1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
|
(**************************************************************************)
(* Sail *)
(* *)
(* Copyright (c) 2013-2017 *)
(* Kathyrn Gray *)
(* Shaked Flur *)
(* Stephen Kell *)
(* Gabriel Kerneis *)
(* Robert Norton-Wright *)
(* Christopher Pulte *)
(* Peter Sewell *)
(* Alasdair Armstrong *)
(* Brian Campbell *)
(* Thomas Bauereiss *)
(* Anthony Fox *)
(* Jon French *)
(* Dominic Mulligan *)
(* Stephen Kell *)
(* Mark Wassell *)
(* *)
(* All rights reserved. *)
(* *)
(* This software was developed by the University of Cambridge Computer *)
(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in *)
(* the documentation and/or other materials provided with the *)
(* distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
(* SUCH DAMAGE. *)
(**************************************************************************)
open Ast
open Util
module Big_int = Nat_big_num
type mut = Immutable | Mutable
type 'a lvar = Register of effect * effect * 'a | Enum of 'a | Local of mut * 'a | Unbound
let lvar_typ = function
| Local (_, typ) -> typ
| Register (_, _, typ) -> typ
| Enum typ -> typ
| Unbound -> Reporting.unreachable Parse_ast.Unknown __POS__ "No type for unbound variable"
let no_annot = (Parse_ast.Unknown, ())
let gen_loc l = Parse_ast.Generated l
let inc_ord = Ord_aux (Ord_inc, Parse_ast.Unknown)
let dec_ord = Ord_aux (Ord_dec, Parse_ast.Unknown)
let mk_id str = Id_aux (Id str, Parse_ast.Unknown)
let mk_nc nc_aux = NC_aux (nc_aux, Parse_ast.Unknown)
let mk_nexp nexp_aux = Nexp_aux (nexp_aux, Parse_ast.Unknown)
let mk_exp ?loc:(l=Parse_ast.Unknown) exp_aux = E_aux (exp_aux, (l, ()))
let unaux_exp (E_aux (exp_aux, _)) = exp_aux
let uncast_exp = function
| E_aux (E_internal_return (E_aux (E_cast (typ, exp), _)), a) ->
E_aux (E_internal_return exp, a), Some typ
| E_aux (E_cast (typ, exp), _) -> exp, Some typ
| exp -> exp, None
let mk_pat pat_aux = P_aux (pat_aux, no_annot)
let unaux_pat (P_aux (pat_aux, _)) = pat_aux
let untyp_pat = function
| P_aux (P_typ (typ, pat), _) -> pat, Some typ
| pat -> pat, None
let mk_pexp ?loc:(l=Parse_ast.Unknown) pexp_aux = Pat_aux (pexp_aux, (l, ()))
let mk_mpat mpat_aux = MP_aux (mpat_aux, no_annot)
let mk_mpexp mpexp_aux = MPat_aux (mpexp_aux, no_annot)
let mk_lexp lexp_aux = LEXP_aux (lexp_aux, no_annot)
let mk_typ_pat tpat_aux = TP_aux (tpat_aux, Parse_ast.Unknown)
let mk_lit lit_aux = L_aux (lit_aux, Parse_ast.Unknown)
let mk_lit_exp lit_aux = mk_exp (E_lit (mk_lit lit_aux))
let mk_funcl id pat body = FCL_aux (FCL_Funcl (id, Pat_aux (Pat_exp (pat, body),no_annot)), no_annot)
let mk_qi_nc nc = QI_aux (QI_constraint nc, Parse_ast.Unknown)
let mk_qi_id k kid =
let kopt =
KOpt_aux (KOpt_kind (K_aux (k, Parse_ast.Unknown), kid), Parse_ast.Unknown)
in
QI_aux (QI_id kopt, Parse_ast.Unknown)
let mk_qi_kopt kopt = QI_aux (QI_id kopt, Parse_ast.Unknown)
let mk_fundef funcls =
let tannot_opt = Typ_annot_opt_aux (Typ_annot_opt_none, Parse_ast.Unknown) in
let effect_opt = Effect_opt_aux (Effect_opt_none, Parse_ast.Unknown) in
let rec_opt = Rec_aux (Rec_nonrec, Parse_ast.Unknown) in
DEF_fundef
(FD_aux (FD_function (rec_opt, tannot_opt, effect_opt, funcls), no_annot))
let mk_letbind pat exp = LB_aux (LB_val (pat, exp), no_annot)
let mk_val_spec vs_aux =
DEF_spec (VS_aux (vs_aux, no_annot))
let kopt_kid (KOpt_aux (KOpt_kind (_, kid), _)) = kid
let kopt_kind (KOpt_aux (KOpt_kind (k, _), _)) = k
let is_int_kopt = function
| KOpt_aux (KOpt_kind (K_aux (K_int, _), _), _) -> true
| _ -> false
let is_order_kopt = function
| KOpt_aux (KOpt_kind (K_aux (K_order, _), _), _) -> true
| _ -> false
let is_typ_kopt = function
| KOpt_aux (KOpt_kind (K_aux (K_type, _), _), _) -> true
| _ -> false
let is_bool_kopt = function
| KOpt_aux (KOpt_kind (K_aux (K_bool, _), _), _) -> true
| _ -> false
let string_of_kid = function
| Kid_aux (Var v, _) -> v
module Kid = struct
type t = kid
let compare kid1 kid2 = String.compare (string_of_kid kid1) (string_of_kid kid2)
end
module Kind = struct
type t = kind
let compare (K_aux (aux1, _)) (K_aux (aux2, _)) =
match aux1, aux2 with
| K_int, K_int -> 0
| K_type, K_type -> 0
| K_order, K_order -> 0
| K_bool, K_bool -> 0
| K_int, _ -> 1 | _, K_int -> -1
| K_type, _ -> 1 | _, K_type -> -1
| K_order, _ -> 1 | _, K_order -> -1
end
module KOpt = struct
type t = kinded_id
let compare kopt1 kopt2 =
let lex_ord c1 c2 = if c1 = 0 then c2 else c1 in
lex_ord (Kid.compare (kopt_kid kopt1) (kopt_kid kopt2))
(Kind.compare (kopt_kind kopt1) (kopt_kind kopt2))
end
module Id = struct
type t = id
let compare id1 id2 =
match (id1, id2) with
| Id_aux (Id x, _), Id_aux (Id y, _) -> String.compare x y
| Id_aux (Operator x, _), Id_aux (Operator y, _) -> String.compare x y
| Id_aux (Id _, _), Id_aux (Operator _, _) -> -1
| Id_aux (Operator _, _), Id_aux (Id _, _) -> 1
end
module Nexp = struct
type t = nexp
let rec compare (Nexp_aux (nexp1, _)) (Nexp_aux (nexp2, _)) =
let lex_ord (c1, c2) = if c1 = 0 then c2 else c1 in
match nexp1, nexp2 with
| Nexp_id v1, Nexp_id v2 -> Id.compare v1 v2
| Nexp_var kid1, Nexp_var kid2 -> Kid.compare kid1 kid2
| Nexp_constant c1, Nexp_constant c2 -> Big_int.compare c1 c2
| Nexp_app (op1, args1), Nexp_app (op2, args2) ->
let lex1 = Id.compare op1 op2 in
let lex2 = List.length args1 - List.length args2 in
let lex3 =
if lex2 = 0 then
List.fold_left2 (fun l n1 n2 -> lex_ord (l, compare n1 n2)) 0 args1 args2
else 0
in
lex_ord (lex1, lex_ord (lex2, lex3))
| Nexp_times (n1a, n1b), Nexp_times (n2a, n2b)
| Nexp_sum (n1a, n1b), Nexp_sum (n2a, n2b)
| Nexp_minus (n1a, n1b), Nexp_minus (n2a, n2b) ->
lex_ord (compare n1a n2a, compare n1b n2b)
| Nexp_exp n1, Nexp_exp n2 -> compare n1 n2
| Nexp_neg n1, Nexp_neg n2 -> compare n1 n2
| Nexp_constant _, _ -> -1 | _, Nexp_constant _ -> 1
| Nexp_id _, _ -> -1 | _, Nexp_id _ -> 1
| Nexp_var _, _ -> -1 | _, Nexp_var _ -> 1
| Nexp_neg _, _ -> -1 | _, Nexp_neg _ -> 1
| Nexp_exp _, _ -> -1 | _, Nexp_exp _ -> 1
| Nexp_minus _, _ -> -1 | _, Nexp_minus _ -> 1
| Nexp_sum _, _ -> -1 | _, Nexp_sum _ -> 1
| Nexp_times _, _ -> -1 | _, Nexp_times _ -> 1
end
module Bindings = Map.Make(Id)
module IdSet = Set.Make(Id)
module KBindings = Map.Make(Kid)
module KidSet = Set.Make(Kid)
module KOptSet = Set.Make(KOpt)
module KOptMap = Map.Make(KOpt)
module NexpSet = Set.Make(Nexp)
module NexpMap = Map.Make(Nexp)
let rec nexp_identical nexp1 nexp2 = (Nexp.compare nexp1 nexp2 = 0)
let rec is_nexp_constant (Nexp_aux (nexp, _)) = match nexp with
| Nexp_id _ | Nexp_var _ -> false
| Nexp_constant _ -> true
| Nexp_times (n1, n2) | Nexp_sum (n1, n2) | Nexp_minus (n1, n2) ->
is_nexp_constant n1 && is_nexp_constant n2
| Nexp_exp n | Nexp_neg n -> is_nexp_constant n
| Nexp_app (_, nexps) -> List.for_all is_nexp_constant nexps
let int_of_nexp_opt nexp =
match nexp with
| Nexp_aux(Nexp_constant i,_) -> Some i
| _ -> None
let rec nexp_simp (Nexp_aux (nexp, l)) = Nexp_aux (nexp_simp_aux nexp, l)
and nexp_simp_aux = function
(* (n - (n - m)) often appears in foreach loops *)
| Nexp_minus (nexp1, Nexp_aux (Nexp_minus (nexp2, Nexp_aux (n3,_)),_))
when nexp_identical nexp1 nexp2 ->
nexp_simp_aux n3
| Nexp_minus (Nexp_aux (Nexp_sum (Nexp_aux (n1, _), nexp2), _), nexp3)
when nexp_identical nexp2 nexp3 ->
nexp_simp_aux n1
| Nexp_sum (Nexp_aux (Nexp_minus (Nexp_aux (n1, _), nexp2), _), nexp3)
when nexp_identical nexp2 nexp3 ->
nexp_simp_aux n1
| Nexp_sum (n1, n2) ->
begin
let (Nexp_aux (n1_simp, _) as n1) = nexp_simp n1 in
let (Nexp_aux (n2_simp, _) as n2) = nexp_simp n2 in
match n1_simp, n2_simp with
| Nexp_constant c1, Nexp_constant c2 -> Nexp_constant (Big_int.add c1 c2)
| _, Nexp_neg n2 -> Nexp_minus (n1, n2)
| _, _ -> Nexp_sum (n1, n2)
end
| Nexp_times (n1, n2) ->
begin
let (Nexp_aux (n1_simp, _) as n1) = nexp_simp n1 in
let (Nexp_aux (n2_simp, _) as n2) = nexp_simp n2 in
match n1_simp, n2_simp with
| Nexp_constant c, _ when Big_int.equal c (Big_int.of_int 1) -> n2_simp
| _, Nexp_constant c when Big_int.equal c (Big_int.of_int 1) -> n1_simp
