT_fbits _ as ctyp)); AV_C_fragment (v2, _, CT_fbits _)] ->
     AE_val (AV_C_fragment (F_op (v1, "^", v2), typ, ctyp))
  | "xor_bits", [AV_C_fragment (v1, _, (CT_sbits _ as ctyp)); AV_C_fragment (v2, _, CT_sbits _)] ->
     AE_val (AV_C_fragment (F_call ("xor_sbits", [v1; v2]), typ, ctyp))

  | "or_bits", [AV_C_fragment (v1, _, (CT_fbits _ as ctyp)); AV_C_fragment (v2, _, CT_fbits _)] ->
     AE_val (AV_C_fragment (F_op (v1, "|", v2), typ, ctyp))

  | "and_bits", [AV_C_fragment (v1, _, (CT_fbits _ as ctyp)); AV_C_fragment (v2, _, CT_fbits _)] ->
     AE_val (AV_C_fragment (F_op (v1, "&", v2), typ, ctyp))

  | "not_bits", [AV_C_fragment (v, _, ctyp)] ->
     begin match destruct_vector ctx.tc_env typ with
     | Some (Nexp_aux (Nexp_constant n, _), _, Typ_aux (Typ_id id, _))
          when string_of_id id = "bit" && Big_int.less_equal n (Big_int.of_int 64) ->
        AE_val (AV_C_fragment (F_op (F_unary ("~", v), "&", v_mask_lower (Big_int.to_int n)), typ, ctyp))
     | _ -> no_change
     end

  | "vector_subrange", [AV_C_fragment (vec, _, CT_fbits _); AV_C_fragment (f, _, _); AV_C_fragment (t, _, _)]
       when is_fbits_typ ctx typ ->
     let len = F_op (f, "-", F_op (t, "-", v_one)) in
     AE_val (AV_C_fragment (F_op (F_call ("safe_rshift", [F_raw "UINT64_MAX"; F_op (v_int 64, "-", len)]), "&", F_op (vec, ">>", t)),
                            typ,
                            ctyp_of_typ ctx typ))

  | "vector_access", [AV_C_fragment (vec, _, CT_fbits _); AV_C_fragment (n, _, _)] ->
     AE_val (AV_C_fragment (F_op (v_one, "&", F_op (vec, ">>", n)), typ, CT_bit))

  | "eq_bit", [AV_C_fragment (a, _, _); AV_C_fragment (b, _, _)] ->
     AE_val (AV_C_fragment (F_op (a, "==", b), typ, CT_bool))

  | "slice", [AV_C_fragment (vec, _, CT_fbits _); AV_C_fragment (start, _, _); AV_C_fragment (len, _, _)]
       when is_fbits_typ ctx typ ->
     AE_val (AV_C_fragment (F_op (F_call ("safe_rshift", [F_raw "UINT64_MAX"; F_op (v_int 64, "-", len)]), "&", F_op (vec, ">>", start)),
                            typ,
                            ctyp_of_typ ctx typ))

  | "slice", [AV_C_fragment (vec, _, CT_fbits _); AV_C_fragment (start, _, _); AV_C_fragment (len, _, _)]
       when is_sbits_typ ctx typ ->
     AE_val (AV_C_fragment (F_call ("sslice", [vec; start; len]), typ, ctyp_of_typ ctx typ))

  | "undefined_bit", _ ->
     AE_val (AV_C_fragment (F_lit (V_bit Sail2_values.B0), typ, CT_bit))

  (* Optimized routines for all combinations of fixed and small bits
     appends, where the result is guaranteed to be smaller than 64. *)
  | "append", [AV_C_fragment (vec1, _, CT_fbits (0, ord1)); AV_C_fragment (vec2, _, CT_fbits (n2, ord2)) as v2]
       when ord1 = ord2 ->
     AE_val v2
  | "append", [AV_C_fragment (vec1, _, CT_fbits (n1, ord1)); AV_C_fragment (vec2, _, CT_fbits (n2, ord2))]
       when ord1 = ord2 && n1 + n2 <= 64 ->
     AE_val (AV_C_fragment (F_op (F_op (vec1, "<<", v_int n2), "|", vec2), typ, CT_fbits (n1 + n2, ord1)))

  | "append", [AV_C_fragment (vec1, _, CT_sbits ord1); AV_C_fragment (vec2, _, CT_fbits (n2, ord2))]
       when ord1 = ord2 && is_sbits_typ ctx typ ->
     AE_val (AV_C_fragment (F_call ("append_sf", [vec1; vec2; v_int n2]), typ, ctyp_of_typ ctx typ))

  | "append", [AV_C_fragment (vec1, _, CT_fbits (n1, ord1)); AV_C_fragment (vec2, _, CT_sbits ord2)]
       when ord1 = ord2 && is_sbits_typ ctx typ ->
     AE_val (AV_C_fragment (F_call ("append_fs", [vec1; v_int n1; vec2]), typ, ctyp_of_typ ctx typ))

  | "append", [AV_C_fragment (vec1, _, CT_sbits ord1); AV_C_fragment (vec2, _, CT_sbits ord2)]
       when ord1 = ord2 && is_sbits_typ ctx typ ->
     AE_val (AV_C_fragment (F_call ("append_ss", [vec1; vec2]), typ, ctyp_of_typ ctx typ))

  | "undefined_vector", [AV_C_fragment (len, _, _); _] ->
     begin match destruct_vector ctx.tc_env typ with
     | Some (Nexp_aux (Nexp_constant n, _), _, Typ_aux (Typ_id id, _))
          when string_of_id id = "bit" && Big_int.less_equal n (Big_int.of_int 64) ->
       AE_val (AV_C_fragment (F_lit (V_bit Sail2_values.B0), typ, ctyp_of_typ ctx typ))
     | _ -> no_change
     end

  | "sail_unsigned", [AV_C_fragment (frag, vtyp, _)] ->
     begin match destruct_vector ctx.tc_env vtyp with
     | Some (Nexp_aux (Nexp_constant n, _), _, _)
          when Big_int.less_equal n (Big_int.of_int 63) && is_stack_typ ctx typ ->
        AE_val (AV_C_fragment (F_call ("fast_unsigned", [frag]), typ, ctyp_of_typ ctx typ))
     | _ -> no_change
     end

  | "add_int", [AV_C_fragment (op1, _, _); AV_C_fragment (op2, _, _)] ->
     begin match destruct_range Env.empty typ with
     | None -> no_change
     | Some (kids, constr, n, m) ->
        match nexp_simp n, nexp_simp m with
        | Nexp_aux (Nexp_constant n, _), Nexp_aux (Nexp_constant m, _)
               when Big_int.less_equal min_int64 n && Big_int.less_equal m max_int64 ->
           AE_val (AV_C_fragment (F_op (op1, "+", op2), typ, CT_int64))
        | n, m when prove __POS__ ctx.local_env (nc_lteq (nconstant min_int64) n) && prove __POS__ ctx.local_env (nc_lteq m (nconstant max_int64)) ->
           AE_val (AV_C_fragment (F_op (op1, "+", op2), typ, CT_int64))
        | _ -> no_change
     end

  | "neg_int", [AV_C_fragment (frag, _, _)] ->
     AE_val (AV_C_fragment (F_op (v_int 0, "-", frag), typ, CT_int64))

  | "replicate_bits", [AV_C_fragment (vec, vtyp, _); AV_C_fragment (times, _, _)] ->
     begin match destruct_vector ctx.tc_env typ, destruct_vector ctx.tc_env vtyp with
     | Some (Nexp_aux (Nexp_constant n, _), _, _), Some (Nexp_aux (Nexp_constant m, _), _, _)
          when Big_int.less_equal n (Big_int.of_int 64) ->
        AE_val (AV_C_fragment (F_call ("fast_replicate_bits", [F_lit (V_int m); vec; times]), typ, ctyp_of_typ ctx typ))
     | _ -> no_change
     end

  | "undefined_bool", _ ->
     AE_val (AV_C_fragment (F_lit (V_bool false), typ, CT_bool))

  | _, _ ->
     c_debug (lazy ("No optimization routine found"));
     no_change

let analyze_primop ctx id args typ =
  let no_change = AE_app (id, args, typ) in
  if !optimize_primops then
    try analyze_primop' ctx id args typ with
    | Failure str ->
       (c_debug (lazy ("Analyze primop failed for id " ^ string_of_id id ^ " reason: " ^ str)));
       no_change
  else
    no_change

(**************************************************************************)
(* 4. Conversion to low-level AST                                         *)
(**************************************************************************)

(** We now use a low-level AST (see language/bytecode.ott) that is
   only slightly abstracted away from C. To be succint in comments we
   usually refer to this as Sail IR or IR rather than low-level AST
   repeatedly.

   The general idea is ANF expressions are converted into lists of
   instructions (type instr) where allocations and deallocations are
   now made explicit. ANF values (aval) are mapped to the cval type,
   which is even simpler still. Some things are still more abstract
   than in C, so the type definitions follow the sail type definition
   structure, just with typ (from ast.ml) replaced with
   ctyp. Top-level declarations that have no meaning for the backend
   are not included at this level.

   The convention used here is that functions of the form compile_X
   compile the type X into types in this AST, so compile_aval maps
   avals into cvals. Note that the return types for these functions
   are often quite complex, and they usually return some tuple
   containing setup instructions (to allocate memory for the
   expression), cleanup instructions (to deallocate that memory) and
   possibly typing information about what has been translated. **)

let ctype_def_ctyps = function
  | CTD_enum _ -> []
  | CTD_struct (_, fields) -> List.map snd fields
  | CTD_variant (_, ctors) -> List.map snd ctors

let cval_ctyp = function (_, ctyp) -> ctyp

let rec clexp_ctyp = function
  | CL_id (_, ctyp) -> ctyp
  | CL_field (clexp, field) ->
     begin match clexp_ctyp clexp with
     | CT_struct (id, ctors) ->
        begin
          try snd (List.find (fun (id, ctyp) -> string_of_id id = field) ctors) with
          | Not_found -> c_error ("Struct type " ^ string_of_id id ^ " does not have a constructor " ^ field)
        end
     | ctyp -> c_error ("Bad ctyp for CL_field " ^ string_of_ctyp ctyp)
     end
  | CL_addr clexp ->
     begin match clexp_ctyp clexp with
     | CT_ref ctyp -> ctyp
     | ctyp -> c_error ("Bad ctyp for CL_addr " ^ string_of_ctyp ctyp)
     end
  | CL_tuple (clexp, n) ->
     begin match clexp_ctyp clexp with
     | CT_tup typs ->
        begin
          try List.nth typs n with
          | _ -> c_error "Tuple assignment index out of bounds"
        end
     | ctyp -> c_error ("Bad ctyp for CL_addr " ^ string_of_ctyp ctyp)
     end
  | CL_have_exception -> CT_bool
  | CL_current_exception ctyp -> ctyp

let cval_rename from_id to_id (frag, ctyp) = (frag_rename from_id to_id frag, ctyp)

let rec instr_ctyps (I_aux (instr, aux)) =
  match instr with
  | I_decl (ctyp, _) | I_reset (ctyp, _) | I_clear (ctyp, _) | I_undefined ctyp -> [ctyp]
  | I_init (ctyp, _, cval) | I_reinit (ctyp, _, cval) -> [ctyp; cval_ctyp cval]
  | I_if (cval, instrs1, instrs2, ctyp) ->
     ctyp :: cval_ctyp cval :: List.concat (List.map instr_ctyps instrs1 @ List.map instr_ctyps instrs2)
  | I_funcall (clexp, _, _, cvals) ->
     clexp_ctyp clexp :: List.map cval_ctyp cvals
  | I_copy (clexp, cval) | I_alias (clexp, cval) -> [clexp_ctyp clexp; cval_ctyp cval]
  | I_block instrs | I_try_block instrs -> List.concat (List.map instr_ctyps instrs)
  | I_throw cval | I_jump (cval, _) | I_return cval -> [cval_ctyp cval]
  | I_comment _ | I_label _ | I_goto _ | I_raw _ | I_match_failure -> []

let rec c_ast_registers = function
  | CDEF_reg_dec (id, ctyp, instrs) :: ast -> (id, ctyp, instrs) :: c_ast_registers ast
  | _ :: ast -> c_ast_registers ast
  | [] -> []

let cdef_ctyps ctx = function
  | CDEF_reg_dec (_, ctyp, instrs) -> ctyp :: List.concat (List.map instr_ctyps instrs)
  | CDEF_spec (_, ctyps, ctyp) -> ctyp :: ctyps
  | CDEF_fundef (id, _, _, instrs) ->
     let quant, Typ_aux (fn_typ, _) = Env.get_val_spec id ctx.tc_env in
     let arg_typs, ret_typ = match fn_typ with
       | Typ_fn (arg_typs, ret_typ, _) -> arg_typs, ret_typ
       | _ -> assert false
     in
     let arg_ctyps, ret_ctyp =
       List.map (ctyp_of_typ ctx) arg_typs,
       ctyp_of_typ { ctx with local_env = add_typquant (id_loc id) quant ctx.local_env } ret_typ
     in
     ret_ctyp :: arg_ctyps @ List.concat (List.map instr_ctyps instrs)

  | CDEF_startup (id, instrs) | CDEF_finish (id, instrs) -> List.concat (List.map instr_ctyps instrs)
  | CDEF_type tdef -> ctype_def_ctyps tdef
  | CDEF_let (_, bindings, instrs) ->
     List.map snd bindings
     @ List.concat (List.map instr_ctyps instrs)

let is_ct_enum = function
  | CT_enum _ -> true
  | _ -> false

let is_ct_variant = function
  | CT_variant _ -> true
  | _ -> false

let is_ct_tup = function
  | CT_tup _ -> true
  | _ -> false

let is_ct_list = function
  | CT_list _ -> true
  | _ -> false

let is_ct_vector = function
  | CT_vector _ -> true
  | _ -> false

let is_ct_struct = function
  | CT_struct _ -> true
  | _ -> false

let is_ct_ref = function
  | CT_ref _ -> true
  | _ -> false

let rec chunkify n xs =
  match Util.take n xs, Util.drop n xs with
  | xs, [] -> [xs]
  | xs, ys -> xs :: chunkify n ys

let rec compile_aval l ctx = function
  | AV_C_fragment (frag, typ, ctyp) ->
     let ctyp' = ctyp_of_typ ctx typ in
     if not (ctyp_equal ctyp ctyp') then
       raise (Reporting.err_unreachable l __POS__ (string_of_ctyp ctyp ^ " != " ^ string_of_ctyp ctyp'));
     [], (frag, ctyp_of_typ ctx typ), []

  | AV_id (id, typ) ->
     begin
       try
         let _, ctyp = Bindings.find id ctx.locals in
         [], (F_id id, ctyp), []
       with
       | Not_found ->
          [], (F_id id, ctyp_of_typ ctx (lvar_typ typ)), []
     end

  | AV_ref (id, typ) ->
     [], (F_ref id, CT_ref (ctyp_of_typ ctx (lvar_typ typ))), []

  | AV_lit (L_aux (L_string str, _), typ) ->
     [], (F_lit (V_string (String.escaped str)), ctyp_of_typ ctx typ), []

  | AV_lit (L_aux (L_num n, _), typ) when Big_int.less_equal min_int64 n && Big_int.less_equal n max_int64 ->
     let gs = gensym () in
     [iinit CT_int gs (F_lit (V_int n), CT_int64)],
     (F_id gs, CT_int),
     [iclear CT_int gs]

  | AV_lit (L_aux (L_num n, _), typ) ->
     let gs = gensym () in
     [iinit CT_int gs (F_lit (V_string (Big_int.to_string n)), CT_string)],
     (F_id gs, CT_int),
     [iclear CT_int gs]

  | AV_lit (L_aux (L_zero, _), _) -> [], (F_lit (V_bit Sail2_values.B0), CT_bit), []
  | AV_lit (L_aux (L_one, _), _) -> [], (F_lit (V_bit Sail2_values.B1), CT_bit), []

  | AV_lit (L_aux (L_true, _), _) -> [], (F_lit (V_bool true), CT_bool), []
  | AV_lit (L_aux (L_false, _), _) -> [], (F_lit (V_bool false), CT_bool), []

  | AV_lit (L_aux (L_real str, _), _) ->
     let gs = gensym () in
     [iinit CT_real gs (F_lit (V_string str), CT_string)],
     (F_id gs, CT_real),
     [iclear CT_real gs]

  | AV_lit (L_aux (L_unit, _), _) -> [], (F_lit V_unit, CT_unit), []

  | AV_lit (L_aux (_, l) as lit, _) ->
     c_error ~loc:l ("Encountered unexpected literal " ^ string_of_lit lit)

  | AV_tuple avals ->
     let elements = List.map (compile_aval l ctx) avals in
     let cvals = List.map (fun (_, cval, _) -> cval) elements in
     let setup = List.concat (List.map (fun (setup, _, _) -> setup) elements) in
     let cleanup = List.concat (List.rev (List.map (fun (_, _, cleanup) -> cleanup) elements)) in
     let tup_ctyp = CT_tup (List.map cval_ctyp cvals) in
     let gs = gensym () in
     setup
     @ [idecl tup_ctyp gs]
     @ List.mapi (fun n cval -> icopy l (CL_tuple (CL_id (gs, tup_ctyp), n)) cval) cvals,
     (F_id gs, CT_tup (List.map cval_ctyp cvals)),
     [iclear tup_ctyp gs]
     @ cleanup

  | AV_record (fields, typ) ->
     let ctyp = ctyp_of_typ ctx typ in
     let gs = gensym () in
     let compile_fields (id, aval) =
       let field_setup, cval, field_cleanup = compile_aval l ctx aval in
       field_setup
       @ [icopy l (CL_field (CL_id (gs, ctyp), string_of_id id)) cval]
       @ field_cleanup
     in
     [idecl ctyp gs]
     @ List.concat (List.map compile_fields (Bindings.bindings fields)),
     (F_id gs, ctyp),
     [iclear ctyp gs]

  | AV_vector ([], _) ->
     c_error "Encountered empty vector literal"

  (* Convert a small bitvector to a uint64_t literal. *)
  | AV_vector (avals, typ) when is_bitvector avals && List.length avals <= 64 ->
     begin
       let bitstring = F_lit (V_bits (List.map value_of_aval_bit avals)) in
       let len = List.length avals in
       match destruct_vector ctx.tc_env typ with
       | Some (_, Ord_aux (Ord_inc, _), _) ->
          [], (bitstring, CT_fbits (len, false)), []
       | Some (_, Ord_aux (Ord_dec, _), _) ->
          [], (bitstring, CT_fbits (len, true)), []
       | Some _ ->
          c_error "Encountered order polymorphic bitvector literal"
       | None ->
          c_error "Encountered vector literal without vector type"
     end

  (* Convert a bitvector literal that is larger than 64-bits to a
     variable size bitvector, converting it in 64-bit chunks. *)
  | AV_vector (avals, typ) when is_bitvector avals ->
     let len = List.length avals in
     let bitstring avals = F_lit (V_bits (List.map value_of_aval_bit avals)) in
     let first_chunk = bitstring (Util.take (len mod 64) avals) in
     let chunks = Util.drop (len mod 64) avals |> chunkify 64 |> List.map bitstring in
     let gs = gensym () in
     [iinit (CT_lbits true) gs (first_chunk, CT_fbits (len mod 64, true))]
     @ List.map (fun chunk -> ifuncall (CL_id (gs, CT_lbits true))
                                       (mk_id "append_64")
                                       [(F_id gs, CT_lbits true); (chunk, CT_fbits (64, true))]) chunks,
     (F_id gs, CT_lbits true),
     [iclear (CT_lbits true) gs]