| Nexp_constant c1, Nexp_constant c2 -> Nexp_constant (Big_int.mul c1 c2)
| _, _ -> Nexp_times (n1, n2)
end
| Nexp_minus (n1, n2) ->
begin
let (Nexp_aux (n1_simp, _) as n1) = nexp_simp n1 in
let (Nexp_aux (n2_simp, _) as n2) = nexp_simp n2 in
match n1_simp, n2_simp with
| Nexp_constant c1, Nexp_constant c2 -> Nexp_constant (Big_int.sub c1 c2)
(* A vector range x['n-1 .. 0] can result in the size "('n-1) - -1" *)
| Nexp_minus (Nexp_aux (n,_), Nexp_aux (Nexp_constant c1,_)), Nexp_constant c2
when Big_int.equal c1 (Big_int.negate c2) -> n
| _, _ -> Nexp_minus (n1, n2)
end
| Nexp_neg n ->
begin
let (Nexp_aux (n_simp, _) as n) = nexp_simp n in
match n_simp with
| Nexp_constant c -> Nexp_constant (Big_int.negate c)
| _ -> Nexp_neg n
end
| Nexp_app (Id_aux (Id "div",_) as id,[n1;n2]) ->
begin
let (Nexp_aux (n1_simp, _) as n1) = nexp_simp n1 in
let (Nexp_aux (n2_simp, _) as n2) = nexp_simp n2 in
match n1_simp, n2_simp with
| Nexp_constant c1, Nexp_constant c2 -> Nexp_constant (Big_int.div c1 c2)
| _, _ -> Nexp_app (id,[n1;n2])
end
| nexp -> nexp
let rec constraint_simp (NC_aux (nc_aux, l)) =
let nc_aux = match nc_aux with
| NC_equal (nexp1, nexp2) ->
let nexp1, nexp2 = nexp_simp nexp1, nexp_simp nexp2 in
if nexp_identical nexp1 nexp2 then
NC_true
else
NC_equal (nexp1, nexp2)
| NC_and (nc1, nc2) ->
let nc1, nc2 = constraint_simp nc1, constraint_simp nc2 in
begin match nc1, nc2 with
| NC_aux (NC_true, _), NC_aux (nc, _) -> nc
| NC_aux (nc, _), NC_aux (NC_true, _) -> nc
| _, _ -> NC_and (nc1, nc2)
end
| NC_or (nc1, nc2) ->
let nc1, nc2 = constraint_simp nc1, constraint_simp nc2 in
begin match nc1, nc2 with
| NC_aux (NC_false, _), NC_aux (nc, _) -> nc
| NC_aux (nc, _), NC_aux (NC_false, _) -> nc
| NC_aux (NC_true, _), NC_aux (nc, _) -> NC_true
| NC_aux (nc, _), NC_aux (NC_true, _) -> NC_true
| _, _ -> NC_or (nc1, nc2)
end
| NC_bounded_ge (nexp1, nexp2) ->
let nexp1, nexp2 = nexp_simp nexp1, nexp_simp nexp2 in
begin match nexp1, nexp2 with
| Nexp_aux (Nexp_constant c1, _), Nexp_aux (Nexp_constant c2, _) ->
if Big_int.greater_equal c1 c2 then NC_true else NC_false
| _, _ -> NC_bounded_ge (nexp1, nexp2)
end
| NC_bounded_gt (nexp1, nexp2) ->
let nexp1, nexp2 = nexp_simp nexp1, nexp_simp nexp2 in
begin match nexp1, nexp2 with
| Nexp_aux (Nexp_constant c1, _), Nexp_aux (Nexp_constant c2, _) ->
if Big_int.greater c1 c2 then NC_true else NC_false
| _, _ -> NC_bounded_gt (nexp1, nexp2)
end
| NC_bounded_le (nexp1, nexp2) ->
let nexp1, nexp2 = nexp_simp nexp1, nexp_simp nexp2 in
begin match nexp1, nexp2 with
| Nexp_aux (Nexp_constant c1, _), Nexp_aux (Nexp_constant c2, _) ->
if Big_int.less_equal c1 c2 then NC_true else NC_false
| _, _ -> NC_bounded_le (nexp1, nexp2)
end
| NC_bounded_lt (nexp1, nexp2) ->
let nexp1, nexp2 = nexp_simp nexp1, nexp_simp nexp2 in
begin match nexp1, nexp2 with
| Nexp_aux (Nexp_constant c1, _), Nexp_aux (Nexp_constant c2, _) ->
if Big_int.less c1 c2 then NC_true else NC_false
| _, _ -> NC_bounded_lt (nexp1, nexp2)
end
| _ -> nc_aux
in
NC_aux (nc_aux, l)
let rec constraint_conj (NC_aux (nc_aux, l) as nc) =
match nc_aux with
| NC_and (nc1, nc2) -> constraint_conj nc1 @ constraint_conj nc2
| _ -> [nc]
let rec constraint_disj (NC_aux (nc_aux, l) as nc) =
match nc_aux with
| NC_or (nc1, nc2) -> constraint_disj nc1 @ constraint_disj nc2
| _ -> [nc]
let mk_typ typ = Typ_aux (typ, Parse_ast.Unknown)
let mk_typ_arg arg = A_aux (arg, Parse_ast.Unknown)
let mk_kid str = Kid_aux (Var ("'" ^ str), Parse_ast.Unknown)
let mk_infix_id str = Id_aux (Operator str, Parse_ast.Unknown)
let mk_id_typ id = Typ_aux (Typ_id id, Parse_ast.Unknown)
let mk_kopt kind_aux id =
KOpt_aux (KOpt_kind (K_aux (kind_aux, Parse_ast.Unknown), id), Parse_ast.Unknown)
let mk_ord ord_aux = Ord_aux (ord_aux, Parse_ast.Unknown)
let unknown_typ = mk_typ Typ_internal_unknown
let int_typ = mk_id_typ (mk_id "int")
let nat_typ = mk_id_typ (mk_id "nat")
let unit_typ = mk_id_typ (mk_id "unit")
let bit_typ = mk_id_typ (mk_id "bit")
let real_typ = mk_id_typ (mk_id "real")
let app_typ id args = mk_typ (Typ_app (id, args))
let register_typ typ = mk_typ (Typ_app (mk_id "register", [mk_typ_arg (A_typ typ)]))
let atom_typ nexp =
mk_typ (Typ_app (mk_id "atom", [mk_typ_arg (A_nexp (nexp_simp nexp))]))
let implicit_typ nexp =
mk_typ (Typ_app (mk_id "implicit", [mk_typ_arg (A_nexp (nexp_simp nexp))]))
let range_typ nexp1 nexp2 =
mk_typ (Typ_app (mk_id "range", [mk_typ_arg (A_nexp (nexp_simp nexp1));
mk_typ_arg (A_nexp (nexp_simp nexp2))]))
let bool_typ = mk_id_typ (mk_id "bool")
let atom_bool_typ nc = mk_typ (Typ_app (mk_id "atom_bool", [mk_typ_arg (A_bool nc)]))
let string_typ = mk_id_typ (mk_id "string")
let list_typ typ = mk_typ (Typ_app (mk_id "list", [mk_typ_arg (A_typ typ)]))
let tuple_typ typs = mk_typ (Typ_tup typs)
let function_typ arg_typs ret_typ eff = mk_typ (Typ_fn (arg_typs, ret_typ, eff))
let vector_typ n ord typ =
mk_typ (Typ_app (mk_id "vector",
[mk_typ_arg (A_nexp (nexp_simp n));
mk_typ_arg (A_order ord);
mk_typ_arg (A_typ typ)]))
let bitvector_typ n ord =
mk_typ (Typ_app (mk_id "bitvector",
[mk_typ_arg (A_nexp (nexp_simp n));
mk_typ_arg (A_order ord)]))
let exc_typ = mk_id_typ (mk_id "exception")
let nconstant c = Nexp_aux (Nexp_constant c, Parse_ast.Unknown)
let nint i = nconstant (Big_int.of_int i)
let nminus n1 n2 = Nexp_aux (Nexp_minus (n1, n2), Parse_ast.Unknown)
let nsum n1 n2 = Nexp_aux (Nexp_sum (n1, n2), Parse_ast.Unknown)
let ntimes n1 n2 = Nexp_aux (Nexp_times (n1, n2), Parse_ast.Unknown)
let npow2 n = Nexp_aux (Nexp_exp n, Parse_ast.Unknown)
let nvar kid = Nexp_aux (Nexp_var kid, Parse_ast.Unknown)
let nid id = Nexp_aux (Nexp_id id, Parse_ast.Unknown)
let napp id args = Nexp_aux (Nexp_app (id, args), Parse_ast.Unknown)
let nc_set kid nums = mk_nc (NC_set (kid, nums))
let nc_int_set kid ints = mk_nc (NC_set (kid, List.map Big_int.of_int ints))
let nc_eq n1 n2 = mk_nc (NC_equal (n1, n2))
let nc_neq n1 n2 = mk_nc (NC_not_equal (n1, n2))
let nc_lteq n1 n2 = NC_aux (NC_bounded_le (n1, n2), Parse_ast.Unknown)
let nc_lt n1 n2 = NC_aux (NC_bounded_lt (n1, n2), Parse_ast.Unknown)
let nc_gteq n1 n2 = NC_aux (NC_bounded_ge (n1, n2), Parse_ast.Unknown)
let nc_gt n1 n2 = NC_aux (NC_bounded_gt (n1, n2), Parse_ast.Unknown)
let nc_var kid = mk_nc (NC_var kid)
let nc_true = mk_nc NC_true
let nc_false = mk_nc NC_false
let nc_or nc1 nc2 =
match nc1, nc2 with
| _, NC_aux (NC_false, _) -> nc1
| NC_aux (NC_false, _), _ -> nc2
| _, _ -> mk_nc (NC_or (nc1, nc2))
let nc_and nc1 nc2 =
match nc1, nc2 with
| _, NC_aux (NC_true, _) -> nc1
| NC_aux (NC_true, _), _ -> nc2
| _, _ -> mk_nc (NC_and (nc1, nc2))
let arg_nexp ?loc:(l=Parse_ast.Unknown) n = A_aux (A_nexp n, l)
let arg_order ?loc:(l=Parse_ast.Unknown) ord = A_aux (A_order ord, l)
let arg_typ ?loc:(l=Parse_ast.Unknown) typ = A_aux (A_typ typ, l)
let arg_bool ?loc:(l=Parse_ast.Unknown) nc = A_aux (A_bool nc, l)
let arg_kopt (KOpt_aux (KOpt_kind (K_aux (k, _), v), l)) =
match k with
| K_int -> arg_nexp (nvar v)
| K_order -> arg_order (Ord_aux (Ord_var v, l))
| K_bool -> arg_bool (nc_var v)
| K_type -> arg_typ (mk_typ (Typ_var v))
let nc_not nc = mk_nc (NC_app (mk_id "not", [arg_bool nc]))
let mk_typschm typq typ = TypSchm_aux (TypSchm_ts (typq, typ), Parse_ast.Unknown)
let mk_typquant qis = TypQ_aux (TypQ_tq qis, Parse_ast.Unknown)
let mk_fexp id exp = FE_aux (FE_Fexp (id, exp), no_annot)
let mk_effect effs =
Effect_aux (Effect_set (List.map (fun be_aux -> BE_aux (be_aux, Parse_ast.Unknown)) effs), Parse_ast.Unknown)
let no_effect = mk_effect []
let quant_add qi typq =
match qi, typq with
| QI_aux (QI_constraint (NC_aux (NC_true, _)), _), _ -> typq
| QI_aux (QI_id _, _), TypQ_aux (TypQ_tq qis, l) -> TypQ_aux (TypQ_tq (qi :: qis), l)
| QI_aux (QI_constant _, _), TypQ_aux (TypQ_tq qis, l) -> TypQ_aux (TypQ_tq (qis @ [qi]), l)
| QI_aux (QI_constraint nc, _), TypQ_aux (TypQ_tq qis, l) -> TypQ_aux (TypQ_tq (qis @ [qi]), l)
| _, TypQ_aux (TypQ_no_forall, l) -> TypQ_aux (TypQ_tq [qi], l)
let quant_items : typquant -> quant_item list = function
| TypQ_aux (TypQ_tq qis, _) -> qis
| TypQ_aux (TypQ_no_forall, _) -> []
let quant_kopts typq =
let qi_kopt = function
| QI_aux (QI_id kopt, _) -> [kopt]
| QI_aux _ -> []
in
quant_items typq |> List.map qi_kopt |> List.concat
let quant_split typq =
let qi_kopt = function
| QI_aux (QI_id kopt, _) -> [kopt]
| _ -> []
in
let qi_nc = function
| QI_aux (QI_constraint nc, _) -> [nc]
| _ -> []
in
let qis = quant_items typq in
List.concat (List.map qi_kopt qis), List.concat (List.map qi_nc qis)
let quant_map_items f = function
| TypQ_aux (TypQ_no_forall, l) -> TypQ_aux (TypQ_no_forall, l)
| TypQ_aux (TypQ_tq qis, l) -> TypQ_aux (TypQ_tq (List.map f qis), l)
let is_quant_kopt = function
| QI_aux (QI_id _, _) -> true
| _ -> false
let is_quant_constraint = function
| QI_aux (QI_constraint _, _) -> true
| _ -> false
let unaux_nexp (Nexp_aux (nexp, _)) = nexp
let unaux_order (Ord_aux (ord, _)) = ord
let unaux_typ (Typ_aux (typ, _)) = typ
let unaux_kind (K_aux (k, _)) = k
let unaux_constraint (NC_aux (nc, _)) = nc
let rec map_exp_annot f (E_aux (exp, annot)) = E_aux (map_exp_annot_aux f exp, f annot)
and map_exp_annot_aux f = function
| E_block xs -> E_block (List.map (map_exp_annot f) xs)
| E_id id -> E_id id
| E_ref id -> E_ref id
| E_lit lit -> E_lit lit
| E_cast (typ, exp) -> E_cast (typ, map_exp_annot f exp)
| E_app (id, xs) -> E_app (id, List.map (map_exp_annot f) xs)
| E_app_infix (x, op, y) -> E_app_infix (map_exp_annot f x, op, map_exp_annot f y)
| E_tuple xs -> E_tuple (List.map (map_exp_annot f) xs)
| E_if (cond, t, e) -> E_if (map_exp_annot f cond, map_exp_annot f t, map_exp_annot f e)
| E_for (v, e1, e2, e3, o, e4) -> E_for (v, map_exp_annot f e1, map_exp_annot f e2, map_exp_annot f e3, o, map_exp_annot f e4)
| E_loop (loop_type, measure, e1, e2) -> E_loop (loop_type, map_measure_annot f measure, map_exp_annot f e1, map_exp_annot f e2)
| E_vector exps -> E_vector (List.map (map_exp_annot f) exps)
| E_vector_access (exp1, exp2) -> E_vector_access (map_exp_annot f exp1, map_exp_annot f exp2)
| E_vector_subrange (exp1, exp2, exp3) -> E_vector_subrange (map_exp_annot f exp1, map_exp_annot f exp2, map_exp_annot f exp3)
| E_vector_update (exp1, exp2, exp3) -> E_vector_update (map_exp_annot f exp1, map_exp_annot f exp2, map_exp_annot f exp3)
| E_vector_update_subrange (exp1, exp2, exp3, exp4) ->
E_vector_update_subrange (map_exp_annot f exp1, map_exp_annot f exp2, map_exp_annot f exp3, map_exp_annot f exp4)
| E_vector_append (exp1, exp2) -> E_vector_append (map_exp_annot f exp1, map_exp_annot f exp2)
| E_list xs -> E_list (List.map (map_exp_annot f) xs)
| E_cons (exp1, exp2) -> E_cons (map_exp_annot f exp1, map_exp_annot f exp2)
| E_record fexps -> E_record (List.map (map_fexp_annot f) fexps)
| E_record_update (exp, fexps) -> E_record_update (map_exp_annot f exp, List.map (map_fexp_annot f) fexps)
| E_field (exp, id) -> E_field (map_exp_annot f exp, id)
| E_case (exp, cases) -> E_case (map_exp_annot f exp, List.map (map_pexp_annot f) cases)
| E_try (exp, cases) -> E_try (map_exp_annot f exp, List.map (map_pexp_annot f) cases)
| E_let (letbind, exp) -> E_let (map_letbind_annot f letbind, map_exp_annot f exp)
| E_assign (lexp, exp) -> E_assign (map_lexp_annot f lexp, map_exp_annot f exp)
| E_sizeof nexp -> E_sizeof nexp
| E_constraint nc -> E_constraint nc
| E_exit exp -> E_exit (map_exp_annot f exp)
| E_throw exp -> E_throw (map_exp_annot f exp)
| E_return exp -> E_return (map_exp_annot f exp)
| E_assert (test, msg) -> E_assert (map_exp_annot f test, map_exp_annot f msg)
| E_internal_value v -> E_internal_value v
| E_var (lexp, exp1, exp2) -> E_var (map_lexp_annot f lexp, map_exp_annot f exp1, map_exp_annot f exp2)
| E_internal_plet (pat, exp1, exp2) -> E_internal_plet (map_pat_annot f pat, map_exp_annot f exp1, map_exp_annot f exp2)
| E_internal_return exp -> E_internal_return (map_exp_annot f exp)
and map_measure_annot f (Measure_aux (m, l)) = Measure_aux (map_measure_annot_aux f m, l)
and map_measure_annot_aux f = function
| Measure_none -> Measure_none
| Measure_some exp -> Measure_some (map_exp_annot f exp)
and map_opt_default_annot f (Def_val_aux (df, annot)) = Def_val_aux (map_opt_default_annot_aux f df, f annot)
and map_opt_default_annot_aux f = function
| Def_val_empty -> Def_val_empty
| Def_val_dec exp -> Def_val_dec (map_exp_annot f exp)
and map_fexp_annot f (FE_aux (FE_Fexp (id, exp), annot)) = FE_aux (FE_Fexp (id, map_exp_annot f exp), f annot)
and map_pexp_annot f (Pat_aux (pexp, annot)) = Pat_aux (map_pexp_annot_aux f pexp, f annot)
and map_pexp_annot_aux f = function
| Pat_exp (pat, exp) -> Pat_exp (map_pat_annot f pat, map_exp_annot f exp)
| Pat_when (pat, guard, exp) -> Pat_when (map_pat_annot f pat, map_exp_annot f guard, map_exp_annot f exp)
and map_pat_annot f (P_aux (pat, annot)) = P_aux (map_pat_annot_aux f pat, f annot)
and map_pat_annot_aux f = function
| P_lit lit -> P_lit lit
| P_wild -> P_wild
| P_or (pat1, pat2) -> P_or (map_pat_annot f pat1, map_pat_annot f pat2)
| P_not pat -> P_not (map_pat_annot f pat)
| P_as (pat, id) -> P_as (map_pat_annot f pat, id)
| P_typ (typ, pat) -> P_typ (typ, map_pat_annot f pat)
| P_id id -> P_id id
| P_var (pat, tpat) -> P_var (map_pat_annot f pat, tpat)
| P_app (id, pats) -> P_app (id, List.map (map_pat_annot f) pats)
| P_tup pats -> P_tup (List.map (map_pat_annot f) pats)
| P_list pats -> P_list (List.map (map_pat_annot f) pats)
| P_vector_concat pats -> P_vector_concat (List.map (map_pat_annot f) pats)
| P_vector pats -> P_vector (List.map (map_pat_annot f) pats)
| P_cons (pat1, pat2) -> P_cons (map_pat_annot f pat1, map_pat_annot f pat2)
| P_string_append pats -> P_string_append (List.map (map_pat_annot f) pats)
and map_mpexp_annot f (MPat_aux (mpexp, annot)) = MPat_aux (map_mpexp_annot_aux f mpexp, f annot)
and map_mpexp_annot_aux f = function
| MPat_pat mpat -> MPat_pat (map_mpat_annot f mpat)
| MPat_when (mpat, guard) -> MPat_when (map_mpat_annot f mpat, map_exp_annot f guard)
and map_mapcl_annot f = function
| (MCL_aux (MCL_bidir (mpexp1, mpexp2), annot)) ->
MCL_aux (MCL_bidir (map_mpexp_annot f mpexp1, map_mpexp_annot f mpexp2), f annot)
| (MCL_aux (MCL_forwards (mpexp, exp), annot)) ->
MCL_aux (MCL_forwards (map_mpexp_annot f mpexp, map_exp_annot f exp), f annot)
| (MCL_aux (MCL_backwards (mpexp, exp), annot)) ->
MCL_aux (MCL_backwards (map_mpexp_annot f mpexp, map_exp_annot f exp), f annot)
and map_mpat_annot f (MP_aux (mpat, annot)) = MP_aux (map_mpat_annot_aux f mpat, f annot)
and map_mpat_annot_aux f = function
| MP_lit lit -> MP_lit lit
| MP_id id -> MP_id id
| MP_app (id, mpats) -> MP_app (id, List.map (map_mpat_annot f) mpats)
| MP_tup mpats -> MP_tup (List.map (map_mpat_annot f) mpats)
| MP_list mpats -> MP_list (List.map (map_mpat_annot f) mpats)
| MP_vector_concat mpats -> MP_vector_concat (List.map (map_mpat_annot f) mpats)
| MP_vector mpats -> MP_vector (List.map (map_mpat_annot f) mpats)
| MP_cons (mpat1, mpat2) -> MP_cons (map_mpat_annot f mpat1, map_mpat_annot f mpat2)
| MP_string_append mpats -> MP_string_append (List.map (map_mpat_annot f) mpats)
| MP_typ (mpat, typ) -> MP_typ (map_mpat_annot f mpat, typ)
| MP_as (mpat, id) -> MP_as (map_mpat_annot f mpat, id)
and map_letbind_annot f (LB_aux (lb, annot)) = LB_aux (map_letbind_annot_aux f lb, f annot)
and map_letbind_annot_aux f = function
| LB_val (pat, exp) -> LB_val (map_pat_annot f pat, map_exp_annot f exp)
and map_lexp_annot f (LEXP_aux (lexp, annot)) = LEXP_aux (map_lexp_annot_aux f lexp, f annot)
and map_lexp_annot_aux f = function
| LEXP_id id -> LEXP_id id
| LEXP_deref exp -> LEXP_deref (map_exp_annot f exp)
| LEXP_memory (id, exps) -> LEXP_memory (id, List.map (map_exp_annot f) exps)
| LEXP_cast (typ, id) -> LEXP_cast (typ, id)
| LEXP_tup lexps -> LEXP_tup (List.map (map_lexp_annot f) lexps)
| LEXP_vector_concat lexps -> LEXP_vector_concat (List.map (map_lexp_annot f) lexps)
| LEXP_vector (lexp, exp) -> LEXP_vector (map_lexp_annot f lexp, map_exp_annot f exp)
| LEXP_vector_range (lexp, exp1, exp2) -> LEXP_vector_range (map_lexp_annot f lexp, map_exp_annot f exp1, map_exp_annot f exp2)