  (* If we have a bitvector value, that isn't a literal then we need to set bits individually. *)
  | AV_vector (avals, Typ_aux (Typ_app (id, [_; A_aux (A_order ord, _); A_aux (A_typ (Typ_aux (Typ_id bit_id, _)), _)]), _))
       when string_of_id bit_id = "bit" && string_of_id id = "vector" && List.length avals <= 64 ->
     let len = List.length avals in
     let direction = match ord with
       | Ord_aux (Ord_inc, _) -> false
       | Ord_aux (Ord_dec, _) -> true
       | Ord_aux (Ord_var _, _) -> c_error "Polymorphic vector direction found"
     in
     let gs = gensym () in
     let ctyp = CT_fbits (len, direction) in
     let mask i = V_bits (Util.list_init (63 - i) (fun _ -> Sail2_values.B0) @ [Sail2_values.B1] @ Util.list_init i (fun _ -> Sail2_values.B0)) in
     let aval_mask i aval =
       let setup, cval, cleanup = compile_aval l ctx aval in
       match cval with
       | (F_lit (V_bit Sail2_values.B0), _) -> []
       | (F_lit (V_bit Sail2_values.B1), _) ->
          [icopy l (CL_id (gs, ctyp)) (F_op (F_id gs, "|", F_lit (mask i)), ctyp)]
       | _ ->
          setup @ [iif cval [icopy l (CL_id (gs, ctyp)) (F_op (F_id gs, "|", F_lit (mask i)), ctyp)] [] CT_unit] @ cleanup
     in
     [idecl ctyp gs;
      icopy l (CL_id (gs, ctyp)) (F_lit (V_bits (Util.list_init 64 (fun _ -> Sail2_values.B0))), ctyp)]
     @ List.concat (List.mapi aval_mask (List.rev avals)),
     (F_id gs, ctyp),
     []

  (* Compiling a vector literal that isn't a bitvector *)
  | AV_vector (avals, Typ_aux (Typ_app (id, [_; A_aux (A_order ord, _); A_aux (A_typ typ, _)]), _))
       when string_of_id id = "vector" ->
     let len = List.length avals in
     let direction = match ord with
       | Ord_aux (Ord_inc, _) -> false
       | Ord_aux (Ord_dec, _) -> true
       | Ord_aux (Ord_var _, _) -> c_error "Polymorphic vector direction found"
     in
     let vector_ctyp = CT_vector (direction, ctyp_of_typ ctx typ) in
     let gs = gensym () in
     let aval_set i aval =
       let setup, cval, cleanup = compile_aval l ctx aval in
       setup
       @ [iextern (CL_id (gs, vector_ctyp))
                  (mk_id "internal_vector_update")
                  [(F_id gs, vector_ctyp); (F_lit (V_int (Big_int.of_int i)), CT_int64); cval]]
       @ cleanup
     in
     [idecl vector_ctyp gs;
      iextern (CL_id (gs, vector_ctyp)) (mk_id "internal_vector_init") [(F_lit (V_int (Big_int.of_int len)), CT_int64)]]
     @ List.concat (List.mapi aval_set (if direction then List.rev avals else avals)),
     (F_id gs, vector_ctyp),
     [iclear vector_ctyp gs]

  | AV_vector _ as aval ->
     c_error ("Have AV_vector: " ^ Pretty_print_sail.to_string (pp_aval aval) ^ " which is not a vector type")

  | AV_list (avals, Typ_aux (typ, _)) ->
     let ctyp = match typ with
       | Typ_app (id, [A_aux (A_typ typ, _)]) when string_of_id id = "list" -> ctyp_of_typ ctx typ
       | _ -> c_error "Invalid list type"
     in
     let gs = gensym () in
     let mk_cons aval =
       let setup, cval, cleanup = compile_aval l ctx aval in
       setup @ [ifuncall (CL_id (gs, CT_list ctyp)) (mk_id ("cons#" ^ string_of_ctyp ctyp)) [cval; (F_id gs, CT_list ctyp)]] @ cleanup
     in
     [idecl (CT_list ctyp) gs]
     @ List.concat (List.map mk_cons (List.rev avals)),
     (F_id gs, CT_list ctyp),
     [iclear (CT_list ctyp) gs]

let compile_funcall l ctx id args typ =
  let setup = ref [] in
  let cleanup = ref [] in

  let quant, Typ_aux (fn_typ, _) =
    try Env.get_val_spec id ctx.local_env
    with Type_error _ ->
      c_debug (lazy ("Falling back to global env for " ^ string_of_id id)); Env.get_val_spec id ctx.tc_env
  in
  let arg_typs, ret_typ = match fn_typ with
    | Typ_fn (arg_typs, ret_typ, _) -> arg_typs, ret_typ
    | _ -> assert false
  in
  let ctx' = { ctx with local_env = add_typquant (id_loc id) quant ctx.tc_env } in
  let arg_ctyps, ret_ctyp = List.map (ctyp_of_typ ctx') arg_typs, ctyp_of_typ ctx' ret_typ in
  let final_ctyp = ctyp_of_typ ctx typ in

  let setup_arg ctyp aval =
    let arg_setup, cval, arg_cleanup = compile_aval l ctx aval in
    setup := List.rev arg_setup @ !setup;
    cleanup := arg_cleanup @ !cleanup;
    let have_ctyp = cval_ctyp cval in
    if is_polymorphic ctyp then
      (F_poly (fst cval), have_ctyp)
    else if ctyp_equal ctyp have_ctyp then
      cval
    else
      let gs = gensym () in
      setup := iinit ctyp gs cval :: !setup;
      cleanup := iclear ctyp gs :: !cleanup;
      (F_id gs, ctyp)
  in

  assert (List.length arg_ctyps = List.length args);

  let setup_args = List.map2 setup_arg arg_ctyps args in

  List.rev !setup,
  begin fun clexp ->
  if ctyp_equal (clexp_ctyp clexp) ret_ctyp then
    ifuncall clexp id setup_args
  else
    let gs = gensym () in
    iblock [icomment "copy call";
            idecl ret_ctyp gs;
            ifuncall (CL_id (gs, ret_ctyp)) id setup_args;
            icopy l clexp (F_id gs, ret_ctyp);
            iclear ret_ctyp gs]
  end,
  !cleanup

let rec apat_ctyp ctx (AP_aux (apat, _, _)) =
  match apat with
  | AP_tup apats -> CT_tup (List.map (apat_ctyp ctx) apats)
  | AP_global (_, typ) -> ctyp_of_typ ctx typ
  | AP_cons (apat, _) -> CT_list (apat_ctyp ctx apat)
  | AP_wild typ | AP_nil typ | AP_id (_, typ) -> ctyp_of_typ ctx typ
  | AP_app (_, _, typ) -> ctyp_of_typ ctx typ

let rec compile_match ctx (AP_aux (apat_aux, env, l)) cval case_label =
  let ctx = { ctx with local_env = env } in
  match apat_aux, cval with
  | AP_id (pid, _), (frag, ctyp) when Env.is_union_constructor pid ctx.tc_env ->
     [ijump (F_op (F_field (frag, "kind"), "!=", F_lit (V_ctor_kind (string_of_id pid))), CT_bool) case_label],
     [],
     ctx

  | AP_global (pid, typ), (frag, ctyp) ->
     let global_ctyp = ctyp_of_typ ctx typ in
     [icopy l (CL_id (pid, global_ctyp)) cval], [], ctx

  | AP_id (pid, _), (frag, ctyp) when is_ct_enum ctyp ->
     begin match Env.lookup_id pid ctx.tc_env with
     | Unbound -> [idecl ctyp pid; icopy l (CL_id (pid, ctyp)) (frag, ctyp)], [], ctx
     | _ -> [ijump (F_op (F_id pid, "!=", frag), CT_bool) case_label], [], ctx
     end

  | AP_id (pid, typ), _ ->
     let ctyp = cval_ctyp cval in
     let id_ctyp = ctyp_of_typ ctx typ in
     c_debug (lazy ("Adding local " ^ string_of_id pid ^ " : " ^ string_of_ctyp id_ctyp));
     let ctx = { ctx with locals = Bindings.add pid (Immutable, id_ctyp) ctx.locals } in
     [idecl id_ctyp pid; icopy l (CL_id (pid, id_ctyp)) cval], [iclear id_ctyp pid], ctx

  | AP_tup apats, (frag, ctyp) ->
     begin
       let get_tup n ctyp = (F_field (frag, "ztup" ^ string_of_int n), ctyp) in
       let fold (instrs, cleanup, n, ctx) apat ctyp =
         let instrs', cleanup', ctx = compile_match ctx apat (get_tup n ctyp) case_label in
         instrs @ instrs', cleanup' @ cleanup, n + 1, ctx
       in
       match ctyp with
       | CT_tup ctyps ->
          let instrs, cleanup, _, ctx = List.fold_left2 fold ([], [], 0, ctx) apats ctyps in
          instrs, cleanup, ctx
       | _ -> failwith ("AP_tup with ctyp " ^ string_of_ctyp ctyp)
     end

  | AP_app (ctor, apat, variant_typ), (frag, ctyp) ->
     begin match ctyp with
     | CT_variant (_, ctors) ->
        let ctor_c_id = string_of_id ctor in
        let ctor_ctyp = Bindings.find ctor (ctor_bindings ctors) in
        (* These should really be the same, something has gone wrong if they are not. *)
        if ctyp_equal ctor_ctyp (ctyp_of_typ ctx variant_typ) then
          c_error ~loc:l (Printf.sprintf "%s is not the same type as %s" (string_of_ctyp ctor_ctyp) (string_of_ctyp (ctyp_of_typ ctx variant_typ)))
        else ();
        let ctor_c_id, ctor_ctyp =
          if is_polymorphic ctor_ctyp then
            let unification = List.map ctyp_suprema (ctyp_unify ctor_ctyp (apat_ctyp ctx apat)) in
            (if List.length unification > 0 then
               ctor_c_id ^ "_" ^ Util.string_of_list "_" (fun ctyp -> Util.zencode_string (string_of_ctyp ctyp)) unification
             else
               ctor_c_id),
            ctyp_suprema (apat_ctyp ctx apat)
          else
            ctor_c_id, ctor_ctyp
        in
        let instrs, cleanup, ctx = compile_match ctx apat ((F_field (frag, Util.zencode_string ctor_c_id), ctor_ctyp)) case_label in
        [ijump (F_op (F_field (frag, "kind"), "!=", F_lit (V_ctor_kind ctor_c_id)), CT_bool) case_label]
        @ instrs,
        cleanup,
        ctx
     | ctyp ->
        c_error ~loc:l (Printf.sprintf "Variant constructor %s : %s matching against non-variant type %s : %s"
                                       (string_of_id ctor)
                                       (string_of_typ variant_typ)
                                       (string_of_fragment ~zencode:false frag)
                                       (string_of_ctyp ctyp))
     end

  | AP_wild _, _ -> [], [], ctx

  | AP_cons (hd_apat, tl_apat), (frag, CT_list ctyp) ->
     let hd_setup, hd_cleanup, ctx = compile_match ctx hd_apat (F_field (F_unary ("*", frag), "hd"), ctyp) case_label in
     let tl_setup, tl_cleanup, ctx = compile_match ctx tl_apat (F_field (F_unary ("*", frag), "tl"), CT_list ctyp) case_label in
     [ijump (F_op (frag, "==", F_lit V_null), CT_bool) case_label] @ hd_setup @ tl_setup, tl_cleanup @ hd_cleanup, ctx

  | AP_cons _, (_, _) -> c_error "Tried to pattern match cons on non list type"

  | AP_nil _, (frag, _) -> [ijump (F_op (frag, "!=", F_lit V_null), CT_bool) case_label], [], ctx

let unit_fragment = (F_lit V_unit, CT_unit)

(** GLOBAL: label_counter is used to make sure all labels have unique
   names. Like gensym_counter it should be safe to reset between
   top-level definitions. **)
let label_counter = ref 0

let label str =
  let str = str ^ string_of_int !label_counter in
  incr label_counter;
  str

let pointer_assign ctyp1 ctyp2 =
  match ctyp1 with
  | CT_ref ctyp1 -> true
  | _ -> false

let rec compile_aexp ctx (AE_aux (aexp_aux, env, l)) =
  let ctx = { ctx with local_env = env } in
  match aexp_aux with
  | AE_let (mut, id, binding_typ, binding, (AE_aux (_, body_env, _) as body), body_typ) ->
     let binding_ctyp = ctyp_of_typ { ctx with local_env = body_env } binding_typ in
     let setup, call, cleanup = compile_aexp ctx binding in
     let letb_setup, letb_cleanup =
       [idecl binding_ctyp id; iblock (setup @ [call (CL_id (id, binding_ctyp))] @ cleanup)], [iclear binding_ctyp id]
     in
     let ctx = { ctx with locals = Bindings.add id (mut, binding_ctyp) ctx.locals } in
     let setup, call, cleanup = compile_aexp ctx body in
     letb_setup @ setup, call, cleanup @ letb_cleanup

  | AE_app (id, vs, typ) ->
     compile_funcall l ctx id vs typ

  | AE_val aval ->
     let setup, cval, cleanup = compile_aval l ctx aval in
     setup, (fun clexp -> icopy l clexp cval), cleanup

  (* Compile case statements *)
  | AE_case (aval, cases, typ) ->
     let ctyp = ctyp_of_typ ctx typ in
     let aval_setup, cval, aval_cleanup = compile_aval l ctx aval in
     let case_return_id = gensym () in
     let finish_match_label = label "finish_match_" in
     let compile_case (apat, guard, body) =
       let trivial_guard = match guard with
         | AE_aux (AE_val (AV_lit (L_aux (L_true, _), _)), _, _)
         | AE_aux (AE_val (AV_C_fragment (F_lit (V_bool true), _, _)), _, _) -> true
         | _ -> false
       in
       let case_label = label "case_" in
       c_debug (lazy ("Compiling match"));
       let destructure, destructure_cleanup, ctx = compile_match ctx apat cval case_label in
       c_debug (lazy ("Compiled match"));
       let guard_setup, guard_call, guard_cleanup = compile_aexp ctx guard in
       let body_setup, body_call, body_cleanup = compile_aexp ctx body in
       let gs = gensym () in
       let case_instrs =
         destructure @ [icomment "end destructuring"]
         @ (if not trivial_guard then
              guard_setup @ [idecl CT_bool gs; guard_call (CL_id (gs, CT_bool))] @ guard_cleanup
              @ [iif (F_unary ("!", F_id gs), CT_bool) (destructure_cleanup @ [igoto case_label]) [] CT_unit]
              @ [icomment "end guard"]
            else [])
         @ body_setup @ [body_call (CL_id (case_return_id, ctyp))] @ body_cleanup @ destructure_cleanup
         @ [igoto finish_match_label]
       in
       [iblock case_instrs; ilabel case_label]
     in
     [icomment "begin match"]
     @ aval_setup @ [idecl ctyp case_return_id]
     @ List.concat (List.map compile_case cases)
     @ [imatch_failure ()]
     @ [ilabel finish_match_label],
     (fun clexp -> icopy l clexp (F_id case_return_id, ctyp)),
     [iclear ctyp case_return_id]
     @ aval_cleanup
     @ [icomment "end match"]

  (* Compile try statement *)
  | AE_try (aexp, cases, typ) ->
     let ctyp = ctyp_of_typ ctx typ in
     let aexp_setup, aexp_call, aexp_cleanup = compile_aexp ctx aexp in
     let try_return_id = gensym () in
     let handled_exception_label = label "handled_exception_" in
     let fallthrough_label = label "fallthrough_exception_" in
     let compile_case (apat, guard, body) =
       let trivial_guard = match guard with
         | AE_aux (AE_val (AV_lit (L_aux (L_true, _), _)), _, _)
         | AE_aux (AE_val (AV_C_fragment (F_lit (V_bool true), _, _)), _, _) -> true
         | _ -> false
       in
       let try_label = label "try_" in
       let exn_cval = (F_current_exception, ctyp_of_typ ctx (mk_typ (Typ_id (mk_id "exception")))) in
       let destructure, destructure_cleanup, ctx = compile_match ctx apat exn_cval try_label in
       let guard_setup, guard_call, guard_cleanup = compile_aexp ctx guard in
       let body_setup, body_call, body_cleanup = compile_aexp ctx body in
       let gs = gensym () in
       let case_instrs =
         destructure @ [icomment "end destructuring"]
         @ (if not trivial_guard then
              guard_setup @ [idecl CT_bool gs; guard_call (CL_id (gs, CT_bool))] @ guard_cleanup
              @ [ijump (F_unary ("!", F_id gs), CT_bool) try_label]
              @ [icomment "end guard"]
            else [])
         @ body_setup @ [body_call (CL_id (try_return_id, ctyp))] @ body_cleanup @ destructure_cleanup
         @ [igoto handled_exception_label]
       in
       [iblock case_instrs; ilabel try_label]
     in
     assert (ctyp_equal ctyp (ctyp_of_typ ctx typ));
     [idecl ctyp try_return_id;
      itry_block (aexp_setup @ [aexp_call (CL_id (try_return_id, ctyp))] @ aexp_cleanup);
      ijump (F_unary ("!", F_have_exception), CT_bool) handled_exception_label]
     @ List.concat (List.map compile_case cases)
     @ [igoto fallthrough_label;
        ilabel handled_exception_label;
        icopy l CL_have_exception (F_lit (V_bool false), CT_bool);
        ilabel fallthrough_label],
     (fun clexp -> icopy l clexp (F_id try_return_id, ctyp)),
     []

  | AE_if (aval, then_aexp, else_aexp, if_typ) ->
     let if_ctyp = ctyp_of_typ ctx if_typ in
     let compile_branch aexp =
       let setup, call, cleanup = compile_aexp ctx aexp in
       fun clexp -> setup @ [call clexp] @ cleanup
     in
     let setup, cval, cleanup = compile_aval l ctx aval in
     setup,
     (fun clexp -> iif cval
                       (compile_branch then_aexp clexp)
                       (compile_branch else_aexp clexp)
                       if_ctyp),
     cleanup

  (* FIXME: AE_record_update could be AV_record_update - would reduce some copying. *)
  | AE_record_update (aval, fields, typ) ->
     let ctyp = ctyp_of_typ ctx typ in
     let ctors = match ctyp with
       | CT_struct (_, ctors) -> List.fold_left (fun m (k, v) -> Bindings.add k v m) Bindings.empty ctors
       | _ -> c_error "Cannot perform record update for non-record type"
     in
     let gs = gensym () in
     let compile_fields (id, aval) =
       let field_setup, cval, field_cleanup = compile_aval l ctx aval in
       field_setup
       @ [icopy l (CL_field (CL_id (gs, ctyp), string_of_id id)) cval]
       @ field_cleanup
     in
     let setup, cval, cleanup = compile_aval l ctx aval in
     [idecl ctyp gs]
     @ setup
     @ [icopy l (CL_id (gs, ctyp)) cval]
     @ cleanup
     @ List.concat (List.map compile_fields (Bindings.bindings fields)),
     (fun clexp -> icopy l clexp (F_id gs, ctyp)),
     [iclear ctyp gs]

  | AE_short_circuit (SC_and, aval, aexp) ->
     let left_setup, cval, left_cleanup = compile_aval l ctx aval in
     let right_setup, call, right_cleanup = compile_aexp ctx aexp in
     let gs = gensym () in
     left_setup
     @ [ idecl CT_bool gs;
         iif cval
             (right_setup @ [call (CL_id (gs, CT_bool))] @ right_cleanup)
             [icopy l (CL_id (gs, CT_bool)) (F_lit (V_bool false), CT_bool)]
             CT_bool ]
     @ left_cleanup,
     (fun clexp -> icopy l clexp (F_id gs, CT_bool)),
     []
  | AE_short_circuit (SC_or, aval, aexp) ->
     let left_setup, cval, left_cleanup = compile_aval l ctx aval in
     let right_setup, call, right_cleanup = compile_aexp ctx aexp in
     let gs = gensym () in
     left_setup
     @ [ idecl CT_bool gs;
         iif cval
             [icopy l (CL_id (gs, CT_bool)) (F_lit (V_bool true), CT_bool)]
             (right_setup @ [call (CL_id (gs, CT_bool))] @ right_cleanup)
             CT_bool ]
     @ left_cleanup,
     (fun clexp -> icopy l clexp (F_id gs, CT_bool)),
     []