| LEXP_field (lexp, id) -> LEXP_field (map_lexp_annot f lexp, id)
and map_typedef_annot f = function
| TD_aux (td_aux, annot) -> TD_aux (td_aux, f annot)
and map_fundef_annot f = function
| FD_aux (fd_aux, annot) -> FD_aux (map_fundef_annot_aux f fd_aux, f annot)
and map_fundef_annot_aux f = function
| FD_function (rec_opt, tannot_opt, eff_opt, funcls) -> FD_function (map_recopt_annot f rec_opt, tannot_opt, eff_opt,
List.map (map_funcl_annot f) funcls)
and map_funcl_annot f = function
| FCL_aux (fcl, annot) -> FCL_aux (map_funcl_annot_aux f fcl, f annot)
and map_funcl_annot_aux f = function
| FCL_Funcl (id, pexp) -> FCL_Funcl (id, map_pexp_annot f pexp)
and map_recopt_annot f = function
| Rec_aux (rec_aux, l) -> Rec_aux (map_recopt_annot_aux f rec_aux, l)
and map_recopt_annot_aux f = function
| Rec_nonrec -> Rec_nonrec
| Rec_rec -> Rec_rec
| Rec_measure (pat, exp) -> Rec_measure (map_pat_annot f pat, map_exp_annot f exp)
and map_mapdef_annot f = function
| MD_aux (md_aux, annot) -> MD_aux (map_mapdef_annot_aux f md_aux, f annot)
and map_mapdef_annot_aux f = function
| MD_mapping (id, tannot_opt, mapcls) -> MD_mapping (id, tannot_opt, List.map (map_mapcl_annot f) mapcls)
and map_valspec_annot f = function
| VS_aux (vs_aux, annot) -> VS_aux (vs_aux, f annot)
and map_scattered_annot f = function
| SD_aux (sd_aux, annot) -> SD_aux (map_scattered_annot_aux f sd_aux, f annot)
and map_scattered_annot_aux f = function
| SD_function (rec_opt, tannot_opt, eff_opt, name) -> SD_function (map_recopt_annot f rec_opt, tannot_opt, eff_opt, name)
| SD_funcl fcl -> SD_funcl (map_funcl_annot f fcl)
| SD_variant (id, typq) -> SD_variant (id, typq)
| SD_unioncl (id, tu) -> SD_unioncl (id, tu)
| SD_mapping (id, tannot_opt) -> SD_mapping (id, tannot_opt)
| SD_mapcl (id, mcl) -> SD_mapcl (id, map_mapcl_annot f mcl)
| SD_end id -> SD_end id
and map_decspec_annot f = function
| DEC_aux (dec_aux, annot) -> DEC_aux (map_decspec_annot_aux f dec_aux, f annot)
and map_decspec_annot_aux f = function
| DEC_reg (eff1, eff2, typ, id) -> DEC_reg (eff1, eff2, typ, id)
| DEC_config (id, typ, exp) -> DEC_config (id, typ, map_exp_annot f exp)
| DEC_alias (id, als) -> DEC_alias (id, map_aliasspec_annot f als)
| DEC_typ_alias (typ, id, als) -> DEC_typ_alias (typ, id, map_aliasspec_annot f als)
and map_aliasspec_annot f = function
| AL_aux (al_aux, annot) -> AL_aux (map_aliasspec_annot_aux f al_aux, f annot)
and map_aliasspec_annot_aux f = function
| AL_subreg (reg_id, id) -> AL_subreg (map_regid_annot f reg_id, id)
| AL_bit (reg_id, exp) -> AL_bit (map_regid_annot f reg_id, map_exp_annot f exp)
| AL_slice (reg_id, exp1, exp2) -> AL_slice (map_regid_annot f reg_id, map_exp_annot f exp1, map_exp_annot f exp2)
| AL_concat (reg_id1, reg_id2) -> AL_concat (map_regid_annot f reg_id1, map_regid_annot f reg_id2)
and map_regid_annot f = function
| RI_aux (ri_aux, annot) -> RI_aux (map_regid_annot_aux f ri_aux, f annot)
and map_regid_annot_aux f = function
| RI_id id -> RI_id id
and map_def_annot f = function
| DEF_type td -> DEF_type (map_typedef_annot f td)
| DEF_fundef fd -> DEF_fundef (map_fundef_annot f fd)
| DEF_mapdef md -> DEF_mapdef (map_mapdef_annot f md)
| DEF_val lb -> DEF_val (map_letbind_annot f lb)
| DEF_spec vs -> DEF_spec (map_valspec_annot f vs)
| DEF_fixity (prec, n, id) -> DEF_fixity (prec, n, id)
| DEF_overload (name, overloads) -> DEF_overload (name, overloads)
| DEF_default ds -> DEF_default ds
| DEF_scattered sd -> DEF_scattered (map_scattered_annot f sd)
| DEF_measure (id, pat, exp) -> DEF_measure (id, map_pat_annot f pat, map_exp_annot f exp)
| DEF_loop_measures (id, measures) -> DEF_loop_measures (id, List.map (map_loop_measure_annot f) measures)
| DEF_reg_dec ds -> DEF_reg_dec (map_decspec_annot f ds)
| DEF_internal_mutrec fds -> DEF_internal_mutrec (List.map (map_fundef_annot f) fds)
| DEF_pragma (name, arg, l) -> DEF_pragma (name, arg, l)
and map_defs_annot f = function
| Defs defs -> Defs (List.map (map_def_annot f) defs)
and map_loop_measure_annot f = function
| Loop (loop, exp) -> Loop (loop, map_exp_annot f exp)
let id_loc = function
| Id_aux (_, l) -> l
let kid_loc = function
| Kid_aux (_, l) -> l
let typ_loc = function
| Typ_aux (_, l) -> l
let pat_loc = function
| P_aux (_, (l, _)) -> l
let exp_loc = function
| E_aux (_, (l, _)) -> l
let def_loc = function
| DEF_type (TD_aux (_, (l, _)))
| DEF_fundef (FD_aux (_, (l, _)))
| DEF_mapdef (MD_aux (_, (l, _)))
| DEF_val (LB_aux (_, (l, _)))
| DEF_spec (VS_aux (_, (l, _)))
| DEF_default (DT_aux (_, l))
| DEF_scattered (SD_aux (_, (l, _)))
| DEF_reg_dec (DEC_aux (_, (l, _)))
| DEF_fixity (_, _, Id_aux (_, l))
| DEF_overload (Id_aux (_, l), _) -> l
| DEF_internal_mutrec _ -> Parse_ast.Unknown
| DEF_pragma (_, _, l) -> l
| DEF_measure (id, _, _) -> id_loc id
| DEF_loop_measures (id, _) -> id_loc id
let string_of_id = function
| Id_aux (Id v, _) -> v
| Id_aux (Operator v, _) -> "(operator " ^ v ^ ")"
let id_of_kid = function
| Kid_aux (Var v, l) -> Id_aux (Id (String.sub v 1 (String.length v - 1)), l)
let kid_of_id = function
| Id_aux (Id v, l) -> Kid_aux (Var ("'" ^ v), l)
| Id_aux (Operator v, _) -> assert false
let prepend_id str = function
| Id_aux (Id v, l) -> Id_aux (Id (str ^ v), l)
| Id_aux (Operator v, l) -> Id_aux (Operator (str ^ v), l)
let append_id id str =
match id with
| Id_aux (Id v, l) -> Id_aux (Id (v ^ str), l)
| Id_aux (Operator v, l) -> Id_aux (Operator (v ^ str), l)
let prepend_kid str = function
| Kid_aux (Var v, l) -> Kid_aux (Var ("'" ^ str ^ String.sub v 1 (String.length v - 1)), l)
let string_of_base_effect_aux = function
| BE_rreg -> "rreg"
| BE_wreg -> "wreg"
| BE_rmem -> "rmem"
| BE_rmemt -> "rmemt"
| BE_wmem -> "wmem"
| BE_eamem -> "eamem"
| BE_exmem -> "exmem"
| BE_wmv -> "wmv"
| BE_wmvt -> "wmvt"
| BE_barr -> "barr"
| BE_depend -> "depend"
| BE_undef -> "undef"
| BE_unspec -> "unspec"
| BE_nondet -> "nondet"
| BE_escape -> "escape"
| BE_config -> "configuration"
(*| BE_lset -> "lset"
| BE_lret -> "lret"*)
let string_of_kind_aux = function
| K_type -> "Type"
| K_int -> "Int"
| K_order -> "Order"
| K_bool -> "Bool"
let string_of_kind (K_aux (k, _)) = string_of_kind_aux k
let string_of_kinded_id (KOpt_aux (KOpt_kind (k, kid), _)) =
"(" ^ string_of_kid kid ^ " : " ^ string_of_kind k ^ ")"
let string_of_base_effect = function
| BE_aux (beff, _) -> string_of_base_effect_aux beff
let string_of_effect = function
| Effect_aux (Effect_set [], _) -> "pure"
| Effect_aux (Effect_set beffs, _) ->
let beffs = List.map string_of_base_effect beffs |> List.sort String.compare in
"{" ^ string_of_list ", " (fun x -> x) beffs ^ "}"
let string_of_order = function
| Ord_aux (Ord_var kid, _) -> string_of_kid kid
| Ord_aux (Ord_inc, _) -> "inc"
| Ord_aux (Ord_dec, _) -> "dec"
let rec string_of_nexp = function
| Nexp_aux (nexp, _) -> string_of_nexp_aux nexp
and string_of_nexp_aux = function
| Nexp_id id -> string_of_id id
| Nexp_var kid -> string_of_kid kid
| Nexp_constant c -> Big_int.to_string c
| Nexp_times (n1, n2) -> "(" ^ string_of_nexp n1 ^ " * " ^ string_of_nexp n2 ^ ")"
| Nexp_sum (n1, n2) -> "(" ^ string_of_nexp n1 ^ " + " ^ string_of_nexp n2 ^ ")"
| Nexp_minus (n1, n2) -> "(" ^ string_of_nexp n1 ^ " - " ^ string_of_nexp n2 ^ ")"
| Nexp_app (id, nexps) -> string_of_id id ^ "(" ^ string_of_list ", " string_of_nexp nexps ^ ")"
| Nexp_exp n -> "2 ^ " ^ string_of_nexp n
| Nexp_neg n -> "- " ^ string_of_nexp n
let rec string_of_typ = function
| Typ_aux (typ, l) -> string_of_typ_aux typ
and string_of_typ_aux = function
| Typ_internal_unknown -> "<UNKNOWN TYPE>"
| Typ_id id -> string_of_id id
| Typ_var kid -> string_of_kid kid
| Typ_tup typs -> "(" ^ string_of_list ", " string_of_typ typs ^ ")"
| Typ_app (id, args) when Id.compare id (mk_id "atom") = 0 -> "int(" ^ string_of_list ", " string_of_typ_arg args ^ ")"
| Typ_app (id, args) when Id.compare id (mk_id "atom_bool") = 0 -> "bool(" ^ string_of_list ", " string_of_typ_arg args ^ ")"
| Typ_app (id, args) -> string_of_id id ^ "(" ^ string_of_list ", " string_of_typ_arg args ^ ")"
| Typ_fn ([typ_arg], typ_ret, eff) ->
string_of_typ typ_arg ^ " -> " ^ string_of_typ typ_ret ^ " effect " ^ string_of_effect eff
| Typ_fn (typ_args, typ_ret, eff) ->
"(" ^ string_of_list ", " string_of_typ typ_args ^ ") -> "
^ string_of_typ typ_ret ^ " effect " ^ string_of_effect eff
| Typ_bidir (typ1, typ2, eff) -> string_of_typ typ1 ^ " <-> " ^ string_of_typ typ2 ^ " effect " ^ string_of_effect eff
| Typ_exist (kids, nc, typ) ->
"{" ^ string_of_list " " string_of_kinded_id kids ^ ", " ^ string_of_n_constraint nc ^ ". " ^ string_of_typ typ ^ "}"
and string_of_typ_arg = function
| A_aux (typ_arg, l) -> string_of_typ_arg_aux typ_arg
and string_of_typ_arg_aux = function
| A_nexp n -> string_of_nexp n
| A_typ typ -> string_of_typ typ
| A_order o -> string_of_order o
| A_bool nc -> string_of_n_constraint nc
and string_of_n_constraint = function
| NC_aux (NC_equal (n1, n2), _) -> string_of_nexp n1 ^ " == " ^ string_of_nexp n2
| NC_aux (NC_not_equal (n1, n2), _) -> string_of_nexp n1 ^ " != " ^ string_of_nexp n2
| NC_aux (NC_bounded_ge (n1, n2), _) -> string_of_nexp n1 ^ " >= " ^ string_of_nexp n2
| NC_aux (NC_bounded_gt (n1, n2), _) -> string_of_nexp n1 ^ " > " ^ string_of_nexp n2
| NC_aux (NC_bounded_le (n1, n2), _) -> string_of_nexp n1 ^ " <= " ^ string_of_nexp n2
| NC_aux (NC_bounded_lt (n1, n2), _) -> string_of_nexp n1 ^ " < " ^ string_of_nexp n2
| NC_aux (NC_or (nc1, nc2), _) ->
"(" ^ string_of_n_constraint nc1 ^ " | " ^ string_of_n_constraint nc2 ^ ")"
| NC_aux (NC_and (nc1, nc2), _) ->
"(" ^ string_of_n_constraint nc1 ^ " & " ^ string_of_n_constraint nc2 ^ ")"
| NC_aux (NC_set (kid, ns), _) ->
string_of_kid kid ^ " in {" ^ string_of_list ", " Big_int.to_string ns ^ "}"
| NC_aux (NC_app (Id_aux (Operator op, _), [arg1; arg2]), _) ->
"(" ^ string_of_typ_arg arg1 ^ " " ^ op ^ " " ^ string_of_typ_arg arg2 ^ ")"
| NC_aux (NC_app (id, args), _) -> string_of_id id ^ "(" ^ string_of_list ", " string_of_typ_arg args ^ ")"
| NC_aux (NC_var v, _) -> string_of_kid v
| NC_aux (NC_true, _) -> "true"
| NC_aux (NC_false, _) -> "false"
let string_of_kinded_id (KOpt_aux (KOpt_kind (k, kid), _)) = "(" ^ string_of_kid kid ^ " : " ^ string_of_kind k ^ ")"
let string_of_quant_item_aux = function
| QI_id kopt -> string_of_kinded_id kopt
| QI_constant kopts -> "is_constant(" ^ Util.string_of_list ", " string_of_kinded_id kopts ^ ")"
| QI_constraint constr -> string_of_n_constraint constr
let string_of_quant_item = function
| QI_aux (qi, _) -> string_of_quant_item_aux qi
let string_of_typquant_aux = function
| TypQ_tq quants -> "forall " ^ string_of_list ", " string_of_quant_item quants
| TypQ_no_forall -> ""
let string_of_typquant = function
| TypQ_aux (quant, _) -> string_of_typquant_aux quant
let string_of_typschm (TypSchm_aux (TypSchm_ts (quant, typ), _)) =
string_of_typquant quant ^ ". " ^ string_of_typ typ
let string_of_lit (L_aux (lit, _)) =
match lit with
| L_unit -> "()"
| L_zero -> "bitzero"
| L_one -> "bitone"
| L_true -> "true"
| L_false -> "false"
| L_num n -> Big_int.to_string n
| L_hex n -> "0x" ^ n
| L_bin n -> "0b" ^ n
| L_undef -> "undefined"
| L_real r -> r
| L_string str -> "\"" ^ str ^ "\""
let rec string_of_exp (E_aux (exp, _)) =
match exp with
| E_block exps -> "{ " ^ string_of_list "; " string_of_exp exps ^ " }"
| E_id v -> string_of_id v
| E_ref id -> "ref " ^ string_of_id id
| E_sizeof nexp -> "sizeof " ^ string_of_nexp nexp
| E_constraint nc -> "constraint(" ^ string_of_n_constraint nc ^ ")"
| E_lit lit -> string_of_lit lit
| E_return exp -> "return " ^ string_of_exp exp
| E_app (f, args) -> string_of_id f ^ "(" ^ string_of_list ", " string_of_exp args ^ ")"
| E_app_infix (x, op, y) -> "(" ^ string_of_exp x ^ " " ^ string_of_id op ^ " " ^ string_of_exp y ^ ")"
| E_tuple exps -> "(" ^ string_of_list ", " string_of_exp exps ^ ")"
| E_case (exp, cases) ->
"match " ^ string_of_exp exp ^ " { " ^ string_of_list ", " string_of_pexp cases ^ " }"
| E_try (exp, cases) ->
"try " ^ string_of_exp exp ^ " catch { case " ^ string_of_list " case " string_of_pexp cases ^ "}"
| E_let (letbind, exp) -> "let " ^ string_of_letbind letbind ^ " in " ^ string_of_exp exp
| E_assign (lexp, bind) -> string_of_lexp lexp ^ " = " ^ string_of_exp bind
| E_cast (typ, exp) -> string_of_exp exp ^ " : " ^ string_of_typ typ
| E_vector vec -> "[" ^ string_of_list ", " string_of_exp vec ^ "]"
| E_vector_access (v, n) -> string_of_exp v ^ "[" ^ string_of_exp n ^ "]"
| E_vector_update (v, n, exp) -> "[" ^ string_of_exp v ^ " with " ^ string_of_exp n ^ " = " ^ string_of_exp exp ^ "]"
| E_vector_update_subrange (v, n, m, exp) -> "[" ^ string_of_exp v ^ " with " ^ string_of_exp n ^ " .. " ^ string_of_exp m ^ " = " ^ string_of_exp exp ^ "]"
| E_vector_subrange (v, n1, n2) -> string_of_exp v ^ "[" ^ string_of_exp n1 ^ " .. " ^ string_of_exp n2 ^ "]"
| E_vector_append (v1, v2) -> string_of_exp v1 ^ " @ " ^ string_of_exp v2
| E_if (cond, then_branch, else_branch) ->
"if " ^ string_of_exp cond ^ " then " ^ string_of_exp then_branch ^ " else " ^ string_of_exp else_branch
| E_field (exp, id) -> string_of_exp exp ^ "." ^ string_of_id id
| E_for (id, f, t, u, ord, body) ->
"foreach ("
^ string_of_id id ^ " from " ^ string_of_exp f ^ " to " ^ string_of_exp t
^ " by " ^ string_of_exp u ^ " order " ^ string_of_order ord
^ ") { "
^ string_of_exp body
| E_loop (While, measure, cond, body) -> "while " ^ string_of_measure measure ^ string_of_exp cond ^ " do " ^ string_of_exp body
| E_loop (Until, measure, cond, body) -> "repeat " ^ string_of_measure measure ^ string_of_exp body ^ " until " ^ string_of_exp cond
| E_assert (test, msg) -> "assert(" ^ string_of_exp test ^ ", " ^ string_of_exp msg ^ ")"
| E_exit exp -> "exit " ^ string_of_exp exp
| E_throw exp -> "throw " ^ string_of_exp exp
| E_cons (x, xs) -> string_of_exp x ^ " :: " ^ string_of_exp xs
| E_list xs -> "[|" ^ string_of_list ", " string_of_exp xs ^ "|]"
| E_record_update (exp, fexps) ->
"{ " ^ string_of_exp exp ^ " with " ^ string_of_list "; " string_of_fexp fexps ^ " }"
| E_record fexps ->
"{ " ^ string_of_list "; " string_of_fexp fexps ^ " }"
| E_var (lexp, binding, exp) -> "var " ^ string_of_lexp lexp ^ " = " ^ string_of_exp binding ^ " in " ^ string_of_exp exp
| E_internal_return exp -> "internal_return (" ^ string_of_exp exp ^ ")"
| E_internal_plet (pat, exp, body) -> "internal_plet " ^ string_of_pat pat ^ " = " ^ string_of_exp exp ^ " in " ^ string_of_exp body
| E_internal_value v -> "INTERNAL_VALUE(" ^ Value.string_of_value v ^ ")"
and string_of_measure (Measure_aux (m,_)) =
match m with
| Measure_none -> ""
| Measure_some exp -> "termination_measure { " ^ string_of_exp exp ^ "}"
and string_of_fexp (FE_aux (FE_Fexp (field, exp), _)) =
string_of_id field ^ " = " ^ string_of_exp exp
and string_of_pexp (Pat_aux (pexp, _)) =
match pexp with
| Pat_exp (pat, exp) -> string_of_pat pat ^ " -> " ^ string_of_exp exp
| Pat_when (pat, guard, exp) -> string_of_pat pat ^ " when " ^ string_of_exp guard ^ " -> " ^ string_of_exp exp
and string_of_typ_pat (TP_aux (tpat_aux, _)) =
match tpat_aux with
| TP_wild -> "_"
| TP_var kid -> string_of_kid kid
| TP_app (f, tpats) -> string_of_id f ^ "(" ^ string_of_list ", " string_of_typ_pat tpats ^ ")"
and string_of_pat (P_aux (pat, l)) =
match pat with
| P_lit lit -> string_of_lit lit
| P_wild -> "_"
| P_or (pat1, pat2) -> "(" ^ string_of_pat pat1 ^ " | " ^ string_of_pat pat2
^ ")"
| P_not pat -> "(!" ^ string_of_pat pat ^ ")"
| P_id v -> string_of_id v
| P_var (pat, tpat) -> string_of_pat pat ^ " as " ^ string_of_typ_pat tpat
| P_typ (typ, pat) -> string_of_pat pat ^ " : " ^ string_of_typ typ
| P_tup pats -> "(" ^ string_of_list ", " string_of_pat pats ^ ")"
| P_app (f, pats) -> string_of_id f ^ "(" ^ string_of_list ", " string_of_pat pats ^ ")"
| P_cons (pat1, pat2) -> string_of_pat pat1 ^ " :: " ^ string_of_pat pat2
| P_list pats -> "[||" ^ string_of_list "," string_of_pat pats ^ "||]"
| P_vector_concat pats -> string_of_list " @ " string_of_pat pats
| P_vector pats -> "[" ^ string_of_list ", " string_of_pat pats ^ "]"