  (* This is a faster assignment rule for updating fields of a
     struct. Turned on by !optimize_struct_updates. *)
  | AE_assign (id, assign_typ, AE_aux (AE_record_update (AV_id (rid, _), fields, typ), _, _))
       when Id.compare id rid = 0 && !optimize_struct_updates ->
     c_debug (lazy ("Optimizing struct update"));
     let compile_fields (field_id, aval) =
       let field_setup, cval, field_cleanup = compile_aval l ctx aval in
       field_setup
       @ [icopy l (CL_field (CL_id (id, ctyp_of_typ ctx typ), string_of_id field_id)) cval]
       @ field_cleanup
     in
     List.concat (List.map compile_fields (Bindings.bindings fields)),
     (fun clexp -> icopy l clexp unit_fragment),
     []

  | AE_assign (id, assign_typ, aexp) ->
     let assign_ctyp =
       match Bindings.find_opt id ctx.locals with
       | Some (_, ctyp) -> ctyp
       | None -> ctyp_of_typ ctx assign_typ
     in
     let setup, call, cleanup = compile_aexp ctx aexp in
     setup @ [call (CL_id (id, assign_ctyp))], (fun clexp -> icopy l clexp unit_fragment), cleanup

  | AE_block (aexps, aexp, _) ->
     let block = compile_block ctx aexps in
     let setup, call, cleanup = compile_aexp ctx aexp in
     block @ setup, call, cleanup

  | AE_loop (While, cond, body) ->
     let loop_start_label = label "while_" in
     let loop_end_label = label "wend_" in
     let cond_setup, cond_call, cond_cleanup = compile_aexp ctx cond in
     let body_setup, body_call, body_cleanup = compile_aexp ctx body in
     let gs = gensym () in
     let unit_gs = gensym () in
     let loop_test = (F_unary ("!", F_id gs), CT_bool) in
     [idecl CT_bool gs; idecl CT_unit unit_gs]
     @ [ilabel loop_start_label]
     @ [iblock (cond_setup
                @ [cond_call (CL_id (gs, CT_bool))]
                @ cond_cleanup
                @ [ijump loop_test loop_end_label]
                @ body_setup
                @ [body_call (CL_id (unit_gs, CT_unit))]
                @ body_cleanup
                @ [igoto loop_start_label])]
     @ [ilabel loop_end_label],
     (fun clexp -> icopy l clexp unit_fragment),
     []

  | AE_loop (Until, cond, body) ->
     let loop_start_label = label "repeat_" in
     let loop_end_label = label "until_" in
     let cond_setup, cond_call, cond_cleanup = compile_aexp ctx cond in
     let body_setup, body_call, body_cleanup = compile_aexp ctx body in
     let gs = gensym () in
     let unit_gs = gensym () in
     let loop_test = (F_id gs, CT_bool) in
     [idecl CT_bool gs; idecl CT_unit unit_gs]
     @ [ilabel loop_start_label]
     @ [iblock (body_setup
                @ [body_call (CL_id (unit_gs, CT_unit))]
                @ body_cleanup
                @ cond_setup
                @ [cond_call (CL_id (gs, CT_bool))]
                @ cond_cleanup
                @ [ijump loop_test loop_end_label]
                @ [igoto loop_start_label])]
     @ [ilabel loop_end_label],
     (fun clexp -> icopy l clexp unit_fragment),
     []

  | AE_cast (aexp, typ) -> compile_aexp ctx aexp

  | AE_return (aval, typ) ->
     let fn_return_ctyp = match Env.get_ret_typ env with
       | Some typ -> ctyp_of_typ ctx typ
       | None -> c_error ~loc:l "No function return type found when compiling return statement"
     in
     (* Cleanup info will be re-added by fix_early_return *)
     let return_setup, cval, _ = compile_aval l ctx aval in
     let creturn =
       if ctyp_equal fn_return_ctyp (cval_ctyp cval) then
         [ireturn cval]
       else
         let gs = gensym () in
         [idecl fn_return_ctyp gs;
          icopy l (CL_id (gs, fn_return_ctyp)) cval;
          ireturn (F_id gs, fn_return_ctyp)]
     in
     return_setup @ creturn,
     (fun clexp -> icomment "unreachable after return"),
     []

  | AE_throw (aval, typ) ->
     (* Cleanup info will be handled by fix_exceptions *)
     let throw_setup, cval, _ = compile_aval l ctx aval in
     throw_setup @ [ithrow cval],
     (fun clexp -> icomment "unreachable after throw"),
     []

  | AE_field (aval, id, typ) ->
     let ctyp = ctyp_of_typ ctx typ in
     let setup, cval, cleanup = compile_aval l ctx aval in
     setup,
     (fun clexp -> icopy l clexp (F_field (fst cval, Util.zencode_string (string_of_id id)), ctyp)),
     cleanup

  | AE_for (loop_var, loop_from, loop_to, loop_step, Ord_aux (ord, _), body) ->
     (* We assume that all loop indices are safe to put in a CT_int64. *)
     let ctx = { ctx with locals = Bindings.add loop_var (Immutable, CT_int64) ctx.locals } in

     let is_inc = match ord with
       | Ord_inc -> true
       | Ord_dec -> false
       | Ord_var _ -> c_error "Polymorphic loop direction in C backend"
     in

     (* Loop variables *)
     let from_setup, from_call, from_cleanup = compile_aexp ctx loop_from in
     let from_gs = gensym () in
     let to_setup, to_call, to_cleanup = compile_aexp ctx loop_to in
     let to_gs = gensym () in
     let step_setup, step_call, step_cleanup = compile_aexp ctx loop_step in
     let step_gs = gensym () in
     let variable_init gs setup call cleanup =
       [idecl CT_int64 gs;
        iblock (setup @ [call (CL_id (gs, CT_int64))] @ cleanup)]
     in

     let loop_start_label = label "for_start_" in
     let loop_end_label = label "for_end_" in
     let body_setup, body_call, body_cleanup = compile_aexp ctx body in
     let body_gs = gensym () in

     variable_init from_gs from_setup from_call from_cleanup
     @ variable_init to_gs to_setup to_call to_cleanup
     @ variable_init step_gs step_setup step_call step_cleanup
     @ [iblock ([idecl CT_int64 loop_var;
                 icopy l (CL_id (loop_var, CT_int64)) (F_id from_gs, CT_int64);
                 idecl CT_unit body_gs;
                 iblock ([ilabel loop_start_label]
                         @ [ijump (F_op (F_id loop_var, (if is_inc then ">" else "<"), F_id to_gs), CT_bool) loop_end_label]
                         @ body_setup
                         @ [body_call (CL_id (body_gs, CT_unit))]
                         @ body_cleanup
                         @ [icopy l (CL_id (loop_var, CT_int64))
                                  (F_op (F_id loop_var, (if is_inc then "+" else "-"), F_id step_gs), CT_int64)]
                         @ [igoto loop_start_label]);
                 ilabel loop_end_label])],
     (fun clexp -> icopy l clexp unit_fragment),
     []

and compile_block ctx = function
  | [] -> []
  | exp :: exps ->
     let setup, call, cleanup = compile_aexp ctx exp in
     let rest = compile_block ctx exps in
     let gs = gensym () in
     iblock (setup @ [idecl CT_unit gs; call (CL_id (gs, CT_unit))] @ cleanup) :: rest

(** Compile a sail type definition into a IR one. Most of the
   actual work of translating the typedefs into C is done by the code
   generator, as it's easy to keep track of structs, tuples and unions
   in their sail form at this level, and leave the fiddly details of
   how they get mapped to C in the next stage. This function also adds
   details of the types it compiles to the context, ctx, which is why
   it returns a ctypdef * ctx pair. **)
let compile_type_def ctx (TD_aux (type_def, _)) =
  match type_def with
  | TD_enum (id, ids, _) ->
     CTD_enum (id, ids),
     { ctx with enums = Bindings.add id (IdSet.of_list ids) ctx.enums }

  | TD_record (id, _, ctors, _) ->
     let ctors = List.fold_left (fun ctors (typ, id) -> Bindings.add id (ctyp_of_typ ctx typ) ctors) Bindings.empty ctors in
     CTD_struct (id, Bindings.bindings ctors),
     { ctx with records = Bindings.add id ctors ctx.records }

  | TD_variant (id, typq, tus, _) ->
     let compile_tu = function
       | Tu_aux (Tu_ty_id (typ, id), _) ->
          let ctx = { ctx with local_env = add_typquant (id_loc id) typq ctx.local_env } in
          ctyp_of_typ ctx typ, id
     in
     let ctus = List.fold_left (fun ctus (ctyp, id) -> Bindings.add id ctyp ctus) Bindings.empty (List.map compile_tu tus) in
     CTD_variant (id, Bindings.bindings ctus),
     { ctx with variants = Bindings.add id ctus ctx.variants }

  (* Will be re-written before here, see bitfield.ml *)
  | TD_bitfield _ -> failwith "Cannot compile TD_bitfield"
  (* All type abbreviations are filtered out in compile_def  *)
  | TD_abbrev _ -> assert false

let instr_split_at f =
  let rec instr_split_at' f before = function
    | [] -> (List.rev before, [])
    | instr :: instrs when f instr -> (List.rev before, instr :: instrs)
    | instr :: instrs -> instr_split_at' f (instr :: before) instrs
  in
  instr_split_at' f []

let generate_cleanup instrs =
  let generate_cleanup' (I_aux (instr, _)) =
    match instr with
    | I_init (ctyp, id, cval) when not (is_stack_ctyp ctyp) -> [(id, iclear ctyp id)]
    | I_decl (ctyp, id) when not (is_stack_ctyp ctyp) -> [(id, iclear ctyp id)]
    | instr -> []
  in
  let is_clear ids = function
    | I_aux (I_clear (_, id), _) -> IdSet.add id ids
    | _ -> ids
  in
  let cleaned = List.fold_left is_clear IdSet.empty instrs in
  instrs
  |> List.map generate_cleanup'
  |> List.concat
  |> List.filter (fun (id, _) -> not (IdSet.mem id cleaned))
  |> List.map snd

(** Functions that have heap-allocated return types are implemented by
   passing a pointer a location where the return value should be
   stored. The ANF -> Sail IR pass for expressions simply outputs an
   I_return instruction for any return value, so this function walks
   over the IR ast for expressions and modifies the return statements
   into code that sets that pointer, as well as adds extra control
   flow to cleanup heap-allocated variables correctly when a function
   terminates early. See the generate_cleanup function for how this is
   done. *)
let fix_early_return ret ctx instrs =
  let end_function_label = label "end_function_" in
  let is_return_recur (I_aux (instr, _)) =
    match instr with
    | I_return _ | I_if _ | I_block _ -> true
    | _ -> false
  in
  let rec rewrite_return historic instrs =
    match instr_split_at is_return_recur instrs with
    | instrs, [] -> instrs
    | before, I_aux (I_block instrs, _) :: after ->
       before
       @ [iblock (rewrite_return (historic @ before) instrs)]
       @ rewrite_return (historic @ before) after
    | before, I_aux (I_if (cval, then_instrs, else_instrs, ctyp), _) :: after ->
       let historic = historic @ before in
       before
       @ [iif cval (rewrite_return historic then_instrs) (rewrite_return historic else_instrs) ctyp]
       @ rewrite_return historic after
    | before, I_aux (I_return cval, (_, l)) :: after ->
       let cleanup_label = label "cleanup_" in
       let end_cleanup_label = label "end_cleanup_" in
       before
       @ [icopy l ret cval;
          igoto cleanup_label]
       (* This is probably dead code until cleanup_label, but how can we be sure there are no jumps into it? *)
       @ rewrite_return (historic @ before) after
       @ [igoto end_cleanup_label]
       @ [ilabel cleanup_label]
       @ generate_cleanup (historic @ before)
       @ [igoto end_function_label]
       @ [ilabel end_cleanup_label]
    | _, _ -> assert false
  in
  rewrite_return [] instrs
  @ [ilabel end_function_label]

(* This is like fix_early_return, but for stack allocated returns. *)
let fix_early_stack_return ctx instrs =
  let is_return_recur (I_aux (instr, _)) =
    match instr with
    | I_return _ | I_if _ | I_block _ -> true
    | _ -> false
  in
  let rec rewrite_return historic instrs =
    match instr_split_at is_return_recur instrs with
    | instrs, [] -> instrs
    | before, I_aux (I_block instrs, _) :: after ->
       before
       @ [iblock (rewrite_return (historic @ before) instrs)]
       @ rewrite_return (historic @ before) after
    | before, I_aux (I_if (cval, then_instrs, else_instrs, ctyp), _) :: after ->
       let historic = historic @ before in
       before
       @ [iif cval (rewrite_return historic then_instrs) (rewrite_return historic else_instrs) ctyp]
       @ rewrite_return historic after
    | before, (I_aux (I_return cval, _) as ret) :: after ->
       before
       @ [icomment "early return cleanup"]
       @ generate_cleanup (historic @ before)
       @ [ret]
       (* There could be jumps into here *)
       @ rewrite_return (historic @ before) after
    | _, _ -> assert false
  in
  rewrite_return [] instrs

let fix_exception_block ?return:(return=None) ctx instrs =
  let end_block_label = label "end_block_exception_" in
  let is_exception_stop (I_aux (instr, _)) =
    match instr with
    | I_throw _ | I_if _ | I_block _ | I_funcall _ -> true
    | _ -> false
  in
  (* In this function 'after' is instructions after the one we've
     matched on, 'before is instructions before the instruction we've
     matched with, but after the previous match, and 'historic' are
     all the befores from previous matches. *)
  let rec rewrite_exception historic instrs =
    match instr_split_at is_exception_stop instrs with
    | instrs, [] -> instrs
    | before, I_aux (I_block instrs, _) :: after ->
       before
       @ [iblock (rewrite_exception (historic @ before) instrs)]
       @ rewrite_exception (historic @ before) after
    | before, I_aux (I_if (cval, then_instrs, else_instrs, ctyp), _) :: after ->
       let historic = historic @ before in
       before
       @ [iif cval (rewrite_exception historic then_instrs) (rewrite_exception historic else_instrs) ctyp]
       @ rewrite_exception historic after
    | before, I_aux (I_throw cval, (_, l)) :: after ->
       before
       @ [icopy l (CL_current_exception (cval_ctyp cval)) cval;
          icopy l CL_have_exception (F_lit (V_bool true), CT_bool)]
       @ generate_cleanup (historic @ before)
       @ [igoto end_block_label]
       @ rewrite_exception (historic @ before) after
    | before, (I_aux (I_funcall (x, _, f, args), _) as funcall) :: after ->
       let effects = match Env.get_val_spec f ctx.tc_env with
         | _, Typ_aux (Typ_fn (_, _, effects), _) -> effects
         | exception (Type_error _) -> no_effect (* nullary union constructor, so no val spec *)
         | _ -> assert false (* valspec must have function type *)
       in
       if has_effect effects BE_escape then
         before
         @ [funcall;
            iif (F_have_exception, CT_bool) (generate_cleanup (historic @ before) @ [igoto end_block_label]) [] CT_unit]
         @ rewrite_exception (historic @ before) after
       else
         before @ funcall :: rewrite_exception (historic @ before) after
    | _, _ -> assert false (* unreachable *)
  in
  match return with
  | None ->
     rewrite_exception [] instrs @ [ilabel end_block_label]
  | Some ctyp ->
     rewrite_exception [] instrs @ [ilabel end_block_label; iundefined ctyp]

let rec map_try_block f (I_aux (instr, aux)) =
  let instr = match instr with
    | I_decl _ | I_reset _ | I_init _ | I_reinit _ -> instr
    | I_if (cval, instrs1, instrs2, ctyp) ->
       I_if (cval, List.map (map_try_block f) instrs1, List.map (map_try_block f) instrs2, ctyp)
    | I_funcall _ | I_copy _ | I_alias _ | I_clear _ | I_throw _ | I_return _ -> instr
    | I_block instrs -> I_block (List.map (map_try_block f) instrs)
    | I_try_block instrs -> I_try_block (f (List.map (map_try_block f) instrs))
    | I_comment _ | I_label _ | I_goto _ | I_raw _ | I_jump _ | I_match_failure | I_undefined _ -> instr
  in
  I_aux (instr, aux)

let fix_exception ?return:(return=None) ctx instrs =
  let instrs = List.map (map_try_block (fix_exception_block ctx)) instrs in
  fix_exception_block ~return:return ctx instrs

let rec compile_arg_pat ctx label (P_aux (p_aux, (l, _)) as pat) ctyp =
  match p_aux with
  | P_id id -> (id, ([], []))
  | P_wild -> let gs = gensym () in (gs, ([], []))
  | P_tup [] | P_lit (L_aux (L_unit, _)) -> let gs = gensym () in (gs, ([], []))
  | P_var (pat, _) -> compile_arg_pat ctx label pat ctyp
  | P_typ (_, pat) -> compile_arg_pat ctx label pat ctyp
  | _ ->
     let apat = anf_pat pat in
     let gs = gensym () in
     let destructure, cleanup, _ = compile_match ctx apat (F_id gs, ctyp) label in
     (gs, (destructure, cleanup))

let rec compile_arg_pats ctx label (P_aux (p_aux, (l, _)) as pat) ctyps =
  match p_aux with
  | P_typ (_, pat) -> compile_arg_pats ctx label pat ctyps
  | P_tup pats when List.length pats = List.length ctyps ->
     [], List.map2 (fun pat ctyp -> compile_arg_pat ctx label pat ctyp) pats ctyps, []
  | _ when List.length ctyps = 1 ->
     [], [compile_arg_pat ctx label pat (List.nth ctyps 0)], []

  | _ ->
     let arg_id, (destructure, cleanup) = compile_arg_pat ctx label pat (CT_tup ctyps) in
     let new_ids = List.map (fun ctyp -> gensym (), ctyp) ctyps in
     destructure
     @ [idecl (CT_tup ctyps) arg_id]
     @ List.mapi (fun i (id, ctyp) -> icopy l (CL_tuple (CL_id (arg_id, CT_tup ctyps), i)) (F_id id, ctyp)) new_ids,
     List.map (fun (id, _) -> id, ([], [])) new_ids,
     [iclear (CT_tup ctyps) arg_id]
     @ cleanup

let combine_destructure_cleanup xs = List.concat (List.map fst xs), List.concat (List.rev (List.map snd xs))

let fix_destructure fail_label = function
  | ([], cleanup) -> ([], cleanup)
  | destructure, cleanup ->
     let body_label = label "fundef_body_" in
     (destructure @ [igoto body_label; ilabel fail_label; imatch_failure (); ilabel body_label], cleanup)

let letdef_count = ref 0

(** Compile a Sail toplevel definition into an IR definition **)
let rec compile_def n total ctx def =
  match def with
  | DEF_fundef (FD_aux (FD_function (_, _, _, [FCL_aux (FCL_Funcl (id, _), _)]), _))
       when !opt_memo_cache ->
     let digest =
       def |> Pretty_print_sail.doc_def |> Pretty_print_sail.to_string |> Digest.string
     in
     let cachefile = Filename.concat "_sbuild" ("ccache" ^ Digest.to_hex digest) in
     let cached =
       if Sys.file_exists cachefile then
         let in_chan = open_in cachefile in
         try
           let compiled = Marshal.from_channel in_chan in
           close_in in_chan;
           Some (compiled, ctx)
         with
         | _ -> close_in in_chan; None
       else
         None
     in
     begin match cached with
     | Some (compiled, ctx) ->
        Util.progress "Compiling " (string_of_id id) n total;
        compiled, ctx
     | None ->
        let compiled, ctx = compile_def' n total ctx def in
        let out_chan = open_out cachefile in
        Marshal.to_channel out_chan compiled [Marshal.Closures];
        close_out out_chan;
        compiled, ctx
     end

  | _ -> compile_def' n total ctx def

and compile_def' n total ctx = function
  | DEF_reg_dec (DEC_aux (DEC_reg (_, _, typ, id), _)) ->
     [CDEF_reg_dec (id, ctyp_of_typ ctx typ, [])], ctx
  | DEF_reg_dec (DEC_aux (DEC_config (id, typ, exp), _)) ->
     let aexp = analyze_functions ctx analyze_primop (c_literals ctx (no_shadow IdSet.empty (anf exp))) in
     let setup, call, cleanup = compile_aexp ctx aexp in
     let instrs = setup @ [call (CL_id (id, ctyp_of_typ ctx typ))] @ cleanup in
     [CDEF_reg_dec (id, ctyp_of_typ ctx typ, instrs)], ctx

  | DEF_spec (VS_aux (VS_val_spec (_, id, _, _), _)) ->
     c_debug (lazy "Compiling VS");
     let quant, Typ_aux (fn_typ, _) = Env.get_val_spec id ctx.tc_env in
     let arg_typs, ret_typ = match fn_typ with
       | Typ_fn (arg_typs, ret_typ, _) -> arg_typs, ret_typ
       | _ -> assert false
     in
     let ctx' = { ctx with local_env = add_typquant (id_loc id) quant ctx.local_env } in
     let arg_ctyps, ret_ctyp = List.map (ctyp_of_typ ctx') arg_typs, ctyp_of_typ ctx' ret_typ in
     [CDEF_spec (id, arg_ctyps, ret_ctyp)], ctx

  | DEF_fundef (FD_aux (FD_function (_, _, _, [FCL_aux (FCL_Funcl (id, Pat_aux (Pat_exp (pat, exp), _)), _)]), _)) ->
     c_debug (lazy ("Compiling function " ^ string_of_id id));
     Util.progress "Compiling " (string_of_id id) n total;