| P_as (pat, id) -> "(" ^ string_of_pat pat ^ " as " ^ string_of_id id ^ ")"
| P_string_append [] -> "\"\""
| P_string_append pats -> string_of_list " ^ " string_of_pat pats
and string_of_mpat (MP_aux (pat, l)) =
match pat with
| MP_lit lit -> string_of_lit lit
| MP_id v -> string_of_id v
| MP_tup pats -> "(" ^ string_of_list ", " string_of_mpat pats ^ ")"
| MP_app (f, pats) -> string_of_id f ^ "(" ^ string_of_list ", " string_of_mpat pats ^ ")"
| MP_cons (pat1, pat2) -> string_of_mpat pat1 ^ " :: " ^ string_of_mpat pat2
| MP_list pats -> "[||" ^ string_of_list "," string_of_mpat pats ^ "||]"
| MP_vector_concat pats -> string_of_list " @ " string_of_mpat pats
| MP_vector pats -> "[" ^ string_of_list ", " string_of_mpat pats ^ "]"
| MP_string_append pats -> string_of_list " ^ " string_of_mpat pats
| MP_typ (mpat, typ) -> "(" ^ string_of_mpat mpat ^ " : " ^ string_of_typ typ ^ ")"
| MP_as (mpat, id) -> "((" ^ string_of_mpat mpat ^ ") as " ^ string_of_id id ^ ")"
and string_of_lexp (LEXP_aux (lexp, _)) =
match lexp with
| LEXP_id v -> string_of_id v
| LEXP_deref exp -> "*(" ^ string_of_exp exp ^ ")"
| LEXP_cast (typ, v) -> "(" ^ string_of_typ typ ^ ") " ^ string_of_id v
| LEXP_tup lexps -> "(" ^ string_of_list ", " string_of_lexp lexps ^ ")"
| LEXP_vector (lexp, exp) -> string_of_lexp lexp ^ "[" ^ string_of_exp exp ^ "]"
| LEXP_vector_range (lexp, exp1, exp2) ->
string_of_lexp lexp ^ "[" ^ string_of_exp exp1 ^ " .. " ^ string_of_exp exp2 ^ "]"
| LEXP_vector_concat lexps ->
string_of_list " @ " string_of_lexp lexps
| LEXP_field (lexp, id) -> string_of_lexp lexp ^ "." ^ string_of_id id
| LEXP_memory (f, xs) -> string_of_id f ^ "(" ^ string_of_list ", " string_of_exp xs ^ ")"
and string_of_letbind (LB_aux (lb, l)) =
match lb with
| LB_val (pat, exp) -> string_of_pat pat ^ " = " ^ string_of_exp exp
let rec string_of_index_range (BF_aux (ir, _)) =
match ir with
| BF_single n -> string_of_nexp n
| BF_range (n, m) -> string_of_nexp n ^ " .. " ^ string_of_nexp m
| BF_concat (ir1, ir2) -> "(" ^ string_of_index_range ir1 ^ ") : (" ^ string_of_index_range ir2 ^ ")"
let rec pat_ids (P_aux (pat_aux, _)) =
match pat_aux with
| P_lit _ | P_wild -> IdSet.empty
| P_id id -> IdSet.singleton id
| P_as (pat, id) -> IdSet.add id (pat_ids pat)
| P_or (pat1, pat2) -> IdSet.union (pat_ids pat1) (pat_ids pat2)
| P_not (pat) -> pat_ids pat
| P_var (pat, _) | P_typ (_, pat) -> pat_ids pat
| P_app (_, pats) | P_tup pats | P_vector pats | P_vector_concat pats | P_list pats ->
List.fold_right IdSet.union (List.map pat_ids pats) IdSet.empty
| P_cons (pat1, pat2) ->
IdSet.union (pat_ids pat1) (pat_ids pat2)
| P_string_append pats ->
List.fold_right IdSet.union (List.map pat_ids pats) IdSet.empty
let id_of_fundef (FD_aux (FD_function (_, _, _, funcls), (l, _))) =
match (List.fold_right
(fun (FCL_aux (FCL_Funcl (id, _), _)) id' ->
match id' with
| Some id' -> if string_of_id id' = string_of_id id then Some id'
else raise (Reporting.err_typ l
("Function declaration expects all definitions to have the same name, "
^ string_of_id id ^ " differs from other definitions of " ^ string_of_id id'))
| None -> Some id) funcls None)
with
| Some id -> id
| None -> raise (Reporting.err_typ l "funcl list is empty")
let id_of_type_def_aux = function
| TD_abbrev (id, _, _)
| TD_record (id, _, _, _)
| TD_variant (id, _, _, _)
| TD_enum (id, _, _)
| TD_bitfield (id, _, _) -> id
let id_of_type_def (TD_aux (td_aux, _)) = id_of_type_def_aux td_aux
let id_of_val_spec (VS_aux (VS_val_spec (_, id, _, _), _)) = id
let id_of_dec_spec (DEC_aux (ds_aux, _)) =
match ds_aux with
| DEC_reg (_, _, _, id) -> id
| DEC_config (id, _, _) -> id
| DEC_alias (id, _) -> id
| DEC_typ_alias (_, id, _) -> id
let ids_of_def = function
| DEF_type td -> IdSet.singleton (id_of_type_def td)
| DEF_fundef fd -> IdSet.singleton (id_of_fundef fd)
| DEF_val (LB_aux (LB_val (pat, _), _)) -> pat_ids pat
| DEF_reg_dec (DEC_aux (DEC_reg (_, _, _, id), _)) -> IdSet.singleton id
| DEF_spec vs -> IdSet.singleton (id_of_val_spec vs)
| DEF_internal_mutrec fds -> IdSet.of_list (List.map id_of_fundef fds)
| _ -> IdSet.empty
let ids_of_defs (Defs defs) =
List.fold_left IdSet.union IdSet.empty (List.map ids_of_def defs)
let val_spec_ids (Defs defs) =
let val_spec_id (VS_aux (vs_aux, _)) =
match vs_aux with
| VS_val_spec (_, id, _, _) -> id
in
let rec vs_ids = function
| DEF_spec vs :: defs -> val_spec_id vs :: vs_ids defs
| def :: defs -> vs_ids defs
| [] -> []
in
IdSet.of_list (vs_ids defs)
module BE = struct
type t = base_effect
let compare be1 be2 = String.compare (string_of_base_effect be1) (string_of_base_effect be2)
end
module BESet = Set.Make(BE)
let effect_compare (Effect_aux (Effect_set l1,_)) (Effect_aux (Effect_set l2,_)) =
match compare (List.length l1) (List.length l2) with
| 0 -> Util.compare_list BE.compare l1 l2
| n -> n
let order_compare (Ord_aux (o1,_)) (Ord_aux (o2,_)) =
match o1, o2 with
| Ord_var k1, Ord_var k2 -> Kid.compare k1 k2
| Ord_inc, Ord_inc -> 0
| Ord_dec, Ord_dec -> 0
| Ord_var _, _ -> -1 | _, Ord_var _ -> 1
| Ord_inc, _ -> -1 | _, Ord_inc -> 1
let lex_ord f g x1 x2 y1 y2 =
match f x1 x2 with
| 0 -> g y1 y2
| n -> n
let rec nc_compare (NC_aux (nc1,_)) (NC_aux (nc2,_)) =
match nc1, nc2 with
| NC_equal (n1,n2), NC_equal (n3,n4)
| NC_bounded_ge (n1,n2), NC_bounded_ge (n3,n4)
| NC_bounded_gt (n1,n2), NC_bounded_gt (n3,n4)
| NC_bounded_le (n1,n2), NC_bounded_le (n3,n4)
| NC_bounded_lt (n1,n2), NC_bounded_lt (n3,n4)
| NC_not_equal (n1,n2), NC_not_equal (n3,n4)
-> lex_ord Nexp.compare Nexp.compare n1 n3 n2 n4
| NC_set (k1,s1), NC_set (k2,s2) ->
lex_ord Kid.compare (Util.compare_list Nat_big_num.compare) k1 k2 s1 s2
| NC_or (nc1,nc2), NC_or (nc3,nc4)
| NC_and (nc1,nc2), NC_and (nc3,nc4)
-> lex_ord nc_compare nc_compare nc1 nc3 nc2 nc4
| NC_app (f1,args1), NC_app (f2,args2)
-> lex_ord Id.compare (Util.compare_list typ_arg_compare) f1 f2 args1 args2
| NC_var v1, NC_var v2
-> Kid.compare v1 v2
| NC_true, NC_true
| NC_false, NC_false
-> 0
| NC_equal _, _ -> -1 | _, NC_equal _ -> 1
| NC_bounded_ge _, _ -> -1 | _, NC_bounded_ge _ -> 1
| NC_bounded_gt _, _ -> -1 | _, NC_bounded_gt _ -> 1
| NC_bounded_le _, _ -> -1 | _, NC_bounded_le _ -> 1
| NC_bounded_lt _, _ -> -1 | _, NC_bounded_lt _ -> 1
| NC_not_equal _, _ -> -1 | _, NC_not_equal _ -> 1
| NC_set _, _ -> -1 | _, NC_set _ -> 1
| NC_or _, _ -> -1 | _, NC_or _ -> 1
| NC_and _, _ -> -1 | _, NC_and _ -> 1
| NC_app _, _ -> -1 | _, NC_app _ -> 1
| NC_var _, _ -> -1 | _, NC_var _ -> 1
| NC_true, _ -> -1 | _, NC_true -> 1
and typ_compare (Typ_aux (t1,_)) (Typ_aux (t2,_)) =
match t1,t2 with
| Typ_internal_unknown, Typ_internal_unknown -> 0
| Typ_id id1, Typ_id id2 -> Id.compare id1 id2
| Typ_var kid1, Typ_var kid2 -> Kid.compare kid1 kid2
| Typ_fn (ts1,t2,e1), Typ_fn (ts3,t4,e2) ->
(match Util.compare_list typ_compare ts1 ts3 with
| 0 -> (match typ_compare t2 t4 with
| 0 -> effect_compare e1 e2
| n -> n)
| n -> n)
| Typ_bidir (t1,t2,e1), Typ_bidir (t3,t4,e2) ->
(match typ_compare t1 t3 with
| 0 -> (match typ_compare t2 t4 with
| 0 -> effect_compare e1 e2
| n -> n)
| n -> n)
| Typ_tup ts1, Typ_tup ts2 -> Util.compare_list typ_compare ts1 ts2
| Typ_exist (ks1,nc1,t1), Typ_exist (ks2,nc2,t2) ->
(match Util.compare_list KOpt.compare ks1 ks2 with
| 0 -> (match nc_compare nc1 nc2 with
| 0 -> typ_compare t1 t2
| n -> n)
| n -> n)
| Typ_app (id1,ts1), Typ_app (id2,ts2) ->
(match Id.compare id1 id2 with
| 0 -> Util.compare_list typ_arg_compare ts1 ts2
| n -> n)
| Typ_internal_unknown, _ -> -1 | _, Typ_internal_unknown -> 1
| Typ_id _, _ -> -1 | _, Typ_id _ -> 1
| Typ_var _, _ -> -1 | _, Typ_var _ -> 1
| Typ_fn _, _ -> -1 | _, Typ_fn _ -> 1
| Typ_bidir _, _ -> -1 | _, Typ_bidir _ -> 1
| Typ_tup _, _ -> -1 | _, Typ_tup _ -> 1
| Typ_exist _, _ -> -1 | _, Typ_exist _ -> 1
and typ_arg_compare (A_aux (ta1,_)) (A_aux (ta2,_)) =
match ta1, ta2 with
| A_nexp n1, A_nexp n2 -> Nexp.compare n1 n2
| A_typ t1, A_typ t2 -> typ_compare t1 t2
| A_order o1, A_order o2 -> order_compare o1 o2
| A_bool nc1, A_bool nc2 -> nc_compare nc1 nc2
| A_nexp _, _ -> -1 | _, A_nexp _ -> 1
| A_typ _, _ -> -1 | _, A_typ _ -> 1
| A_order _, _ -> -1 | _, A_order _ -> 1
module NC = struct
type t = n_constraint
let compare = nc_compare
end
module NCMap = Map.Make(NC)
module Typ = struct
type t = typ
let compare = typ_compare
end
module TypMap = Map.Make(Typ)
let rec nexp_frees (Nexp_aux (nexp, l)) =
match nexp with
| Nexp_id _ -> raise (Reporting.err_typ l "Unimplemented Nexp_id in nexp_frees")
| Nexp_var kid -> KidSet.singleton kid
| Nexp_constant _ -> KidSet.empty
| Nexp_times (n1, n2) -> KidSet.union (nexp_frees n1) (nexp_frees n2)
| Nexp_sum (n1, n2) -> KidSet.union (nexp_frees n1) (nexp_frees n2)
| Nexp_minus (n1, n2) -> KidSet.union (nexp_frees n1) (nexp_frees n2)
| Nexp_exp n -> nexp_frees n
| Nexp_neg n -> nexp_frees n
| Nexp_app (_, nexps) -> List.fold_left KidSet.union KidSet.empty (List.map nexp_frees nexps)
let rec lexp_to_exp (LEXP_aux (lexp_aux, annot) as le) =
let rewrap e_aux = E_aux (e_aux, annot) in
match lexp_aux with
| LEXP_id id | LEXP_cast (_, id) -> rewrap (E_id id)
| LEXP_tup les ->
let get_id (LEXP_aux(lexp,((l,_) as annot)) as le) = match lexp with
| LEXP_id id | LEXP_cast (_, id) -> E_aux (E_id id, annot)
| _ ->
raise (Reporting.err_unreachable l __POS__
("Unsupported sub-lexp " ^ string_of_lexp le ^ " in tuple")) in
rewrap (E_tuple (List.map get_id les))
| LEXP_vector (lexp, e) -> rewrap (E_vector_access (lexp_to_exp lexp, e))
| LEXP_vector_range (lexp, e1, e2) -> rewrap (E_vector_subrange (lexp_to_exp lexp, e1, e2))
| LEXP_field (lexp, id) -> rewrap (E_field (lexp_to_exp lexp, id))
| LEXP_memory (id, exps) -> rewrap (E_app (id, exps))
| LEXP_vector_concat [] -> rewrap (E_vector [])
| LEXP_vector_concat (lexp :: lexps) ->
List.fold_left (fun exp lexp -> rewrap (E_vector_append (exp, lexp_to_exp lexp))) (lexp_to_exp lexp) lexps
| LEXP_deref exp -> rewrap (E_app (mk_id "__deref", [exp]))
let is_unit_typ = function
| Typ_aux (Typ_id u, _) -> string_of_id u = "unit"
| _ -> false
let rec is_number (Typ_aux (t,_)) =
match t with
| Typ_id (Id_aux (Id "int", _))
| Typ_id (Id_aux (Id "nat", _))
| Typ_app (Id_aux (Id "range", _),_)
| Typ_app (Id_aux (Id "implicit", _),_)
| Typ_app (Id_aux (Id "atom", _),_) -> true
| _ -> false
let is_ref_typ (Typ_aux (typ_aux, _)) = match typ_aux with
| Typ_app (id, _) -> string_of_id id = "register" || string_of_id id = "reg"
| _ -> false
let rec is_vector_typ = function
| Typ_aux (Typ_app (Id_aux (Id "vector",_), [_;_;_]), _) -> true
| Typ_aux (Typ_app (Id_aux (Id "register",_), [A_aux (A_typ rtyp,_)]), _) ->
is_vector_typ rtyp
| _ -> false
let typ_app_args_of = function
| Typ_aux (Typ_app (Id_aux (Id c,_), targs), l) ->
(c, List.map (fun (A_aux (a,_)) -> a) targs, l)
| Typ_aux (_, l) as typ ->
raise (Reporting.err_typ l
("typ_app_args_of called on non-app type " ^ string_of_typ typ))
let rec vector_typ_args_of typ = match typ_app_args_of typ with
| ("vector", [A_nexp len; A_order ord; A_typ etyp], l) ->
(nexp_simp len, ord, etyp)
| ("bitvector", [A_nexp len; A_order ord], l) ->
(nexp_simp len, ord, bit_typ)
| ("register", [A_typ rtyp], _) -> vector_typ_args_of rtyp
| (_, _, l) ->
raise (Reporting.err_typ l
("vector_typ_args_of called on non-vector type " ^ string_of_typ typ))
let vector_start_index typ =
let (len, ord, etyp) = vector_typ_args_of typ in
match ord with
| Ord_aux (Ord_inc, _) -> nint 0
| Ord_aux (Ord_dec, _) -> nexp_simp (nminus len (nint 1))
| _ -> raise (Reporting.err_typ (typ_loc typ) "Can't calculate start index without order")
let is_order_inc = function
| Ord_aux (Ord_inc, _) -> true
| Ord_aux (Ord_dec, _) -> false
| Ord_aux (Ord_var _, l) ->
raise (Reporting.err_unreachable l __POS__ "is_order_inc called on vector with variable ordering")
let is_bit_typ = function
| Typ_aux (Typ_id (Id_aux (Id "bit", _)), _) -> true
| _ -> false
let rec is_bitvector_typ = function
| Typ_aux (Typ_app (Id_aux (Id "bitvector", _), [_;_]), _) -> true
| Typ_aux (Typ_app (Id_aux (Id "register",_), [A_aux (A_typ rtyp,_)]), _) ->
is_bitvector_typ rtyp
| _ -> false
let has_effect (Effect_aux (eff,_)) searched_for = match eff with
| Effect_set effs ->
List.exists (fun (BE_aux (be,_)) -> be = searched_for) effs
let effect_set (Effect_aux (eff,_)) = match eff with
| Effect_set effs -> BESet.of_list effs
(* Utilities for constructing effect sets *)
let union_effects e1 e2 =
match e1, e2 with
| Effect_aux (Effect_set base_effs1, _), Effect_aux (Effect_set base_effs2, _) ->
let base_effs3 = BESet.elements (BESet.of_list (base_effs1 @ base_effs2)) in
Effect_aux (Effect_set base_effs3, Parse_ast.Unknown)
let equal_effects e1 e2 =
match e1, e2 with
| Effect_aux (Effect_set base_effs1, _), Effect_aux (Effect_set base_effs2, _) ->
BESet.compare (BESet.of_list base_effs1) (BESet.of_list base_effs2) = 0
let subseteq_effects e1 e2 =
match e1, e2 with
| Effect_aux (Effect_set base_effs1, _), Effect_aux (Effect_set base_effs2, _) ->
BESet.subset (BESet.of_list base_effs1) (BESet.of_list base_effs2)
let rec kopts_of_nexp (Nexp_aux (nexp,_)) =
match nexp with
| Nexp_id _
| Nexp_constant _ -> KOptSet.empty
| Nexp_var kid -> KOptSet.singleton (mk_kopt K_int kid)
| Nexp_times (n1,n2)
| Nexp_sum (n1,n2)
| Nexp_minus (n1,n2) -> KOptSet.union (kopts_of_nexp n1) (kopts_of_nexp n2)
| Nexp_exp n
| Nexp_neg n -> kopts_of_nexp n
| Nexp_app (_, nexps) -> List.fold_left KOptSet.union KOptSet.empty (List.map kopts_of_nexp nexps)
let kopts_of_order (Ord_aux (ord, _)) =
match ord with
| Ord_var kid -> KOptSet.singleton (mk_kopt K_order kid)
| Ord_inc | Ord_dec -> KOptSet.empty
let rec kopts_of_constraint (NC_aux (nc, _)) =
match nc with
| NC_equal (nexp1, nexp2)
| NC_bounded_ge (nexp1, nexp2)
| NC_bounded_gt (nexp1, nexp2)
| NC_bounded_le (nexp1, nexp2)
| NC_bounded_lt (nexp1, nexp2)
| NC_not_equal (nexp1, nexp2) ->
KOptSet.union (kopts_of_nexp nexp1) (kopts_of_nexp nexp2)
| NC_set (kid, _) -> KOptSet.singleton (mk_kopt K_int kid)
| NC_or (nc1, nc2)
| NC_and (nc1, nc2) ->
KOptSet.union (kopts_of_constraint nc1) (kopts_of_constraint nc2)
| NC_app (id, args) ->
List.fold_left (fun s t -> KOptSet.union s (kopts_of_typ_arg t)) KOptSet.empty args
| NC_var kid -> KOptSet.singleton (mk_kopt K_bool kid)
| NC_true | NC_false -> KOptSet.empty
and kopts_of_typ (Typ_aux (t,_)) =
match t with
| Typ_internal_unknown -> KOptSet.empty
| Typ_id _ -> KOptSet.empty
| Typ_var kid -> KOptSet.singleton (mk_kopt K_type kid)
| Typ_fn (ts, t, _) -> List.fold_left KOptSet.union (kopts_of_typ t) (List.map kopts_of_typ ts)
| Typ_bidir (t1, t2, _) -> KOptSet.union (kopts_of_typ t1) (kopts_of_typ t2)
| Typ_tup ts ->
List.fold_left (fun s t -> KOptSet.union s (kopts_of_typ t))
KOptSet.empty ts
| Typ_app (_,tas) ->
List.fold_left (fun s ta -> KOptSet.union s (kopts_of_typ_arg ta))
KOptSet.empty tas
| Typ_exist (kopts, nc, t) ->
let s = KOptSet.union (kopts_of_typ t) (kopts_of_constraint nc) in
KOptSet.diff s (KOptSet.of_list kopts)
and kopts_of_typ_arg (A_aux (ta,_)) =
match ta with
| A_nexp nexp -> kopts_of_nexp nexp
| A_typ typ -> kopts_of_typ typ
| A_order ord -> kopts_of_order ord
| A_bool nc -> kopts_of_constraint nc
let kopts_of_quant_item (QI_aux (qi, _)) = match qi with
| QI_id kopt ->
KOptSet.singleton kopt
| QI_constant kopts -> KOptSet.of_list kopts
| QI_constraint nc -> kopts_of_constraint nc
let rec tyvars_of_nexp (Nexp_aux (nexp,_)) =
match nexp with
| Nexp_id _
| Nexp_constant _ -> KidSet.empty
| Nexp_var kid -> KidSet.singleton kid
| Nexp_times (n1,n2)
| Nexp_sum (n1,n2)
| Nexp_minus (n1,n2) -> KidSet.union (tyvars_of_nexp n1) (tyvars_of_nexp n2)
| Nexp_exp n
| Nexp_neg n -> tyvars_of_nexp n
| Nexp_app (_, nexps) -> List.fold_left KidSet.union KidSet.empty (List.map tyvars_of_nexp nexps)
let rec tyvars_of_constraint (NC_aux (nc, _)) =
match nc with
| NC_equal (nexp1, nexp2)
| NC_bounded_ge (nexp1, nexp2)
| NC_bounded_gt (nexp1, nexp2)
| NC_bounded_le (nexp1, nexp2)
| NC_bounded_lt (nexp1, nexp2)
| NC_not_equal (nexp1, nexp2) ->
KidSet.union (tyvars_of_nexp nexp1) (tyvars_of_nexp nexp2)