     (* Find the function's type. *)
     let quant, Typ_aux (fn_typ, _) =
       try Env.get_val_spec id ctx.local_env
       with Type_error _ ->
         c_debug (lazy ("Falling back to global env for " ^ string_of_id id)); Env.get_val_spec id ctx.tc_env
     in
     let arg_typs, ret_typ = match fn_typ with
       | Typ_fn (arg_typs, ret_typ, _) -> arg_typs, ret_typ
       | _ -> assert false
     in

     (* Handle the argument pattern. *)
     let fundef_label = label "fundef_fail_" in
     let orig_ctx = ctx in
     (* The context must be updated before we call ctyp_of_typ on the argument types. *)
     let ctx = { ctx with local_env = add_typquant (id_loc id) quant ctx.tc_env } in

     let arg_ctyps =  List.map (ctyp_of_typ ctx) arg_typs in
     let ret_ctyp = ctyp_of_typ ctx ret_typ in

     (* Optimize and compile the expression to ANF. *)
     let aexp = no_shadow (pat_ids pat) (anf exp) in
     c_debug (lazy (Pretty_print_sail.to_string (pp_aexp aexp)));
     let aexp = analyze_functions ctx analyze_primop (c_literals ctx aexp) in

     if Id.compare (mk_id !opt_debug_function) id = 0 then
       let header =
         Printf.sprintf "Sail ANF for %s %s %s. (%s) -> %s" Util.("function" |> red |> clear) (string_of_id id)
                        (string_of_typquant quant)
                        Util.(string_of_list ", " (fun typ -> string_of_typ typ |> yellow |> clear) arg_typs)
                        Util.(string_of_typ ret_typ |> yellow |> clear)

       in
       prerr_endline (Util.header header (List.length arg_typs + 2));
       prerr_endline (Pretty_print_sail.to_string (pp_aexp aexp))
     else ();

     (* Compile the function arguments as patterns. *)
     let arg_setup, compiled_args, arg_cleanup = compile_arg_pats ctx fundef_label pat arg_ctyps in
     let ctx =
       (* We need the primop analyzer to be aware of the function argument types, so put them in ctx *)
       List.fold_left2 (fun ctx (id, _) ctyp -> { ctx with locals = Bindings.add id (Immutable, ctyp) ctx.locals }) ctx compiled_args arg_ctyps
     in

     (* Optimize and compile the expression from ANF to C. *)
     let aexp = no_shadow (pat_ids pat) (anf exp) in
     c_debug (lazy (Pretty_print_sail.to_string (pp_aexp aexp)));
     let aexp = analyze_functions ctx analyze_primop (c_literals ctx aexp) in
     c_debug (lazy (Pretty_print_sail.to_string (pp_aexp aexp)));
     let setup, call, cleanup = compile_aexp ctx aexp in
     c_debug (lazy "Compiled aexp");
     let gs = gensym () in
     let destructure, destructure_cleanup =
       compiled_args |> List.map snd |> combine_destructure_cleanup |> fix_destructure fundef_label
     in

     if is_stack_ctyp ret_ctyp then
       let instrs = arg_setup @ destructure @ [idecl ret_ctyp gs] @ setup @ [call (CL_id (gs, ret_ctyp))] @ cleanup @ destructure_cleanup @ arg_cleanup @ [ireturn (F_id gs, ret_ctyp)] in
       let instrs = fix_early_stack_return ctx instrs in
       let instrs = fix_exception ~return:(Some ret_ctyp) ctx instrs in
       [CDEF_fundef (id, None, List.map fst compiled_args, instrs)], orig_ctx
     else
       let instrs = arg_setup @ destructure @ setup @ [call (CL_addr (CL_id (gs, CT_ref ret_ctyp)))] @ cleanup @ destructure_cleanup @ arg_cleanup in
       let instrs = fix_early_return (CL_addr (CL_id (gs, CT_ref ret_ctyp))) ctx instrs in
       let instrs = fix_exception ctx instrs in
       [CDEF_fundef (id, Some gs, List.map fst compiled_args, instrs)], orig_ctx

  | DEF_fundef (FD_aux (FD_function (_, _, _, []), (l, _))) ->
     c_error ~loc:l "Encountered function with no clauses"
  | DEF_fundef (FD_aux (FD_function (_, _, _, funcls), (l, _))) ->
     c_error ~loc:l "Encountered function with multiple clauses"

  (* All abbreviations should expanded by the typechecker, so we don't
     need to translate type abbreviations into C typedefs. *)
  | DEF_type (TD_aux (TD_abbrev _, _)) -> [], ctx

  | DEF_type type_def ->
     let tdef, ctx = compile_type_def ctx type_def in
     [CDEF_type tdef], ctx

  | DEF_val (LB_aux (LB_val (pat, exp), _)) ->
     c_debug (lazy ("Compiling letbind " ^ string_of_pat pat));
     let ctyp = ctyp_of_typ ctx (typ_of_pat pat) in
     let aexp = analyze_functions ctx analyze_primop (c_literals ctx (no_shadow IdSet.empty (anf exp))) in
     let setup, call, cleanup = compile_aexp ctx aexp in
     let apat = anf_pat ~global:true pat in
     let gs = gensym () in
     let end_label = label "let_end_" in
     let destructure, destructure_cleanup, _ = compile_match ctx apat (F_id gs, ctyp) end_label in
     let gs_setup, gs_cleanup =
       [idecl ctyp gs], [iclear ctyp gs]
     in
     let bindings = List.map (fun (id, typ) -> id, ctyp_of_typ ctx typ) (apat_globals apat) in
     let n = !letdef_count in
     incr letdef_count;
     let instrs =
       gs_setup @ setup
       @ [call (CL_id (gs, ctyp))]
       @ cleanup
       @ destructure
       @ destructure_cleanup @ gs_cleanup
       @ [ilabel end_label]
     in
     [CDEF_let (n, bindings, instrs)],
     { ctx with letbinds = n :: ctx.letbinds }

  (* Only DEF_default that matters is default Order, but all order
     polymorphism is specialised by this point. *)
  | DEF_default _ -> [], ctx

  (* Overloading resolved by type checker *)
  | DEF_overload _ -> [], ctx

  (* Only the parser and sail pretty printer care about this. *)
  | DEF_fixity _ -> [], ctx

  (* We just ignore any pragmas we don't want to deal with. *)
  | DEF_pragma _ -> [], ctx

  | DEF_internal_mutrec fundefs ->
     let defs = List.map (fun fdef -> DEF_fundef fdef) fundefs in
     List.fold_left (fun (cdefs, ctx) def -> let cdefs', ctx = compile_def n total ctx def in (cdefs @ cdefs', ctx)) ([], ctx) defs

  | def ->
     c_error ("Could not compile:\n" ^ Pretty_print_sail.to_string (Pretty_print_sail.doc_def def))

(** To keep things neat we use GCC's local labels extension to limit
   the scope of labels. We do this by iterating over all the blocks
   and adding a __label__ declaration with all the labels local to
   that block. The add_local_labels function is called by the code
   generator just before it outputs C.

   See https://gcc.gnu.org/onlinedocs/gcc/Local-Labels.html **)
let add_local_labels' instrs =
  let is_label (I_aux (instr, _)) =
    match instr with
    | I_label str -> [str]
    | _ -> []
  in
  let labels = List.concat (List.map is_label instrs) in
  let local_label_decl = iraw ("__label__ " ^ String.concat ", " labels ^ ";\n") in
  if labels = [] then
    instrs
  else
    local_label_decl :: instrs

let add_local_labels instrs =
  match map_instrs add_local_labels' (iblock instrs) with
  | I_aux (I_block instrs, _) -> instrs
  | _ -> assert false

(**************************************************************************)
(* 5. Optimizations                                                       *)
(**************************************************************************)

let rec clexp_rename from_id to_id =
  let rename id = if Id.compare id from_id = 0 then to_id else id in
  function
  | CL_id (id, ctyp) -> CL_id (rename id, ctyp)
  | CL_field (clexp, field) -> CL_field (clexp_rename from_id to_id clexp, field)
  | CL_tuple (clexp, n) -> CL_tuple (clexp_rename from_id to_id clexp, n)
  | CL_addr clexp -> CL_addr (clexp_rename from_id to_id clexp)
  | CL_current_exception ctyp -> CL_current_exception ctyp
  | CL_have_exception -> CL_have_exception

let rec instrs_rename from_id to_id =
  let rename id = if Id.compare id from_id = 0 then to_id else id in
  let crename = cval_rename from_id to_id in
  let irename instrs = instrs_rename from_id to_id instrs in
  let lrename = clexp_rename from_id to_id in
  function
  | (I_aux (I_decl (ctyp, new_id), _) :: _) as instrs when Id.compare from_id new_id = 0 -> instrs
  | I_aux (I_decl (ctyp, new_id), aux) :: instrs -> I_aux (I_decl (ctyp, new_id), aux) :: irename instrs
  | I_aux (I_reset (ctyp, id), aux) :: instrs -> I_aux (I_reset (ctyp, rename id), aux) :: irename instrs
  | I_aux (I_init (ctyp, id, cval), aux) :: instrs -> I_aux (I_init (ctyp, rename id, crename cval), aux) :: irename instrs
  | I_aux (I_reinit (ctyp, id, cval), aux) :: instrs -> I_aux (I_reinit (ctyp, rename id, crename cval), aux) :: irename instrs
  | I_aux (I_if (cval, then_instrs, else_instrs, ctyp), aux) :: instrs ->
     I_aux (I_if (crename cval, irename then_instrs, irename else_instrs, ctyp), aux) :: irename instrs
  | I_aux (I_jump (cval, label), aux) :: instrs -> I_aux (I_jump (crename cval, label), aux) :: irename instrs
  | I_aux (I_funcall (clexp, extern, id, cvals), aux) :: instrs ->
     I_aux (I_funcall (lrename clexp, extern, rename id, List.map crename cvals), aux) :: irename instrs
  | I_aux (I_copy (clexp, cval), aux) :: instrs -> I_aux (I_copy (lrename clexp, crename cval), aux) :: irename instrs
  | I_aux (I_alias (clexp, cval), aux) :: instrs -> I_aux (I_alias (lrename clexp, crename cval), aux) :: irename instrs
  | I_aux (I_clear (ctyp, id), aux) :: instrs -> I_aux (I_clear (ctyp, rename id), aux) :: irename instrs
  | I_aux (I_return cval, aux) :: instrs -> I_aux (I_return (crename cval), aux) :: irename instrs
  | I_aux (I_block block, aux) :: instrs -> I_aux (I_block (irename block), aux) :: irename instrs
  | I_aux (I_try_block block, aux) :: instrs -> I_aux (I_try_block (irename block), aux) :: irename instrs
  | I_aux (I_throw cval, aux) :: instrs -> I_aux (I_throw (crename cval), aux) :: irename instrs
  | (I_aux ((I_comment _ | I_raw _ | I_label _ | I_goto _ | I_match_failure | I_undefined _), _) as instr) :: instrs -> instr :: irename instrs
  | [] -> []

let hoist_ctyp = function
  | CT_int | CT_lbits _ | CT_struct _ -> true
  | _ -> false

let hoist_counter = ref 0
let hoist_id () =
  let id = mk_id ("gh#" ^ string_of_int !hoist_counter) in
  incr hoist_counter;
  id

let hoist_allocations ctx = function
  | CDEF_fundef (function_id, _, _, _) as cdef when IdSet.mem function_id ctx.recursive_functions ->
     c_debug (lazy (Printf.sprintf "skipping recursive function %s" (string_of_id function_id)));
     [cdef]

  | CDEF_fundef (function_id, heap_return, args, body) ->
     let decls = ref [] in
     let cleanups = ref [] in
     let rec hoist = function
       | I_aux (I_decl (ctyp, decl_id), annot) :: instrs when hoist_ctyp ctyp ->
          let hid = hoist_id () in
          decls := idecl ctyp hid :: !decls;
          cleanups := iclear ctyp hid :: !cleanups;
          let instrs = instrs_rename decl_id hid instrs in
          I_aux (I_reset (ctyp, hid), annot) :: hoist instrs

       | I_aux (I_init (ctyp, decl_id, cval), annot) :: instrs when hoist_ctyp ctyp ->
          let hid = hoist_id () in
          decls := idecl ctyp hid :: !decls;
          cleanups := iclear ctyp hid :: !cleanups;
          let instrs = instrs_rename decl_id hid instrs in
          I_aux (I_reinit (ctyp, hid, cval), annot) :: hoist instrs

       | I_aux (I_clear (ctyp, _), _) :: instrs when hoist_ctyp ctyp ->
          hoist instrs

       | I_aux (I_block block, annot) :: instrs ->
          I_aux (I_block (hoist block), annot) :: hoist instrs
       | I_aux (I_try_block block, annot) :: instrs ->
          I_aux (I_try_block (hoist block), annot) :: hoist instrs
       | I_aux (I_if (cval, then_instrs, else_instrs, ctyp), annot) :: instrs ->
          I_aux (I_if (cval, hoist then_instrs, hoist else_instrs, ctyp), annot) :: hoist instrs

       | instr :: instrs -> instr :: hoist instrs
       | [] -> []
     in
     let body = hoist body in
     if !decls = [] then
       [CDEF_fundef (function_id, heap_return, args, body)]
     else
       [CDEF_startup (function_id, List.rev !decls);
        CDEF_fundef (function_id, heap_return, args, body);
        CDEF_finish (function_id, !cleanups)]

  | cdef -> [cdef]

let flat_counter = ref 0
let flat_id () =
  let id = mk_id ("local#" ^ string_of_int !flat_counter) in
  incr flat_counter;
  id

let rec flatten_instrs = function
  | I_aux (I_decl (ctyp, decl_id), aux) :: instrs ->
     let fid = flat_id () in
     I_aux (I_decl (ctyp, fid), aux) :: flatten_instrs (instrs_rename decl_id fid instrs)

  | I_aux ((I_block block | I_try_block block), _) :: instrs ->
     flatten_instrs block @ flatten_instrs instrs

  | I_aux (I_if (cval, then_instrs, else_instrs, _), _) :: instrs ->
     let then_label = label "then_" in
     let endif_label = label "endif_" in
     [ijump cval then_label]
     @ flatten_instrs else_instrs
     @ [igoto endif_label]
     @ [ilabel then_label]
     @ flatten_instrs then_instrs
     @ [ilabel endif_label]
     @ flatten_instrs instrs

  | I_aux (I_comment _, _) :: instrs -> flatten_instrs instrs

  | instr :: instrs -> instr :: flatten_instrs instrs
  | [] -> []

let flatten_cdef =
  function
  | CDEF_fundef (function_id, heap_return, args, body) ->
     flat_counter := 0;
     CDEF_fundef (function_id, heap_return, args, flatten_instrs body)

  | CDEF_let (n, bindings, instrs) ->
    flat_counter := 0;
    CDEF_let (n, bindings, flatten_instrs instrs)

  | cdef -> cdef


let rec specialize_variants ctx prior =
  let unifications = ref (Bindings.empty) in

  let fix_variant_ctyp var_id new_ctors = function
    | CT_variant (id, ctors) when Id.compare id var_id = 0 -> CT_variant (id, new_ctors)
    | ctyp -> ctyp
  in

  let specialize_constructor ctx ctor_id ctyp =
    function
    | I_aux (I_funcall (clexp, extern, id, [cval]), ((_, l) as aux)) as instr when Id.compare id ctor_id = 0 ->
       (* Work out how each call to a constructor in instantiated and add that to unifications *)
       let unification = List.map ctyp_suprema (ctyp_unify ctyp (cval_ctyp cval)) in
       let mono_id = append_id ctor_id ("_" ^ Util.string_of_list "_" (fun ctyp -> Util.zencode_string (string_of_ctyp ctyp)) unification) in
       unifications := Bindings.add mono_id (ctyp_suprema (cval_ctyp cval)) !unifications;

       (* We need to cast each cval to it's ctyp_suprema in order to put it in the most general constructor *)
       let casts =
         let cast_to_suprema (frag, ctyp) =
           let suprema = ctyp_suprema ctyp in
           if ctyp_equal ctyp suprema then
             [], (unpoly frag, ctyp), []
           else
             let gs = gensym () in
             [idecl suprema gs;
              icopy l (CL_id (gs, suprema)) (unpoly frag, ctyp)],
             (F_id gs, suprema),
             [iclear suprema gs]
         in
         List.map cast_to_suprema [cval]
       in
       let setup = List.concat (List.map (fun (setup, _, _) -> setup) casts) in
       let cvals = List.map (fun (_, cval, _) -> cval) casts in
       let cleanup = List.concat (List.map (fun (_, _, cleanup) -> cleanup) casts) in

       let mk_funcall instr =
         if List.length setup = 0 then
           instr
         else
           iblock (setup @ [instr] @ cleanup)
       in

       mk_funcall (I_aux (I_funcall (clexp, extern, mono_id, cvals), aux))

    | I_aux (I_funcall (clexp, extern, id, cvals), ((_, l) as aux)) as instr when Id.compare id ctor_id = 0 ->
       c_error ~loc:l "Multiple argument constructor found"

    | instr -> instr
  in

  function
  | (CDEF_type (CTD_variant (var_id, ctors)) as cdef) :: cdefs ->
     let polymorphic_ctors = List.filter (fun (_, ctyp) -> is_polymorphic ctyp) ctors in

     let cdefs =
       List.fold_left (fun cdefs (ctor_id, ctyp) -> List.map (cdef_map_instr (specialize_constructor ctx ctor_id ctyp)) cdefs)
                      cdefs
                      polymorphic_ctors
     in

     let monomorphic_ctors = List.filter (fun (_, ctyp) -> not (is_polymorphic ctyp)) ctors in
     let specialized_ctors = Bindings.bindings !unifications in
     let new_ctors = monomorphic_ctors @ specialized_ctors in

     let ctx = {
         ctx with variants = Bindings.add var_id
                               (List.fold_left (fun m (id, ctyp) -> Bindings.add id ctyp m) !unifications monomorphic_ctors)
                               ctx.variants
       } in

     let cdefs = List.map (cdef_map_ctyp (map_ctyp (fix_variant_ctyp var_id new_ctors))) cdefs in
     let prior = List.map (cdef_map_ctyp (map_ctyp (fix_variant_ctyp var_id new_ctors))) prior in
     specialize_variants ctx (CDEF_type (CTD_variant (var_id, new_ctors)) :: prior) cdefs

  | cdef :: cdefs ->
     let remove_poly (I_aux (instr, aux)) =
       match instr with
       | I_copy (clexp, (frag, ctyp)) when is_polymorphic ctyp ->
          I_aux (I_copy (clexp, (frag, ctyp_suprema (clexp_ctyp clexp))), aux)
       | instr -> I_aux (instr, aux)
     in
     let cdef = cdef_map_instr remove_poly cdef in
     specialize_variants ctx (cdef :: prior) cdefs

  | [] -> List.rev prior, ctx

(** Once we specialize variants, there may be additional type
   dependencies which could be in the wrong order. As such we need to
   sort the type definitions in the list of cdefs. *)
let sort_ctype_defs cdefs =
  (* Split the cdefs into type definitions and non type definitions *)
  let is_ctype_def = function CDEF_type _ -> true | _ -> false in
  let unwrap = function CDEF_type ctdef -> ctdef | _ -> assert false in
  let ctype_defs = List.map unwrap (List.filter is_ctype_def cdefs) in
  let cdefs = List.filter (fun cdef -> not (is_ctype_def cdef)) cdefs in

  let ctdef_id = function
    | CTD_enum (id, _) | CTD_struct (id, _) | CTD_variant (id, _) -> id
  in

  let ctdef_ids = function
    | CTD_enum _ -> IdSet.empty
    | CTD_struct (_, ctors) | CTD_variant (_, ctors) ->
       List.fold_left (fun ids (_, ctyp) -> IdSet.union (ctyp_ids ctyp) ids) IdSet.empty ctors
  in

  (* Create a reverse (i.e. from types to the types that are dependent
     upon them) id graph of dependencies between types *)
  let module IdGraph = Graph.Make(Id) in

  let graph =
    List.fold_left (fun g ctdef ->
        List.fold_left (fun g id -> IdGraph.add_edge id (ctdef_id ctdef) g)
          (IdGraph.add_edges (ctdef_id ctdef) [] g) (* Make sure even types with no dependencies are in graph *)
          (IdSet.elements (ctdef_ids ctdef)))
      IdGraph.empty
      ctype_defs
  in

  (* Then select the ctypes in the correct order as given by the topsort *)
  let ids = IdGraph.topsort graph in
  let ctype_defs =
    List.map (fun id -> CDEF_type (List.find (fun ctdef -> Id.compare (ctdef_id ctdef) id = 0) ctype_defs)) ids
  in

  ctype_defs @ cdefs

let removed = icomment "REMOVED"

let is_not_removed = function
  | I_aux (I_comment "REMOVED", _) -> false
  | _ -> true

(** This optimization looks for patterns of the form:

    create x : t;
    x = y;
    // modifications to x, and no changes to y
    y = x;
    // no further changes to x
    kill x;

    If found, we can remove the variable x, and directly modify y instead. *)
let remove_alias ctx =
  let pattern ctyp id =
    let alias = ref None in
    let rec scan ctyp id n instrs =
      match n, !alias, instrs with
      | 0, None, I_aux (I_copy (CL_id (id', ctyp'), (F_id a, ctyp'')), _) :: instrs
           when Id.compare id id' = 0 && ctyp_equal ctyp ctyp' && ctyp_equal ctyp' ctyp'' ->
         alias := Some a;
         scan ctyp id 1 instrs

      | 1, Some a, I_aux (I_copy (CL_id (a', ctyp'), (F_id id', ctyp'')), _) :: instrs
           when Id.compare a a' = 0 && Id.compare id id' = 0 && ctyp_equal ctyp ctyp' && ctyp_equal ctyp' ctyp'' ->
         scan ctyp id 2 instrs

      | 1, Some a, instr :: instrs ->
         if IdSet.mem a (instr_ids instr) then
           None
         else
           scan ctyp id 1 instrs

      | 2, Some a, I_aux (I_clear (ctyp', id'), _) :: instrs
           when Id.compare id id' = 0 && ctyp_equal ctyp ctyp' ->
         scan ctyp id 2 instrs

      | 2, Some a, instr :: instrs ->
         if IdSet.mem id (instr_ids instr) then
           None
         else
           scan ctyp id 2 instrs

      | 2, Some a, [] -> !alias

      | n, _, _ :: instrs when n = 0 || n > 2 -> scan ctyp id n instrs
      | _, _, I_aux (_, (_, l)) :: instrs -> raise (Reporting.err_unreachable l __POS__ "optimize_alias")
      | _, _, [] -> None
    in
    scan ctyp id 0
  in
  let remove_alias id alias = function
    | I_aux (I_copy (CL_id (id', _), (F_id alias', _)), _)
         when Id.compare id id' = 0 && Id.compare alias alias' = 0 -> removed
    | I_aux (I_copy (CL_id (alias', _), (F_id id', _)), _)
         when Id.compare id id' = 0 && Id.compare alias alias' = 0 -> removed
    | I_aux (I_clear (_, id'), _) -> removed
    | instr -> instr
  in
  let rec opt = function
    | I_aux (I_decl (ctyp, id), _) as instr :: instrs ->
       begin match pattern ctyp id instrs with
       | None -> instr :: opt instrs
       | Some alias ->
          let instrs = List.map (map_instr (remove_alias id alias)) instrs in
          filter_instrs is_not_removed (List.map (instr_rename id alias) instrs)
       end

    | I_aux (I_block block, aux) :: instrs -> I_aux (I_block (opt block), aux) :: opt instrs
    | I_aux (I_try_block block, aux) :: instrs -> I_aux (I_try_block (opt block), aux) :: opt instrs
    | I_aux (I_if (cval, then_instrs, else_instrs, ctyp), aux) :: instrs ->
       I_aux (I_if (cval, opt then_instrs, opt else_instrs, ctyp), aux) :: opt instrs

    | instr :: instrs ->
       instr :: opt instrs
    | [] -> []
  in
  function
  | CDEF_fundef (function_id, heap_return, args, body) ->
     [CDEF_fundef (function_id, heap_return, args, opt body)]
  | cdef -> [cdef]


(** This pass ensures that all variables created by I_decl have unique names *)
let unique_names =
  let unique_counter = ref 0 in
  let unique_id () =
    let id = mk_id ("u#" ^ string_of_int !unique_counter) in
    incr unique_counter;
    id
  in

  let rec opt seen = function
    | I_aux (I_decl (ctyp, id), aux) :: instrs when IdSet.mem id seen ->
       let id' = unique_id () in
       let instrs', seen = opt seen instrs in
       I_aux (I_decl (ctyp, id'), aux) :: instrs_rename id id' instrs', seen

    | I_aux (I_decl (ctyp, id), aux) :: instrs ->
       let instrs', seen = opt (IdSet.add id seen) instrs in
       I_aux (I_decl (ctyp, id), aux) :: instrs', seen

    | I_aux (I_block block, aux) :: instrs ->
       let block', seen = opt seen block in
       let instrs', seen = opt seen instrs in
       I_aux (I_block block', aux) :: instrs', seen

    | I_aux (I_try_block block, aux) :: instrs ->
       let block', seen = opt seen block in
       let instrs', seen = opt seen instrs in
       I_aux (I_try_block block', aux) :: instrs', seen

    | I_aux (I_if (cval, then_instrs, else_instrs, ctyp), aux) :: instrs ->
       let then_instrs', seen = opt seen then_instrs in
       let else_instrs', seen = opt seen else_instrs in
       let instrs', seen = opt seen instrs in
       I_aux (I_if (cval, then_instrs', else_instrs', ctyp), aux) :: instrs', seen

    | instr :: instrs ->
       let instrs', seen = opt seen instrs in
       instr :: instrs', seen

    | [] -> [], seen
  in
  function
  | CDEF_fundef (function_id, heap_return, args, body) ->
     [CDEF_fundef (function_id, heap_return, args, fst (opt IdSet.empty body))]
  | CDEF_reg_dec (id, ctyp, instrs) ->
     [CDEF_reg_dec (id, ctyp, fst (opt IdSet.empty instrs))]
  | CDEF_let (n, bindings, instrs) ->
     [CDEF_let (n, bindings, fst (opt IdSet.empty instrs))]
  | cdef -> [cdef]

(** This optimization looks for patterns of the form

    create x : t;
    create y : t;
    // modifications to y, no changes to x
    x = y;
    kill y;

    If found we can replace y by x *)
let combine_variables ctx =
  let pattern ctyp id =
    let combine = ref None in
    let rec scan id n instrs =
      match n, !combine, instrs with
      | 0, None, I_aux (I_block block, _) :: instrs ->
         begin match scan id 0 block with
         | Some combine -> Some combine
         | None -> scan id 0 instrs
         end

      | 0, None, I_aux (I_decl (ctyp', id'), _) :: instrs when ctyp_equal ctyp ctyp' ->
         combine := Some id';
         scan id 1 instrs

      | 1, Some c, I_aux (I_copy (CL_id (id', ctyp'), (F_id c', ctyp'')), _) :: instrs
           when Id.compare c c' = 0 && Id.compare id id' = 0 && ctyp_equal ctyp ctyp' && ctyp_equal ctyp' ctyp'' ->
         scan id 2 instrs

      (* Ignore seemingly early clears of x, as this can happen along exception paths *)
      | 1, Some c, I_aux (I_clear (_, id'), _) :: instrs
           when Id.compare id id' = 0 ->
         scan id 1 instrs

      | 1, Some c, instr :: instrs ->
         if IdSet.mem id (instr_ids instr) then
           None
         else
           scan id 1 instrs

      | 2, Some c, I_aux (I_clear (ctyp', c'), _) :: instrs
           when Id.compare c c' = 0 && ctyp_equal ctyp ctyp' ->
         !combine

      | 2, Some c, instr :: instrs ->
         if IdSet.mem c (instr_ids instr) then
           None
         else
           scan id 2 instrs

      | 2, Some c, [] -> !combine

      | n, _, _ :: instrs -> scan id n instrs
      | _, _, [] -> None
    in
    scan id 0
  in
  let remove_variable id = function
    | I_aux (I_decl (_, id'), _) when Id.compare id id' = 0 -> removed
    | I_aux (I_clear (_, id'), _) when Id.compare id id' = 0 -> removed
    | instr -> instr
  in
  let is_not_self_assignment = function
    | I_aux (I_copy (CL_id (id, _), (F_id id', _)), _) when Id.compare id id' = 0 -> false
    | _ -> true
  in
  let rec opt = function
    | (I_aux (I_decl (ctyp, id), _) as instr) :: instrs ->
       begin match pattern ctyp id instrs with
       | None -> instr :: opt instrs
       | Some combine ->
          let instrs = List.map (map_instr (remove_variable combine)) instrs in
          let instrs = filter_instrs (fun i -> is_not_removed i && is_not_self_assignment i)
                                     (List.map (instr_rename combine id) instrs) in
          opt (instr :: instrs)
       end

    | I_aux (I_block block, aux) :: instrs -> I_aux (I_block (opt block), aux) :: opt instrs
    | I_aux (I_try_block block, aux) :: instrs -> I_aux (I_try_block (opt block), aux) :: opt instrs
    | I_aux (I_if (cval, then_instrs, else_instrs, ctyp), aux) :: instrs ->
       I_aux (I_if (cval, opt then_instrs, opt else_instrs, ctyp), aux) :: opt instrs

    | instr :: instrs ->
       instr :: opt instrs
    | [] -> []
  in
  function
  | CDEF_fundef (function_id, heap_return, args, body) ->
     [CDEF_fundef (function_id, heap_return, args, opt body)]
  | cdef -> [cdef]

(** hoist_alias looks for patterns like

    recreate x; y = x; // no furthner mentions of x

    Provided x has a certain type, then we can make y an alias to x
    (denoted in the IR as 'alias y = x'). This only works if y also has
    a lifespan that also spans the entire function body. It's possible
    we may need to do a more thorough lifetime evaluation to get this
    to be 100% correct - so it's behind the -Oexperimental flag
    for now. Some benchmarking shows that this kind of optimization
    is very valuable however! *)
let hoist_alias ctx =
  (* Must return true for a subset of the types hoist_ctyp would return true for. *)
  let is_struct = function
    | CT_struct _ -> true
    | _ -> false
  in
  let pattern heap_return id ctyp instrs =
    let rec scan instrs =
      match instrs with
      (* The only thing that has a longer lifetime than id is the
         function return, so we want to make sure we avoid that
         case. *)
      | (I_aux (I_copy (clexp, (F_id id', ctyp')), aux) as instr) :: instrs
           when not (IdSet.mem heap_return (instr_writes instr)) && Id.compare id id' = 0
                && ctyp_equal (clexp_ctyp clexp) ctyp && ctyp_equal ctyp ctyp' ->
         if List.exists (IdSet.mem id) (List.map instr_ids instrs) then
           instr :: scan instrs
         else
           I_aux (I_alias (clexp, (F_id id', ctyp')), aux) :: instrs

      | instr :: instrs -> instr :: scan instrs
      | [] -> []
    in
    scan instrs
  in
  let optimize heap_return =
    let rec opt = function
      | (I_aux (I_reset (ctyp, id), _) as instr) :: instrs when not (is_stack_ctyp ctyp) && is_struct ctyp ->
         instr :: opt (pattern heap_return id ctyp instrs)

      | I_aux (I_block block, aux) :: instrs -> I_aux (I_block (opt block), aux) :: opt instrs
      | I_aux (I_try_block block, aux) :: instrs -> I_aux (I_try_block (opt block), aux) :: opt instrs
      | I_aux (I_if (cval, then_instrs, else_instrs, ctyp), aux) :: instrs ->
         I_aux (I_if (cval, opt then_instrs, opt else_instrs, ctyp), aux) :: opt instrs

      | instr :: instrs ->
         instr :: opt instrs
      | [] -> []
    in
    opt
  in
  function
  | CDEF_fundef (function_id, Some heap_return, args, body) ->
     [CDEF_fundef (function_id, Some heap_return, args, optimize heap_return body)]
  | cdef -> [cdef]

let concatMap f xs = List.concat (List.map f xs)

let optimize ctx cdefs =
  let nothing cdefs = cdefs in
  cdefs
  |> (if !optimize_alias then concatMap unique_names else nothing)
  |> (if !optimize_alias then concatMap (remove_alias ctx) else nothing)
  |> (if !optimize_alias then concatMap (combine_variables ctx) else nothing)
  |> (if !optimize_hoist_allocations then concatMap (hoist_allocations ctx) else nothing)
  |> (if !optimize_hoist_allocations && !optimize_experimental then concatMap (hoist_alias ctx) else nothing)

(**************************************************************************)
(* 6. Code generation                                                     *)
(**************************************************************************)

let sgen_id id = Util.zencode_string (string_of_id id)
let codegen_id id = string (sgen_id id)

let rec sgen_ctyp = function
  | CT_unit -> "unit"
  | CT_bit -> "fbits"
  | CT_bool -> "bool"
  | CT_fbits _ -> "fbits"
  | CT_sbits _ -> "sbits"
  | CT_int64 -> "mach_int"
  | CT_int -> "sail_int"
  | CT_lbits _ -> "lbits"
  | CT_tup _ as tup -> "struct " ^ Util.zencode_string ("tuple_" ^ string_of_ctyp tup)
  | CT_struct (id, _) -> "struct " ^ sgen_id id
  | CT_enum (id, _) -> "enum " ^ sgen_id id
  | CT_variant (id, _) -> "struct " ^ sgen_id id
  | CT_list _ as l -> Util.zencode_string (string_of_ctyp l)
  | CT_vector _ as v -> Util.zencode_string (string_of_ctyp v)
  | CT_string -> "sail_string"
  | CT_real -> "real"
  | CT_ref ctyp -> sgen_ctyp ctyp ^ "*"
  | CT_poly -> "POLY" (* c_error "Tried to generate code for non-monomorphic type" *)

let rec sgen_ctyp_name = function
  | CT_unit -> "unit"
  | CT_bit -> "fbits"
  | CT_bool -> "bool"
  | CT_fbits _ -> "fbits"
  | CT_sbits _ -> "sbits"
  | CT_int64 -> "mach_int"
  | CT_int -> "sail_int"
  | CT_lbits _ -> "lbits"
  | CT_tup _ as tup -> Util.zencode_string ("tuple_" ^ string_of_ctyp tup)
  | CT_struct (id, _) -> sgen_id id
  | CT_enum (id, _) -> sgen_id id
  | CT_variant (id, _) -> sgen_id id
  | CT_list _ as l -> Util.zencode_string (string_of_ctyp l)
  | CT_vector _ as v -> Util.zencode_string (string_of_ctyp v)
  | CT_string -> "sail_string"
  | CT_real -> "real"
  | CT_ref ctyp -> "ref_" ^ sgen_ctyp_name ctyp
  | CT_poly -> "POLY" (* c_error "Tried to generate code for non-monomorphic type" *)

let sgen_cval_param (frag, ctyp) =
  match ctyp with
  | CT_lbits direction ->
     string_of_fragment frag ^ ", " ^ string_of_bool direction
  | CT_sbits direction ->
     string_of_fragment frag ^ ", " ^ string_of_bool direction
  | CT_fbits (len, direction) ->
     string_of_fragment frag ^ ", UINT64_C(" ^ string_of_int len ^ ") , " ^ string_of_bool direction
  | _ ->
     string_of_fragment frag

let sgen_cval = function (frag, _) -> string_of_fragment frag

let rec sgen_clexp = function
  | CL_id (id, _) -> "&" ^ sgen_id id
  | CL_field (clexp, field) -> "&((" ^ sgen_clexp clexp ^ ")->" ^ Util.zencode_string field ^ ")"
  | CL_tuple (clexp, n) -> "&((" ^ sgen_clexp clexp ^ ")->ztup" ^ string_of_int n ^ ")"
  | CL_addr clexp -> "(*(" ^ sgen_clexp clexp ^ "))"
  | CL_have_exception -> "have_exception"
  | CL_current_exception _ -> "current_exception"

let rec sgen_clexp_pure = function
  | CL_id (id, _) -> sgen_id id
  | CL_field (clexp, field) -> sgen_clexp_pure clexp ^ "." ^ Util.zencode_string field
  | CL_tuple (clexp, n) -> sgen_clexp_pure clexp ^ ".ztup" ^ string_of_int n
  | CL_addr clexp -> "(*(" ^ sgen_clexp_pure clexp ^ "))"
  | CL_have_exception -> "have_exception"
  | CL_current_exception _ -> "current_exception"

(** Generate instructions to copy from a cval to a clexp. This will
   insert any needed type conversions from big integers to small
   integers (or vice versa), or from arbitrary-length bitvectors to
   and from uint64 bitvectors as needed. *)
let rec codegen_conversion l clexp cval =
  let open Printf in
  let ctyp_to = clexp_ctyp clexp in
  let ctyp_from = cval_ctyp cval in
  match ctyp_to, ctyp_from with
  (* When both types are equal, we don't need any conversion. *)
  | _, _ when ctyp_equal ctyp_to ctyp_from ->
     if is_stack_ctyp ctyp_to then
       ksprintf string "  %s = %s;" (sgen_clexp_pure clexp) (sgen_cval cval)
     else
       ksprintf string "  COPY(%s)(%s, %s);" (sgen_ctyp_name ctyp_to) (sgen_clexp clexp) (sgen_cval cval)

  | CT_ref ctyp_to, ctyp_from ->
     codegen_conversion l (CL_addr clexp) cval

  (* If we have to convert between tuple types, convert the fields individually. *)
  | CT_tup ctyps_to, CT_tup ctyps_from when List.length ctyps_to = List.length ctyps_from ->
     let conversions =
       List.mapi (fun i ctyp -> codegen_conversion l (CL_tuple (clexp, i)) (F_field (fst cval, "ztup" ^ string_of_int i), ctyp)) ctyps_from
     in
     string "  /* conversions */"
     ^^ hardline
     ^^ separate hardline conversions
     ^^ hardline
     ^^ string "  /* end conversions */"

  (* For anything not special cased, just try to call a appropriate CONVERT_OF function. *)
  | _, _ when is_stack_ctyp (clexp_ctyp clexp) ->
     ksprintf string "  %s = CONVERT_OF(%s, %s)(%s);"
              (sgen_clexp_pure clexp) (sgen_ctyp_name ctyp_to) (sgen_ctyp_name ctyp_from) (sgen_cval_param cval)
  | _, _ ->
     ksprintf string "  CONVERT_OF(%s, %s)(%s, %s);"
              (sgen_ctyp_name ctyp_to) (sgen_ctyp_name ctyp_from) (sgen_clexp clexp) (sgen_cval_param cval)

let rec codegen_instr fid ctx (I_aux (instr, (_, l))) =
  let open Printf in
  match instr with
  | I_decl (ctyp, id) when is_stack_ctyp ctyp ->
     ksprintf string "  %s %s;" (sgen_ctyp ctyp) (sgen_id id)
  | I_decl (ctyp, id) ->
     ksprintf string "  %s %s;" (sgen_ctyp ctyp) (sgen_id id) ^^ hardline
     ^^ ksprintf string "  CREATE(%s)(&%s);" (sgen_ctyp_name ctyp) (sgen_id id)

  | I_copy (clexp, cval) -> codegen_conversion l clexp cval

  | I_alias (clexp, cval) ->
     ksprintf string "  %s = %s;" (sgen_clexp_pure clexp) (sgen_cval cval)

  | I_jump (cval, label) ->
     ksprintf string "  if (%s) goto %s;" (sgen_cval cval) label

  | I_if (cval, [then_instr], [], ctyp) ->
     ksprintf string "  if (%s)" (sgen_cval cval) ^^ hardline
     ^^ twice space ^^ codegen_instr fid ctx then_instr
  | I_if (cval, then_instrs, [], ctyp) ->
     string "  if" ^^ space ^^ parens (string (sgen_cval cval)) ^^ space
     ^^ surround 0 0 lbrace (separate_map hardline (codegen_instr fid ctx) then_instrs) (twice space ^^ rbrace)
  | I_if (cval, then_instrs, else_instrs, ctyp) ->
     string "  if" ^^ space ^^ parens (string (sgen_cval cval)) ^^ space
     ^^ surround 0 0 lbrace (separate_map hardline (codegen_instr fid ctx) then_instrs) (twice space ^^ rbrace)
     ^^ space ^^ string "else" ^^ space
     ^^ surround 0 0 lbrace (separate_map hardline (codegen_instr fid ctx) else_instrs) (twice space ^^ rbrace)

  | I_block instrs ->
     string "  {"
     ^^ jump 2 2 (separate_map hardline (codegen_instr fid ctx) instrs) ^^ hardline
     ^^ string "  }"

  | I_try_block instrs ->
     string "  { /* try */"
     ^^ jump 2 2 (separate_map hardline (codegen_instr fid ctx) instrs) ^^ hardline
     ^^ string "  }"

  | I_funcall (x, extern, f, args) ->
     let c_args = Util.string_of_list ", " sgen_cval args in
     let ctyp = clexp_ctyp x in
     let fname =
       if Env.is_extern f ctx.tc_env "c" then
         Env.get_extern f ctx.tc_env "c"
       else if extern then
         string_of_id f
       else
         sgen_id f
     in
     let fname =
       match fname, ctyp with
       | "internal_pick", _ -> Printf.sprintf "pick_%s" (sgen_ctyp_name ctyp)
       | "eq_anything", _ ->
          begin match args with
          | cval :: _ -> Printf.sprintf "eq_%s" (sgen_ctyp_name (cval_ctyp cval))
          | _ -> c_error "eq_anything function with bad arity."
          end
       | "length", _ ->
          begin match args with
          | cval :: _ -> Printf.sprintf "length_%s" (sgen_ctyp_name (cval_ctyp cval))
          | _ -> c_error "length function with bad arity."
          end
       | "vector_access", CT_bit -> "bitvector_access"
       | "vector_access", _ ->
          begin match args with
          | cval :: _ -> Printf.sprintf "vector_access_%s" (sgen_ctyp_name (cval_ctyp cval))
          | _ -> c_error "vector access function with bad arity."
          end
       | "vector_update_subrange", _ -> Printf.sprintf "vector_update_subrange_%s" (sgen_ctyp_name ctyp)
       | "vector_subrange", _ -> Printf.sprintf "vector_subrange_%s" (sgen_ctyp_name ctyp)
       | "vector_update", CT_fbits _ -> "update_fbits"
       | "vector_update", CT_lbits _ -> "update_lbits"
       | "vector_update", _ -> Printf.sprintf "vector_update_%s" (sgen_ctyp_name ctyp)
       | "string_of_bits", _ ->
          begin match cval_ctyp (List.nth args 0) with
          | CT_fbits _ -> "string_of_fbits"
          | CT_lbits _ -> "string_of_lbits"
          | _ -> assert false
          end
       | "decimal_string_of_bits", _ ->
          begin match cval_ctyp (List.nth args 0) with
          | CT_fbits _ -> "decimal_string_of_fbits"
          | CT_lbits _ -> "decimal_string_of_lbits"
          | _ -> assert false
          end
       | "internal_vector_update", _ -> Printf.sprintf "internal_vector_update_%s" (sgen_ctyp_name ctyp)
       | "internal_vector_init", _ -> Printf.sprintf "internal_vector_init_%s" (sgen_ctyp_name ctyp)
       | "undefined_vector", CT_fbits _ -> "UNDEFINED(fbits)"
       | "undefined_vector", CT_lbits _ -> "UNDEFINED(lbits)"
       | "undefined_bit", _ -> "UNDEFINED(fbits)"
       | "undefined_vector", _ -> Printf.sprintf "UNDEFINED(vector_%s)" (sgen_ctyp_name ctyp)
       | fname, _ -> fname
     in
     if fname = "sail_assert" && !optimize_experimental then
       empty
     else if fname = "reg_deref" then
       if is_stack_ctyp ctyp then
         string (Printf.sprintf  "  %s = *(%s);" (sgen_clexp_pure x) c_args)
       else
         string (Printf.sprintf  "  COPY(%s)(&%s, *(%s));" (sgen_ctyp_name ctyp) (sgen_clexp_pure x) c_args)
     else
       if is_stack_ctyp ctyp then
         string (Printf.sprintf "  %s = %s(%s);" (sgen_clexp_pure x) fname c_args)
       else
         string (Printf.sprintf "  %s(%s, %s);" fname (sgen_clexp x) c_args)

  | I_clear (ctyp, id) when is_stack_ctyp ctyp ->
     empty
  | I_clear (ctyp, id) ->
     string (Printf.sprintf "  KILL(%s)(&%s);" (sgen_ctyp_name ctyp) (sgen_id id))

  | I_init (ctyp, id, cval) ->
     codegen_instr fid ctx (idecl ctyp id) ^^ hardline
     ^^ codegen_conversion Parse_ast.Unknown (CL_id (id, ctyp)) cval

  | I_reinit (ctyp, id, cval) ->
     codegen_instr fid ctx (ireset ctyp id) ^^ hardline
     ^^ codegen_conversion Parse_ast.Unknown (CL_id (id, ctyp)) cval

  | I_reset (ctyp, id) when is_stack_ctyp ctyp ->
     string (Printf.sprintf "  %s %s;" (sgen_ctyp ctyp) (sgen_id id))
  | I_reset (ctyp, id) ->
     string (Printf.sprintf "  RECREATE(%s)(&%s);" (sgen_ctyp_name ctyp) (sgen_id id))

  | I_return cval ->
     string (Printf.sprintf "  return %s;" (sgen_cval cval))

  | I_throw cval ->
     c_error ~loc:l "I_throw reached code generator"

  | I_undefined ctyp ->
     let rec codegen_exn_return ctyp =
       match ctyp with
       | CT_unit -> "UNIT", []
       | CT_bit -> "UINT64_C(0)", []
       | CT_int64 -> "INT64_C(0xdeadc0de)", []
       | CT_fbits _ -> "UINT64_C(0xdeadc0de)", []
       | CT_sbits _ -> "undefined_sbits()", []
       | CT_bool -> "false", []
       | CT_enum (_, ctor :: _) -> sgen_id ctor, [] 
       | CT_tup ctyps when is_stack_ctyp ctyp ->
          let gs = gensym () in
          let fold (inits, prev) (n, ctyp) =
            let init, prev' = codegen_exn_return ctyp in
            Printf.sprintf ".ztup%d = %s" n init :: inits, prev @ prev'
          in
          let inits, prev = List.fold_left fold ([], []) (List.mapi (fun i x -> (i, x)) ctyps) in
          sgen_id gs,
          [Printf.sprintf "struct %s %s = { " (sgen_ctyp_name ctyp) (sgen_id gs)
           ^ Util.string_of_list ", " (fun x -> x) inits ^ " };"] @ prev
       | CT_struct (id, ctors) when is_stack_ctyp ctyp ->
          let gs = gensym () in
          let fold (inits, prev) (id, ctyp) =
            let init, prev' = codegen_exn_return ctyp in
            Printf.sprintf ".%s = %s" (sgen_id id) init :: inits, prev @ prev'
          in
          let inits, prev = List.fold_left fold ([], []) ctors in
          sgen_id gs,
          [Printf.sprintf "struct %s %s = { " (sgen_ctyp_name ctyp) (sgen_id gs)
           ^ Util.string_of_list ", " (fun x -> x) inits ^ " };"] @ prev
       | ctyp -> c_error ("Cannot create undefined value for type: " ^ string_of_ctyp ctyp)
     in
     let ret, prev = codegen_exn_return ctyp in
     separate_map hardline (fun str -> string ("  " ^ str)) (List.rev prev)
     ^^ hardline
     ^^ string (Printf.sprintf "  return %s;" ret)

  | I_comment str ->
     string ("  /* " ^ str ^ " */")

  | I_label str ->
     string (str ^ ": ;")

  | I_goto str ->
     string (Printf.sprintf "  goto %s;" str)

  | I_raw _ when ctx.no_raw -> empty
  | I_raw str ->
     string ("  " ^ str)

  | I_match_failure ->
     string ("  sail_match_failure(\"" ^ String.escaped (string_of_id fid) ^ "\");")

let codegen_type_def ctx = function
  | CTD_enum (id, ((first_id :: _) as ids)) ->
     let codegen_eq =
       let name = sgen_id id in
       string (Printf.sprintf "static bool eq_%s(enum %s op1, enum %s op2) { return op1 == op2; }" name name name)
     in
     let codegen_undefined =
       let name = sgen_id id in
       string (Printf.sprintf "enum %s UNDEFINED(%s)(unit u) { return %s; }" name name (sgen_id first_id))
     in
     string (Printf.sprintf "// enum %s" (string_of_id id)) ^^ hardline
     ^^ separate space [string "enum"; codegen_id id; lbrace; separate_map (comma ^^ space) codegen_id ids; rbrace ^^ semi]
     ^^ twice hardline
     ^^ codegen_eq
     ^^ twice hardline
     ^^ codegen_undefined

  | CTD_enum (id, []) -> c_error ("Cannot compile empty enum " ^ string_of_id id)

  | CTD_struct (id, ctors) ->
     let struct_ctyp = CT_struct (id, ctors) in
     c_debug (lazy (Printf.sprintf "Generating struct for %s" (full_string_of_ctyp struct_ctyp)));

     (* Generate a set_T function for every struct T *)
     let codegen_set (id, ctyp) =
       if is_stack_ctyp ctyp then
         string (Printf.sprintf "rop->%s = op.%s;" (sgen_id id) (sgen_id id))
       else
         string (Printf.sprintf "COPY(%s)(&rop->%s, op.%s);" (sgen_ctyp_name ctyp) (sgen_id id) (sgen_id id))
     in
     let codegen_setter id ctors =
       string (let n = sgen_id id in Printf.sprintf "static void COPY(%s)(struct %s *rop, const struct %s op)" n n n) ^^ space
       ^^ surround 2 0 lbrace
                   (separate_map hardline codegen_set (Bindings.bindings ctors))
                   rbrace
     in
     (* Generate an init/clear_T function for every struct T *)
     let codegen_field_init f (id, ctyp) =
       if not (is_stack_ctyp ctyp) then
         [string (Printf.sprintf "%s(%s)(&op->%s);" f (sgen_ctyp_name ctyp) (sgen_id id))]
       else []
     in
     let codegen_init f id ctors =
       string (let n = sgen_id id in Printf.sprintf "static void %s(%s)(struct %s *op)" f n n) ^^ space
       ^^ surround 2 0 lbrace
                   (separate hardline (Bindings.bindings ctors |> List.map (codegen_field_init f) |> List.concat))
                   rbrace
     in
     let codegen_eq =
       let codegen_eq_test (id, ctyp) =
         string (Printf.sprintf "EQUAL(%s)(op1.%s, op2.%s)" (sgen_ctyp_name ctyp) (sgen_id id) (sgen_id id))
       in
       string (Printf.sprintf "static bool EQUAL(%s)(struct %s op1, struct %s op2)" (sgen_id id) (sgen_id id) (sgen_id id))
       ^^ space
       ^^ surround 2 0 lbrace
            (string "return" ^^ space
             ^^ separate_map (string " && ") codegen_eq_test ctors
             ^^ string ";")
            rbrace
     in
     (* Generate the struct and add the generated functions *)
     let codegen_ctor (id, ctyp) =
       string (sgen_ctyp ctyp) ^^ space ^^ codegen_id id
     in
     string (Printf.sprintf "// struct %s" (string_of_id id)) ^^ hardline
     ^^ string "struct" ^^ space ^^ codegen_id id ^^ space
     ^^ surround 2 0 lbrace
                 (separate_map (semi ^^ hardline) codegen_ctor ctors ^^ semi)
                 rbrace
     ^^ semi ^^ twice hardline
     ^^ codegen_setter id (ctor_bindings ctors)
     ^^ (if not (is_stack_ctyp struct_ctyp) then
           twice hardline
           ^^ codegen_init "CREATE" id (ctor_bindings ctors)
           ^^ twice hardline
           ^^ codegen_init "RECREATE" id (ctor_bindings ctors)
           ^^ twice hardline
           ^^ codegen_init "KILL" id (ctor_bindings ctors)
         else empty)
     ^^ twice hardline
     ^^ codegen_eq

  | CTD_variant (id, tus) ->
     let codegen_tu (ctor_id, ctyp) =
       separate space [string "struct"; lbrace; string (sgen_ctyp ctyp); codegen_id ctor_id ^^ semi; rbrace]
     in
     (* Create an if, else if, ... block that does something for each constructor *)
     let rec each_ctor v f = function
       | [] -> string "{}"
       | [(ctor_id, ctyp)] ->
          string (Printf.sprintf "if (%skind == Kind_%s)" v (sgen_id ctor_id)) ^^ lbrace ^^ hardline
          ^^ jump 0 2 (f ctor_id ctyp)
          ^^ hardline ^^ rbrace
       | (ctor_id, ctyp) :: ctors ->
          string (Printf.sprintf "if (%skind == Kind_%s) " v (sgen_id ctor_id)) ^^ lbrace ^^ hardline
          ^^ jump 0 2 (f ctor_id ctyp)
          ^^ hardline ^^ rbrace ^^ string " else " ^^ each_ctor v f ctors
     in
     let codegen_init =
       let n = sgen_id id in
       let ctor_id, ctyp = List.hd tus in
       string (Printf.sprintf "static void CREATE(%s)(struct %s *op)" n n)
       ^^ hardline
       ^^ surround 2 0 lbrace
                   (string (Printf.sprintf "op->kind = Kind_%s;" (sgen_id ctor_id)) ^^ hardline
                    ^^ if not (is_stack_ctyp ctyp) then
                         string (Printf.sprintf "CREATE(%s)(&op->%s);" (sgen_ctyp_name ctyp) (sgen_id ctor_id))
                       else empty)
                   rbrace
     in
     let codegen_reinit =
       let n = sgen_id id in
       string (Printf.sprintf "static void RECREATE(%s)(struct %s *op) {}" n n)
     in
     let clear_field v ctor_id ctyp =
       if is_stack_ctyp ctyp then
         string (Printf.sprintf "/* do nothing */")
       else
         string (Printf.sprintf "KILL(%s)(&%s->%s);" (sgen_ctyp_name ctyp) v (sgen_id ctor_id))
     in
     let codegen_clear =
       let n = sgen_id id in
       string (Printf.sprintf "static void KILL(%s)(struct %s *op)" n n) ^^ hardline
       ^^ surround 2 0 lbrace
                   (each_ctor "op->" (clear_field "op") tus ^^ semi)
                   rbrace
     in
     let codegen_ctor (ctor_id, ctyp) =
       let ctor_args, tuple, tuple_cleanup =
         let tuple_set i ctyp =
           if is_stack_ctyp ctyp then
             string (Printf.sprintf "op.ztup%d = op%d;" i i)
           else
             string (Printf.sprintf "COPY(%s)(&op.ztup%d, op%d);" (sgen_ctyp_name ctyp) i i)
         in
         Printf.sprintf "%s op" (sgen_ctyp ctyp), empty, empty
       in
       string (Printf.sprintf "static void %s(struct %s *rop, %s)" (sgen_id ctor_id) (sgen_id id) ctor_args) ^^ hardline
       ^^ surround 2 0 lbrace
                   (tuple
                    ^^ each_ctor "rop->" (clear_field "rop") tus ^^ hardline
                    ^^ string ("rop->kind = Kind_" ^ sgen_id ctor_id) ^^ semi ^^ hardline
                    ^^ if is_stack_ctyp ctyp then
                         string (Printf.sprintf "rop->%s = op;" (sgen_id ctor_id))
                       else
                         string (Printf.sprintf "CREATE(%s)(&rop->%s);" (sgen_ctyp_name ctyp) (sgen_id ctor_id)) ^^ hardline
                         ^^ string (Printf.sprintf "COPY(%s)(&rop->%s, op);" (sgen_ctyp_name ctyp) (sgen_id ctor_id)) ^^ hardline
                         ^^ tuple_cleanup)
                   rbrace
     in
     let codegen_setter =
       let n = sgen_id id in
       let set_field ctor_id ctyp =
         if is_stack_ctyp ctyp then
           string (Printf.sprintf "rop->%s = op.%s;" (sgen_id ctor_id) (sgen_id ctor_id))
         else
           string (Printf.sprintf "CREATE(%s)(&rop->%s);" (sgen_ctyp_name ctyp) (sgen_id ctor_id))
           ^^ string (Printf.sprintf " COPY(%s)(&rop->%s, op.%s);" (sgen_ctyp_name ctyp) (sgen_id ctor_id) (sgen_id ctor_id))
       in
       string (Printf.sprintf "static void COPY(%s)(struct %s *rop, struct %s op)" n n n) ^^ hardline
       ^^ surround 2 0 lbrace
                   (each_ctor "rop->" (clear_field "rop") tus
                    ^^ semi ^^ hardline
                    ^^ string "rop->kind = op.kind"
                    ^^ semi ^^ hardline
                    ^^ each_ctor "op." set_field tus)
                   rbrace
     in
     let codegen_eq =
       let codegen_eq_test ctor_id ctyp =
         string (Printf.sprintf "return EQUAL(%s)(op1.%s, op2.%s);" (sgen_ctyp_name ctyp) (sgen_id ctor_id) (sgen_id ctor_id))
       in
       let rec codegen_eq_tests = function
         | [] -> string "return false;"
         | (ctor_id, ctyp) :: ctors ->
            string (Printf.sprintf "if (op1.kind == Kind_%s && op2.kind == Kind_%s) " (sgen_id ctor_id) (sgen_id ctor_id)) ^^ lbrace ^^ hardline
            ^^ jump 0 2 (codegen_eq_test ctor_id ctyp)
            ^^ hardline ^^ rbrace ^^ string " else " ^^ codegen_eq_tests ctors
       in
       let n = sgen_id id in
       string (Printf.sprintf "static bool EQUAL(%s)(struct %s op1, struct %s op2) " n n n)
       ^^ surround 2 0 lbrace (codegen_eq_tests tus) rbrace
     in
     string (Printf.sprintf "// union %s" (string_of_id id)) ^^ hardline
     ^^ string "enum" ^^ space
     ^^ string ("kind_" ^ sgen_id id) ^^ space
     ^^ separate space [ lbrace;
                         separate_map (comma ^^ space) (fun id -> string ("Kind_" ^ sgen_id id)) (List.map fst tus);
                         rbrace ^^ semi ]
     ^^ twice hardline
     ^^ string "struct" ^^ space ^^ codegen_id id ^^ space
     ^^ surround 2 0 lbrace
                 (separate space [string "enum"; string ("kind_" ^ sgen_id id); string "kind" ^^ semi]
                  ^^ hardline
                  ^^ string "union" ^^ space
                  ^^ surround 2 0 lbrace
                              (separate_map (semi ^^ hardline) codegen_tu tus ^^ semi)
                              rbrace
                  ^^ semi)
                 rbrace
     ^^ semi
     ^^ twice hardline
     ^^ codegen_init
     ^^ twice hardline
     ^^ codegen_reinit
     ^^ twice hardline
     ^^ codegen_clear
     ^^ twice hardline
     ^^ codegen_setter
     ^^ twice hardline
     ^^ codegen_eq
     ^^ twice hardline
     ^^ separate_map (twice hardline) codegen_ctor tus
     (* If this is the exception type, then we setup up some global variables to deal with exceptions. *)
     ^^ if string_of_id id = "exception" then
          twice hardline
          ^^ string "struct zexception *current_exception = NULL;"
          ^^ hardline
          ^^ string "bool have_exception = false;"
        else
          empty

(** GLOBAL: because C doesn't have real anonymous tuple types
   (anonymous structs don't quite work the way we need) every tuple
   type in the spec becomes some generated named struct in C. This is
   done in such a way that every possible tuple type has a unique name
   associated with it. This global variable keeps track of these
   generated struct names, so we never generate two copies of the
   struct that is used to represent them in C.

   The way this works is that codegen_def scans each definition's type
   annotations for tuple types and generates the required structs
   using codegen_type_def before the actual definition is generated by
   codegen_def'.

   This variable should be reset to empty only when the entire AST has
   been translated to C. **)
let generated = ref IdSet.empty

let codegen_tup ctx ctyps =
  let id = mk_id ("tuple_" ^ string_of_ctyp (CT_tup ctyps)) in
  if IdSet.mem id !generated then
    empty
  else
    begin
      let _, fields = List.fold_left (fun (n, fields) ctyp -> n + 1, Bindings.add (mk_id ("tup" ^ string_of_int n)) ctyp fields)
                                     (0, Bindings.empty)
                                     ctyps
      in
      generated := IdSet.add id !generated;
      codegen_type_def ctx (CTD_struct (id, Bindings.bindings fields)) ^^ twice hardline
    end

let codegen_node id ctyp =
  string (Printf.sprintf "struct node_%s {\n  %s hd;\n  struct node_%s *tl;\n};\n" (sgen_id id) (sgen_ctyp ctyp) (sgen_id id))
  ^^ string (Printf.sprintf "typedef struct node_%s *%s;" (sgen_id id) (sgen_id id))

let codegen_list_init id =
  string (Printf.sprintf "static void CREATE(%s)(%s *rop) { *rop = NULL; }" (sgen_id id) (sgen_id id))

let codegen_list_clear id ctyp =
  string (Printf.sprintf "static void KILL(%s)(%s *rop) {\n" (sgen_id id) (sgen_id id))
  ^^ string (Printf.sprintf "  if (*rop == NULL) return;")
  ^^ (if is_stack_ctyp ctyp then empty
      else string (Printf.sprintf "  KILL(%s)(&(*rop)->hd);\n" (sgen_ctyp_name ctyp)))
  ^^ string (Printf.sprintf "  KILL(%s)(&(*rop)->tl);\n" (sgen_id id))
  ^^ string "  free(*rop);"
  ^^ string "}"

let codegen_list_set id ctyp =
  string (Printf.sprintf "static void internal_set_%s(%s *rop, const %s op) {\n" (sgen_id id) (sgen_id id) (sgen_id id))
  ^^ string "  if (op == NULL) { *rop = NULL; return; };\n"
  ^^ string (Printf.sprintf "  *rop = malloc(sizeof(struct node_%s));\n" (sgen_id id))
  ^^ (if is_stack_ctyp ctyp then
        string "  (*rop)->hd = op->hd;\n"
      else
        string (Printf.sprintf "  CREATE(%s)(&(*rop)->hd);\n" (sgen_ctyp_name ctyp))
        ^^ string (Printf.sprintf "  COPY(%s)(&(*rop)->hd, op->hd);\n" (sgen_ctyp_name ctyp)))
  ^^ string (Printf.sprintf "  internal_set_%s(&(*rop)->tl, op->tl);\n" (sgen_id id))
  ^^ string "}"
  ^^ twice hardline
  ^^ string (Printf.sprintf "static void COPY(%s)(%s *rop, const %s op) {\n" (sgen_id id) (sgen_id id) (sgen_id id))
  ^^ string (Printf.sprintf "  KILL(%s)(rop);\n" (sgen_id id))
  ^^ string (Printf.sprintf "  internal_set_%s(rop, op);\n" (sgen_id id))
  ^^ string "}"

let codegen_cons id ctyp =
  let cons_id = mk_id ("cons#" ^ string_of_ctyp ctyp) in
  string (Printf.sprintf "static void %s(%s *rop, const %s x, const %s xs) {\n" (sgen_id cons_id) (sgen_id id) (sgen_ctyp ctyp) (sgen_id id))
  ^^ string (Printf.sprintf "  *rop = malloc(sizeof(struct node_%s));\n" (sgen_id id))
  ^^ (if is_stack_ctyp ctyp then
        string "  (*rop)->hd = x;\n"
      else
        string (Printf.sprintf "  CREATE(%s)(&(*rop)->hd);\n" (sgen_ctyp_name ctyp))
        ^^ string (Printf.sprintf "  COPY(%s)(&(*rop)->hd, x);\n" (sgen_ctyp_name ctyp)))
  ^^ string "  (*rop)->tl = xs;\n"
  ^^ string "}"

let codegen_pick id ctyp =
  if is_stack_ctyp ctyp then
    string (Printf.sprintf "static %s pick_%s(const %s xs) { return xs->hd; }" (sgen_ctyp ctyp) (sgen_ctyp_name ctyp) (sgen_id id))
  else
    string (Printf.sprintf "static void pick_%s(%s *x, const %s xs) { COPY(%s)(x, xs->hd); }" (sgen_ctyp_name ctyp) (sgen_ctyp ctyp) (sgen_id id) (sgen_ctyp_name ctyp))

let codegen_list ctx ctyp =
  let id = mk_id (string_of_ctyp (CT_list ctyp)) in
  if IdSet.mem id !generated then
    empty
  else
    begin
      generated := IdSet.add id !generated;
      codegen_node id ctyp ^^ twice hardline
      ^^ codegen_list_init id ^^ twice hardline
      ^^ codegen_list_clear id ctyp ^^ twice hardline
      ^^ codegen_list_set id ctyp ^^ twice hardline
      ^^ codegen_cons id ctyp ^^ twice hardline
      ^^ codegen_pick id ctyp ^^ twice hardline
    end

(* Generate functions for working with non-bit vectors of some specific type. *)
let codegen_vector ctx (direction, ctyp) =
  let id = mk_id (string_of_ctyp (CT_vector (direction, ctyp))) in
  if IdSet.mem id !generated then
    empty
  else
    let vector_typedef =
      string (Printf.sprintf "struct %s {\n  size_t len;\n  %s *data;\n};\n" (sgen_id id) (sgen_ctyp ctyp))
      ^^ string (Printf.sprintf "typedef struct %s %s;" (sgen_id id) (sgen_id id))
    in
    let vector_init =
      string (Printf.sprintf "static void CREATE(%s)(%s *rop) {\n  rop->len = 0;\n  rop->data = NULL;\n}" (sgen_id id) (sgen_id id))
    in
    let vector_set =
      string (Printf.sprintf "static void COPY(%s)(%s *rop, %s op) {\n" (sgen_id id) (sgen_id id) (sgen_id id))
      ^^ string (Printf.sprintf "  KILL(%s)(rop);\n" (sgen_id id))
      ^^ string "  rop->len = op.len;\n"
      ^^ string (Printf.sprintf "  rop->data = malloc((rop->len) * sizeof(%s));\n" (sgen_ctyp ctyp))
      ^^ string "  for (int i = 0; i < op.len; i++) {\n"
      ^^ string (if is_stack_ctyp ctyp then
                   "    (rop->data)[i] = op.data[i];\n"
                 else
                   Printf.sprintf "    CREATE(%s)((rop->data) + i);\n    COPY(%s)((rop->data) + i, op.data[i]);\n" (sgen_ctyp_name ctyp) (sgen_ctyp_name ctyp))
      ^^ string "  }\n"
      ^^ string "}"
    in
    let vector_clear =
      string (Printf.sprintf "static void KILL(%s)(%s *rop) {\n" (sgen_id id) (sgen_id id))
      ^^ (if is_stack_ctyp ctyp then empty
         else
           string "  for (int i = 0; i < (rop->len); i++) {\n"
           ^^ string (Printf.sprintf "    KILL(%s)((rop->data) + i);\n" (sgen_ctyp_name ctyp))
           ^^ string "  }\n")
      ^^ string "  if (rop->data != NULL) free(rop->data);\n"
      ^^ string "}"
    in
    let vector_update =
      string (Printf.sprintf "static void vector_update_%s(%s *rop, %s op, mpz_t n, %s elem) {\n" (sgen_id id) (sgen_id id) (sgen_id id) (sgen_ctyp ctyp))
      ^^ string "  int m = mpz_get_ui(n);\n"
      ^^ string "  if (rop->data == op.data) {\n"
      ^^ string (if is_stack_ctyp ctyp then
                   "    rop->data[m] = elem;\n"
                 else
                   Printf.sprintf "  COPY(%s)((rop->data) + m, elem);\n" (sgen_ctyp_name ctyp))
      ^^ string "  } else {\n"
      ^^ string (Printf.sprintf "    COPY(%s)(rop, op);\n" (sgen_id id))
      ^^ string (if is_stack_ctyp ctyp then
                   "    rop->data[m] = elem;\n"
                 else
                   Printf.sprintf "  COPY(%s)((rop->data) + m, elem);\n" (sgen_ctyp_name ctyp))
      ^^ string "  }\n"
      ^^ string "}"
    in
    let internal_vector_update =
      string (Printf.sprintf "static void internal_vector_update_%s(%s *rop, %s op, const int64_t n, %s elem) {\n" (sgen_id id) (sgen_id id) (sgen_id id) (sgen_ctyp ctyp))
      ^^ string (if is_stack_ctyp ctyp then
                   "  rop->data[n] = elem;\n"
                 else
                   Printf.sprintf "  COPY(%s)((rop->data) + n, elem);\n" (sgen_ctyp_name ctyp))
      ^^ string "}"
    in
    let vector_access =
      if is_stack_ctyp ctyp then
        string (Printf.sprintf "static %s vector_access_%s(%s op, mpz_t n) {\n" (sgen_ctyp ctyp) (sgen_id id) (sgen_id id))
        ^^ string "  int m = mpz_get_ui(n);\n"
        ^^ string "  return op.data[m];\n"
        ^^ string "}"
      else
        string (Printf.sprintf "static void vector_access_%s(%s *rop, %s op, mpz_t n) {\n" (sgen_id id) (sgen_ctyp ctyp) (sgen_id id))
        ^^ string "  int m = mpz_get_ui(n);\n"
        ^^ string (Printf.sprintf "  COPY(%s)(rop, op.data[m]);\n" (sgen_ctyp_name ctyp))
        ^^ string "}"
    in
    let internal_vector_init =
      string (Printf.sprintf "static void internal_vector_init_%s(%s *rop, const int64_t len) {\n" (sgen_id id) (sgen_id id))
      ^^ string "  rop->len = len;\n"
      ^^ string (Printf.sprintf "  rop->data = malloc(len * sizeof(%s));\n" (sgen_ctyp ctyp))
      ^^ (if not (is_stack_ctyp ctyp) then
            string "  for (int i = 0; i < len; i++) {\n"
            ^^ string (Printf.sprintf "    CREATE(%s)((rop->data) + i);\n" (sgen_ctyp_name ctyp))
            ^^ string "  }\n"
          else empty)
      ^^ string "}"
    in
    let vector_undefined =
      string (Printf.sprintf "static void undefined_vector_%s(%s *rop, mpz_t len, %s elem) {\n" (sgen_id id) (sgen_id id) (sgen_ctyp ctyp))
      ^^ string (Printf.sprintf "  rop->len = mpz_get_ui(len);\n")
      ^^ string (Printf.sprintf "  rop->data = malloc((rop->len) * sizeof(%s));\n" (sgen_ctyp ctyp))
      ^^ string "  for (int i = 0; i < (rop->len); i++) {\n"
      ^^ string (if is_stack_ctyp ctyp then
                   "    (rop->data)[i] = elem;\n"
                 else
                   Printf.sprintf "    CREATE(%s)((rop->data) + i);\n    COPY(%s)((rop->data) + i, elem);\n" (sgen_ctyp_name ctyp) (sgen_ctyp_name ctyp))
      ^^ string "  }\n"
      ^^ string "}"
    in
    begin
      generated := IdSet.add id !generated;
      vector_typedef ^^ twice hardline
      ^^ vector_init ^^ twice hardline
      ^^ vector_clear ^^ twice hardline
      ^^ vector_undefined ^^ twice hardline
      ^^ vector_access ^^ twice hardline
      ^^ vector_set ^^ twice hardline
      ^^ vector_update ^^ twice hardline
      ^^ internal_vector_update ^^ twice hardline
      ^^ internal_vector_init ^^ twice hardline
    end

let is_decl = function
  | I_aux (I_decl _, _) -> true
  | _ -> false

let codegen_decl = function
  | I_aux (I_decl (ctyp, id), _) ->
     string (Printf.sprintf "%s %s;" (sgen_ctyp ctyp) (sgen_id id))
  | _ -> assert false

let codegen_alloc = function
  | I_aux (I_decl (ctyp, id), _) when is_stack_ctyp ctyp -> empty
  | I_aux (I_decl (ctyp, id), _) ->
     string (Printf.sprintf "  CREATE(%s)(&%s);" (sgen_ctyp_name ctyp) (sgen_id id))
  | _ -> assert false

let codegen_def' ctx = function
  | CDEF_reg_dec (id, ctyp, _) ->
     string (Printf.sprintf "// register %s" (string_of_id id)) ^^ hardline
     ^^ string (Printf.sprintf "%s %s;" (sgen_ctyp ctyp) (sgen_id id))

  | CDEF_spec (id, arg_ctyps, ret_ctyp) ->
     let static = if !opt_static then "static " else "" in
     if Env.is_extern id ctx.tc_env "c" then
       empty
     else if is_stack_ctyp ret_ctyp then
       string (Printf.sprintf "%s%s %s(%s);" static (sgen_ctyp ret_ctyp) (sgen_id id) (Util.string_of_list ", " sgen_ctyp arg_ctyps))
     else
       string (Printf.sprintf "%svoid %s(%s *rop, %s);" static (sgen_id id) (sgen_ctyp ret_ctyp) (Util.string_of_list ", " sgen_ctyp arg_ctyps))

  | CDEF_fundef (id, ret_arg, args, instrs) as def ->
     if !opt_debug_flow_graphs then make_dot id (instrs_graph instrs) else ();

     (* Extract type information about the function from the environment. *)
     let quant, Typ_aux (fn_typ, _) = Env.get_val_spec id ctx.tc_env in
     let arg_typs, ret_typ = match fn_typ with
       | Typ_fn (arg_typs, ret_typ, _) -> arg_typs, ret_typ
       | _ -> assert false
     in
     let ctx' = { ctx with local_env = add_typquant (id_loc id) quant ctx.local_env } in
     let arg_ctyps, ret_ctyp = List.map (ctyp_of_typ ctx') arg_typs, ctyp_of_typ ctx' ret_typ in

     (* Check that the function has the correct arity at this point. *)
     if List.length arg_ctyps <> List.length args then
       c_error ~loc:(id_loc id) ("function arguments "
                                 ^ Util.string_of_list ", " string_of_id args
                                 ^ " matched against type "
                                 ^ Util.string_of_list ", " string_of_ctyp arg_ctyps)
     else ();

     (* If this function is set as opt_debug_function, then output its IR *)
     if Id.compare (mk_id !opt_debug_function) id = 0 then
       let header =
         Printf.sprintf "Sail IR for %s %s(%s) : (%s) -> %s" Util.("function" |> red |> clear) (string_of_id id)
                        (Util.string_of_list ", " string_of_id args)
                        (Util.string_of_list ", " (fun ctyp -> Util.(string_of_ctyp ctyp |> yellow |> clear)) arg_ctyps)
                        Util.(string_of_ctyp ret_ctyp |> yellow |> clear)
       in
       prerr_endline (Util.header header (List.length arg_ctyps + 2));
       prerr_endline (Pretty_print_sail.to_string (separate_map hardline pp_instr instrs))
     else ();

     let instrs = add_local_labels instrs in
     let args = Util.string_of_list ", " (fun x -> x) (List.map2 (fun ctyp arg -> sgen_ctyp ctyp ^ " " ^ sgen_id arg) arg_ctyps args) in
     let function_header =
       match ret_arg with
       | None ->
          assert (is_stack_ctyp ret_ctyp);
          (if !opt_static then string "static " else empty)
          ^^ string (sgen_ctyp ret_ctyp) ^^ space ^^ codegen_id id ^^ parens (string args) ^^ hardline
       | Some gs ->
          assert (not (is_stack_ctyp ret_ctyp));
          (if !opt_static then string "static " else empty)
          ^^ string "void" ^^ space ^^ codegen_id id
          ^^ parens (string (sgen_ctyp ret_ctyp ^ " *" ^ sgen_id gs ^ ", ") ^^ string args)
          ^^ hardline
     in
     function_header
     ^^ string "{"
     ^^ jump 0 2 (separate_map hardline (codegen_instr id ctx) instrs) ^^ hardline
     ^^ string "}"

  | CDEF_type ctype_def ->
     codegen_type_def ctx ctype_def

  | CDEF_startup (id, instrs) ->
     let static = if !opt_static then "static " else "" in
     let startup_header = string (Printf.sprintf "%svoid startup_%s(void)" static (sgen_id id)) in
     separate_map hardline codegen_decl instrs
     ^^ twice hardline
     ^^ startup_header ^^ hardline
     ^^ string "{"
     ^^ jump 0 2 (separate_map hardline codegen_alloc instrs) ^^ hardline
     ^^ string "}"

  | CDEF_finish (id, instrs) ->
     let static = if !opt_static then "static " else "" in
     let finish_header = string (Printf.sprintf "%svoid finish_%s(void)" static (sgen_id id)) in
     separate_map hardline codegen_decl (List.filter is_decl instrs)
     ^^ twice hardline
     ^^ finish_header ^^ hardline
     ^^ string "{"
     ^^ jump 0 2 (separate_map hardline (codegen_instr id ctx) instrs) ^^ hardline
     ^^ string "}"

  | CDEF_let (number, bindings, instrs) ->
     let instrs = add_local_labels instrs in
     let setup =
       List.concat (List.map (fun (id, ctyp) -> [idecl ctyp id]) bindings)
     in
     let cleanup =
       List.concat (List.map (fun (id, ctyp) -> [iclear ctyp id]) bindings)
     in
     separate_map hardline (fun (id, ctyp) -> string (Printf.sprintf "%s %s;" (sgen_ctyp ctyp) (sgen_id id))) bindings
     ^^ hardline ^^ string (Printf.sprintf "static void create_letbind_%d(void) " number)
     ^^ string "{"
     ^^ jump 0 2 (separate_map hardline codegen_alloc setup) ^^ hardline
     ^^ jump 0 2 (separate_map hardline (codegen_instr (mk_id "let") { ctx with no_raw = true }) instrs) ^^ hardline
     ^^ string "}"
     ^^ hardline ^^ string (Printf.sprintf "static void kill_letbind_%d(void) " number)
     ^^ string "{"
     ^^ jump 0 2 (separate_map hardline (codegen_instr (mk_id "let") ctx) cleanup) ^^ hardline
     ^^ string "}"

(** As we generate C we need to generate specialized version of tuple,
   list, and vector type. These must be generated in the correct
   order. The ctyp_dependencies function generates a list of
   c_gen_typs in the order they must be generated. Types may be
   repeated in ctyp_dependencies so it's up to the code-generator not
   to repeat definitions pointlessly (using the !generated variable)
   *)
type c_gen_typ =
  | CTG_tup of ctyp list
  | CTG_list of ctyp
  | CTG_vector of bool * ctyp

let rec ctyp_dependencies = function
  | CT_tup ctyps -> List.concat (List.map ctyp_dependencies ctyps) @ [CTG_tup ctyps]
  | CT_list ctyp -> ctyp_dependencies ctyp @ [CTG_list ctyp]
  | CT_vector (direction, ctyp) -> ctyp_dependencies ctyp @ [CTG_vector (direction, ctyp)]
  | CT_ref ctyp -> ctyp_dependencies ctyp
  | CT_struct (_, ctors) -> List.concat (List.map (fun (_, ctyp) -> ctyp_dependencies ctyp) ctors)
  | CT_variant (_, ctors) -> List.concat (List.map (fun (_, ctyp) -> ctyp_dependencies ctyp) ctors)
  | CT_int | CT_int64 | CT_lbits _ | CT_fbits _ | CT_sbits _ | CT_unit | CT_bool | CT_real | CT_bit | CT_string | CT_enum _ | CT_poly -> []

let codegen_ctg ctx = function
  | CTG_vector (direction, ctyp) -> codegen_vector ctx (direction, ctyp)
  | CTG_tup ctyps -> codegen_tup ctx ctyps
  | CTG_list ctyp -> codegen_list ctx ctyp

(** When we generate code for a definition, we need to first generate
   any auxillary type definitions that are required. *)
let codegen_def ctx def =
  let ctyps = cdef_ctyps ctx def in
  (* We should have erased any polymorphism introduced by variants at this point! *)
  if List.exists is_polymorphic ctyps then
    let polymorphic_ctyps = List.filter is_polymorphic ctyps in
    prerr_endline (Pretty_print_sail.to_string (pp_cdef def));
    c_error (Printf.sprintf "Found polymorphic types:\n%s\nwhile generating definition."
                            (Util.string_of_list "\n" string_of_ctyp polymorphic_ctyps))
  else
    let deps = List.concat (List.map ctyp_dependencies ctyps) in
    separate_map hardline (codegen_ctg ctx) deps
    ^^ codegen_def' ctx def

let is_cdef_startup = function
  | CDEF_startup _ -> true
  | _ -> false

let sgen_startup = function
  | CDEF_startup (id, _) ->
     Printf.sprintf "  startup_%s();" (sgen_id id)
  | _ -> assert false

let sgen_instr id ctx instr =
  Pretty_print_sail.to_string (codegen_instr id ctx instr)

let is_cdef_finish = function
  | CDEF_startup _ -> true
  | _ -> false

let sgen_finish = function
  | CDEF_startup (id, _) ->
     Printf.sprintf "  finish_%s();" (sgen_id id)
  | _ -> assert false

let instrument_tracing ctx =
  let module StringSet = Set.Make(String) in
  let traceable = StringSet.of_list ["fbits"; "sail_string"; "lbits"; "sail_int"; "unit"; "bool"] in
  let rec instrument = function
    | (I_aux (I_funcall (clexp, _, id, args), _) as instr) :: instrs ->
       let trace_start =
         iraw (Printf.sprintf "trace_start(\"%s\");" (String.escaped (string_of_id id)))
       in
       let trace_arg cval =
         let ctyp_name = sgen_ctyp_name (cval_ctyp cval) in
         if StringSet.mem ctyp_name traceable then
           iraw (Printf.sprintf "trace_%s(%s);" ctyp_name (sgen_cval cval))
         else
           iraw "trace_unknown();"
       in
       let rec trace_args = function
         | [] -> []
         | [cval] -> [trace_arg cval]
         | cval :: cvals ->
            trace_arg cval :: iraw "trace_argsep();" :: trace_args cvals
       in
       let trace_end = iraw "trace_end();" in
       let trace_ret = iraw "trace_unknown();"
                            (*
         let ctyp_name = sgen_ctyp_name ctyp in
         if StringSet.mem ctyp_name traceable then
           iraw (Printf.sprintf "trace_%s(%s);" (sgen_ctyp_name ctyp) (sgen_clexp_pure clexp))
         else
           iraw "trace_unknown();"
                             *)
       in
       [trace_start]
       @ trace_args args
       @ [iraw "trace_argend();";
          instr;
          trace_end;
          trace_ret;
          iraw "trace_retend();"]
       @ instrument instrs

    | I_aux (I_block block, aux) :: instrs -> I_aux (I_block (instrument block), aux) :: instrument instrs
    | I_aux (I_try_block block, aux) :: instrs -> I_aux (I_try_block (instrument block), aux) :: instrument instrs
    | I_aux (I_if (cval, then_instrs, else_instrs, ctyp), aux) :: instrs ->
       I_aux (I_if (cval, instrument then_instrs, instrument else_instrs, ctyp), aux) :: instrument instrs

    | instr :: instrs -> instr :: instrument instrs
    | [] -> []
  in
  function
  | CDEF_fundef (function_id, heap_return, args, body) ->
     CDEF_fundef (function_id, heap_return, args, instrument body)
  | cdef -> cdef

let bytecode_ast ctx rewrites (Defs defs) =
  let assert_vs = Initial_check.extern_of_string (mk_id "sail_assert") "(bool, string) -> unit effect {escape}" in
  let exit_vs = Initial_check.extern_of_string (mk_id "sail_exit") "unit -> unit effect {escape}" in

  let ctx = { ctx with tc_env = snd (Type_error.check ctx.tc_env (Defs [assert_vs; exit_vs])) } in
  let total = List.length defs in
  let _, chunks, ctx =
    List.fold_left (fun (n, chunks, ctx) def -> let defs, ctx = compile_def n total ctx def in n + 1, defs :: chunks, ctx) (1, [], ctx) defs
  in
  let cdefs = List.concat (List.rev chunks) in
  rewrites cdefs

let rec get_recursive_functions (Defs defs) =
  match defs with
  | DEF_internal_mutrec fundefs :: defs ->
     IdSet.union (List.map id_of_fundef fundefs |> IdSet.of_list) (get_recursive_functions (Defs defs))

  | (DEF_fundef fdef as def) :: defs ->
     let open Rewriter in
     let ids = ref IdSet.empty in
     let collect_funcalls e_aux annot =
       match e_aux with
       | E_app (id, args) -> (ids := IdSet.add id !ids; E_aux (e_aux, annot))
       | _ -> E_aux (e_aux, annot)
     in
     let map_exp = {
         id_exp_alg with
         e_aux = (fun (e_aux, annot) -> collect_funcalls e_aux annot)
       } in
     let map_defs = { rewriters_base with rewrite_exp = (fun _ -> fold_exp map_exp) } in
     let _ = rewrite_def map_defs def in
     if IdSet.mem (id_of_fundef fdef) !ids then
       IdSet.add (id_of_fundef fdef) (get_recursive_functions (Defs defs))
     else
       get_recursive_functions (Defs defs)

  | _ :: defs -> get_recursive_functions (Defs defs)
  | [] -> IdSet.empty

let trace_cval = function (frag, ctyp) -> string_of_fragment frag ^ " : " ^ string_of_ctyp ctyp

let rec trace_clexp = function
  | CL_id (id, ctyp) -> sgen_id id ^ " : " ^ string_of_ctyp ctyp
  | CL_field (clexp, field) -> "(" ^ trace_clexp clexp ^ ")->" ^ field ^ ")"
  | CL_tuple (clexp, n) -> "(" ^ trace_clexp clexp ^ ")." ^ string_of_int n
  | CL_addr clexp -> "*(" ^ trace_clexp clexp ^ ")"
  | CL_have_exception -> "have_exception"
  | CL_current_exception _ -> "current_exception"

let rec smt_trace_instrs ctx function_id = function
  | I_aux (I_jump (cval, label), aux) :: instrs ->
     iraw ("printf(\"!branch %s %s\\n\"," ^ sgen_cval cval ^ " ?\"true\":\"false\", \"" ^ trace_cval cval ^ "\");")
     :: I_aux (I_jump (cval, label), aux)
     :: smt_trace_instrs ctx function_id instrs

  | (I_aux ((I_init (ctyp, id, cval) | I_reinit (ctyp, id, cval)), _) as instr) :: instrs ->
     iraw ("printf(\"!create " ^ Util.zencode_string (string_of_id id) ^ " : " ^ string_of_ctyp ctyp ^ " = " ^ trace_cval cval ^ "\\n\");")
     :: instr
     :: smt_trace_instrs ctx function_id instrs

  | (I_aux ((I_decl (ctyp, id) | I_reset (ctyp, id)), _) as instr) :: instrs ->
     iraw ("printf(\"!create " ^ Util.zencode_string (string_of_id id) ^ " : " ^ string_of_ctyp ctyp ^ "\\n\");")
     :: instr
     :: smt_trace_instrs ctx function_id instrs

  | I_aux (I_funcall (x, extern, f, args), aux) :: instrs ->
     let extern_name =
       if Env.is_extern f ctx.tc_env "c" then
         Some (Env.get_extern f ctx.tc_env "c")
       else if extern then
         Some (string_of_id f)
       else None
     in
     begin match extern_name with
     | Some name ->
        iraw ("printf(\"!"
              ^ trace_clexp x
              ^ " = "
              ^ string_of_id f ^ "(" ^ Util.string_of_list ", " (fun cval -> String.escaped (trace_cval cval)) args ^ ")\\n\");")
        :: I_aux (I_funcall (x, extern, f, args), aux)
        :: smt_trace_instrs ctx function_id instrs
     | None ->
        iraw ("printf(\"!call " ^ string_of_id f ^ "(" ^ Util.string_of_list ", " (fun cval -> String.escaped (trace_cval cval)) args ^ ")\\n\");")
        :: I_aux (I_funcall (x, extern, f, args), aux)
        :: iraw ("printf(\"!" ^ trace_clexp x ^ " = endcall " ^ string_of_id f ^ "\\n\");")
        :: smt_trace_instrs ctx function_id instrs
     end

  | I_aux (I_return cval, aux) :: instrs ->
     iraw ("printf(\"!return " ^ trace_cval cval ^ "\\n\");")
     :: I_aux (I_return cval, aux)
     :: smt_trace_instrs ctx function_id instrs

  | instr :: instrs -> instr :: smt_trace_instrs ctx function_id instrs

  | [] -> []

let smt_trace ctx =
  function
  | CDEF_fundef (function_id, heap_return, args, body) ->
     let string_of_heap_return = function
       | Some id -> Util.zencode_string (string_of_id id)
       | None -> "return"
     in
     let body =
       iraw ("printf(\"!link " ^ string_of_heap_return heap_return ^ "(" ^ Util.string_of_list ", " (fun id -> Util.zencode_string (string_of_id id)) args ^ ")\\n\");")
       :: smt_trace_instrs ctx function_id body
     in
     CDEF_fundef (function_id, heap_return, args, body)

  | cdef -> cdef

let compile_ast ctx c_includes (Defs defs) =
  try
    c_debug (lazy (Util.log_line __MODULE__ __LINE__ "Identifying recursive functions"));
    let recursive_functions = Spec_analysis.top_sort_defs (Defs defs) |> get_recursive_functions in
    let ctx = { ctx with recursive_functions = recursive_functions } in
    c_debug (lazy (Util.string_of_list ", " string_of_id (IdSet.elements recursive_functions)));

    let assert_vs = Initial_check.extern_of_string (mk_id "sail_assert") "(bool, string) -> unit effect {escape}" in
    let exit_vs = Initial_check.extern_of_string (mk_id "sail_exit") "unit -> unit effect {escape}" in
    let ctx = { ctx with tc_env = snd (Type_error.check ctx.tc_env (Defs [assert_vs; exit_vs])) } in

    if !opt_memo_cache then
      (try
         if Sys.is_directory "_sbuild" then
           ()
         else
           raise (Reporting.err_general Parse_ast.Unknown "_sbuild exists, but is a file not a directory!")
       with
       | Sys_error _ -> Unix.mkdir "_sbuild" 0o775)
    else ();

    let total = List.length defs in
    let _, chunks, ctx =
      List.fold_left (fun (n, chunks, ctx) def -> let defs, ctx = compile_def n total ctx def in n + 1, defs :: chunks, ctx) (1, [], ctx) defs
    in
    let cdefs = List.concat (List.rev chunks) in

    let cdefs, ctx = specialize_variants ctx [] cdefs in
    let cdefs = sort_ctype_defs cdefs in
    let cdefs = optimize ctx cdefs in
    let cdefs = if !opt_trace then List.map (instrument_tracing ctx) cdefs else cdefs in

    let cdefs = if !opt_smt_trace then List.map (fun cdef -> smt_trace ctx (flatten_cdef cdef)) cdefs else cdefs in

    let docs = List.map (codegen_def ctx) cdefs in

    let preamble = separate hardline
                     ([ string "#include \"sail.h\"";
                        string "#include \"rts.h\"";
                        string "#include \"elf.h\"" ]
                      @ (List.map (fun h -> string (Printf.sprintf "#include \"%s\"" h)) c_includes))
    in

    let exn_boilerplate =
      if not (Bindings.mem (mk_id "exception") ctx.variants) then ([], []) else
        ([ "  current_exception = malloc(sizeof(struct zexception));";
           "  CREATE(zexception)(current_exception);" ],
         [ "  KILL(zexception)(current_exception);";
           "  free(current_exception);";
           "  if (have_exception) fprintf(stderr, \"Exiting due to uncaught exception\\n\");" ])
    in

    let letbind_initializers =
      List.map (fun n -> Printf.sprintf "  create_letbind_%d();" n) (List.rev ctx.letbinds)
    in
    let letbind_finalizers =
      List.map (fun n -> Printf.sprintf "  kill_letbind_%d();" n) ctx.letbinds
    in
    let startup cdefs =
      List.map sgen_startup (List.filter is_cdef_startup cdefs)
    in
    let finish cdefs =
      List.map sgen_finish (List.filter is_cdef_finish cdefs)
    in

    let regs = c_ast_registers cdefs in

    let register_init_clear (id, ctyp, instrs) =
      if is_stack_ctyp ctyp then
        List.map (sgen_instr (mk_id "reg") ctx) instrs, []
      else
        [ Printf.sprintf "  CREATE(%s)(&%s);" (sgen_ctyp_name ctyp) (sgen_id id) ]
        @ List.map (sgen_instr (mk_id "reg") ctx) instrs,
        [ Printf.sprintf "  KILL(%s)(&%s);" (sgen_ctyp_name ctyp) (sgen_id id) ]
    in

    let model_init = separate hardline (List.map string
       ( [ "void model_init(void)";
           "{";
           "  setup_rts();" ]
       @ fst exn_boilerplate
       @ startup cdefs
       @ List.concat (List.map (fun r -> fst (register_init_clear r)) regs)
       @ (if regs = [] then [] else [ "  zinitializze_registers(UNIT);" ])
       @ letbind_initializers
       @ [ "}" ] ))
    in

    let model_fini = separate hardline (List.map string
       ( [ "void model_fini(void)";
           "{" ]
       @ letbind_finalizers
       @ List.concat (List.map (fun r -> snd (register_init_clear r)) regs)
       @ finish cdefs
       @ snd exn_boilerplate
       @ [ "  cleanup_rts();";
           "}" ] ))
    in

    let model_default_main = separate hardline (List.map string
         [ "int model_main(int argc, char *argv[])";
           "{";
           "  model_init();";
           "  if (process_arguments(argc, argv)) exit(EXIT_FAILURE);";
           "  zmain(UNIT);";
           "  model_fini();";
           "  return EXIT_SUCCESS;";
           "}" ] )
    in

    let model_main = separate hardline (if (!opt_no_main) then [] else List.map string
         [ "int main(int argc, char *argv[])";
           "{";
           "  return model_main(argc, argv);";
           "}" ] )
    in

    let hlhl = hardline ^^ hardline in

    Pretty_print_sail.to_string (preamble ^^ hlhl ^^ separate hlhl docs ^^ hlhl
                                 ^^ model_init ^^ hlhl
                                 ^^ model_fini ^^ hlhl
                                 ^^ model_default_main ^^ hlhl
                                 ^^ model_main)
    |> print_endline
  with
    Type_error (_, l, err) -> c_error ("Unexpected type error when compiling to C:\n" ^ Type_error.string_of_type_error err)