| NC_set (kid, _) -> KidSet.singleton kid
| NC_or (nc1, nc2)
| NC_and (nc1, nc2) ->
KidSet.union (tyvars_of_constraint nc1) (tyvars_of_constraint nc2)
| NC_app (id, args) ->
List.fold_left (fun s t -> KidSet.union s (tyvars_of_typ_arg t)) KidSet.empty args
| NC_var kid -> KidSet.singleton kid
| NC_true
| NC_false -> KidSet.empty
and tyvars_of_typ (Typ_aux (t,_)) =
match t with
| Typ_internal_unknown -> KidSet.empty
| Typ_id _ -> KidSet.empty
| Typ_var kid -> KidSet.singleton kid
| Typ_fn (ts, t, _) -> List.fold_left KidSet.union (tyvars_of_typ t) (List.map tyvars_of_typ ts)
| Typ_bidir (t1, t2, _) -> KidSet.union (tyvars_of_typ t1) (tyvars_of_typ t2)
| Typ_tup ts ->
List.fold_left (fun s t -> KidSet.union s (tyvars_of_typ t))
KidSet.empty ts
| Typ_app (_,tas) ->
List.fold_left (fun s ta -> KidSet.union s (tyvars_of_typ_arg ta))
KidSet.empty tas
| Typ_exist (kids, nc, t) ->
let s = KidSet.union (tyvars_of_typ t) (tyvars_of_constraint nc) in
List.fold_left (fun s k -> KidSet.remove k s) s (List.map kopt_kid kids)
and tyvars_of_typ_arg (A_aux (ta,_)) =
match ta with
| A_nexp nexp -> tyvars_of_nexp nexp
| A_typ typ -> tyvars_of_typ typ
| A_order _ -> KidSet.empty
| A_bool nc -> tyvars_of_constraint nc
let tyvars_of_quant_item (QI_aux (qi, _)) = match qi with
| QI_id (KOpt_aux (KOpt_kind (_, kid), _)) ->
KidSet.singleton kid
| QI_constant kopts -> KidSet.of_list (List.map kopt_kid kopts)
| QI_constraint nc -> tyvars_of_constraint nc
let is_kid_generated kid = String.contains (string_of_kid kid) '#'
let rec undefined_of_typ mwords l annot (Typ_aux (typ_aux, _) as typ) =
let wrap e_aux typ = E_aux (e_aux, (l, annot typ)) in
match typ_aux with
| Typ_id id ->
wrap (E_app (prepend_id "undefined_" id, [wrap (E_lit (mk_lit L_unit)) unit_typ])) typ
| Typ_app (_,[size;_;_]) when mwords && is_bitvector_typ typ ->
wrap (E_app (mk_id "undefined_bitvector",
undefined_of_typ_args mwords l annot size)) typ
| Typ_app (atom, [A_aux (A_nexp i, _)]) when string_of_id atom = "atom" ->
wrap (E_sizeof i) typ
| Typ_app (id, args) ->
wrap (E_app (prepend_id "undefined_" id,
List.concat (List.map (undefined_of_typ_args mwords l annot) args))) typ
| Typ_tup typs ->
wrap (E_tuple (List.map (undefined_of_typ mwords l annot) typs)) typ
| Typ_var kid ->
(* Undefined monomorphism restriction in the type checker should
guarantee that the typ_(kid) parameter was always one created
in an undefined_(type) function created in
initial_check.ml. i.e. the rewriter should only encounter this
case when re-writing those functions. *)
wrap (E_id (prepend_id "typ_" (id_of_kid kid))) typ
| Typ_internal_unknown -> assert false
| Typ_bidir _ -> assert false
| Typ_fn _ -> assert false
| Typ_exist _ -> assert false (* Typ_exist should be re-written *)
and undefined_of_typ_args mwords l annot (A_aux (typ_arg_aux, _) as typ_arg) =
match typ_arg_aux with
| A_nexp n -> [E_aux (E_sizeof n, (l, annot (atom_typ n)))]
| A_typ typ -> [undefined_of_typ mwords l annot typ]
| A_bool nc -> [E_aux (E_constraint nc, (l, annot (atom_bool_typ nc)))]
| A_order _ -> []
let destruct_pexp (Pat_aux (pexp,ann)) =
match pexp with
| Pat_exp (pat,exp) -> pat,None,exp,ann
| Pat_when (pat,guard,exp) -> pat,Some guard,exp,ann
let construct_pexp (pat,guard,exp,ann) =
match guard with
| None -> Pat_aux (Pat_exp (pat,exp),ann)
| Some guard -> Pat_aux (Pat_when (pat,guard,exp),ann)
let destruct_mpexp (MPat_aux (mpexp,ann)) =
match mpexp with
| MPat_pat mpat -> mpat,None,ann
| MPat_when (mpat,guard) -> mpat,Some guard,ann
let construct_mpexp (mpat,guard,ann) =
match guard with
| None -> MPat_aux (MPat_pat mpat,ann)
| Some guard -> MPat_aux (MPat_when (mpat,guard),ann)
let is_valspec id = function
| DEF_spec (VS_aux (VS_val_spec (_, id', _, _), _)) when Id.compare id id' = 0 -> true
| _ -> false
let is_fundef id = function
| DEF_fundef (FD_aux (FD_function (_, _, _, FCL_aux (FCL_Funcl (id', _), _) :: _), _)) when Id.compare id' id = 0 -> true
| _ -> false
let rename_valspec id (VS_aux (VS_val_spec (typschm, _, externs, is_cast), annot)) =
VS_aux (VS_val_spec (typschm, id, externs, is_cast), annot)
let rename_funcl id (FCL_aux (FCL_Funcl (_, pexp), annot)) = FCL_aux (FCL_Funcl (id, pexp), annot)
let rename_fundef id (FD_aux (FD_function (ropt, topt, eopt, funcls), annot)) =
FD_aux (FD_function (ropt, topt, eopt, List.map (rename_funcl id) funcls), annot)
let rec split_defs' f defs acc =
match defs with
| [] -> None
| def :: defs when f def -> Some (acc, def, defs)
| def :: defs -> split_defs' f defs (def :: acc)
let split_defs f (Defs defs) =
match split_defs' f defs [] with
| None -> None
| Some (pre_defs, def, post_defs) ->
Some (Defs (List.rev pre_defs), def, Defs post_defs)
let append_ast (Defs ast1) (Defs ast2) = Defs (ast1 @ ast2)
let concat_ast asts = List.fold_right append_ast asts (Defs [])
let type_union_id (Tu_aux (Tu_ty_id (_, id), _)) = id
let rec subst id value (E_aux (e_aux, annot) as exp) =
let wrap e_aux = E_aux (e_aux, annot) in
let e_aux = match e_aux with
| E_block exps -> E_block (List.map (subst id value) exps)
| E_id id' -> if Id.compare id id' = 0 then unaux_exp value else E_id id'
| E_lit lit -> E_lit lit
| E_cast (typ, exp) -> E_cast (typ, subst id value exp)
| E_app (fn, exps) -> E_app (fn, List.map (subst id value) exps)
| E_app_infix (exp1, op, exp2) -> E_app_infix (subst id value exp1, op, subst id value exp2)
| E_tuple exps -> E_tuple (List.map (subst id value) exps)
| E_if (cond, then_exp, else_exp) ->
E_if (subst id value cond, subst id value then_exp, subst id value else_exp)
| E_loop (loop, measure, cond, body) ->
E_loop (loop, subst_measure id value measure, subst id value cond, subst id value body)
| E_for (id', exp1, exp2, exp3, order, body) when Id.compare id id' = 0 ->
E_for (id', exp1, exp2, exp3, order, body)
| E_for (id', exp1, exp2, exp3, order, body) ->
E_for (id', subst id value exp1, subst id value exp2, subst id value exp3, order, subst id value body)
| E_vector exps -> E_vector (List.map (subst id value) exps)
| E_vector_access (exp1, exp2) -> E_vector_access (subst id value exp1, subst id value exp2)
| E_vector_subrange (exp1, exp2, exp3) -> E_vector_subrange (subst id value exp1, subst id value exp2, subst id value exp3)
| E_vector_update (exp1, exp2, exp3) -> E_vector_update (subst id value exp1, subst id value exp2, subst id value exp3)
| E_vector_update_subrange (exp1, exp2, exp3, exp4) ->
E_vector_update_subrange (subst id value exp1, subst id value exp2, subst id value exp3, subst id value exp4)
| E_vector_append (exp1, exp2) -> E_vector_append (subst id value exp1, subst id value exp2)
| E_list exps -> E_list (List.map (subst id value) exps)
| E_cons (exp1, exp2) -> E_cons (subst id value exp1, subst id value exp2)
| E_record fexps -> E_record (List.map (subst_fexp id value) fexps)
| E_record_update (exp, fexps) -> E_record_update (subst id value exp, List.map (subst_fexp id value) fexps)
| E_field (exp, id') -> E_field (subst id value exp, id')
| E_case (exp, pexps) ->
E_case (subst id value exp, List.map (subst_pexp id value) pexps)
| E_let (LB_aux (LB_val (pat, bind), lb_annot), body) ->
E_let (LB_aux (LB_val (pat, subst id value bind), lb_annot),
if IdSet.mem id (pat_ids pat) then body else subst id value body)
| E_assign (lexp, exp) -> E_assign (subst_lexp id value lexp, subst id value exp) (* Shadowing... *)
(* Should be re-written *)
| E_sizeof nexp -> E_sizeof nexp
| E_constraint nc -> E_constraint nc
| E_return exp -> E_return (subst id value exp)
| E_exit exp -> E_exit (subst id value exp)
(* id should always be immutable while id' must be mutable register name so should be ok to never substitute here *)
| E_ref id' -> E_ref id'
| E_throw exp -> E_throw (subst id value exp)
| E_try (exp, pexps) ->
E_try (subst id value exp, List.map (subst_pexp id value) pexps)
| E_assert (exp1, exp2) -> E_assert (subst id value exp1, subst id value exp2)
| E_internal_value v -> E_internal_value v
| E_var (lexp, exp1, exp2) -> E_var (subst_lexp id value lexp, subst id value exp1, subst id value exp2)
| E_internal_plet _ | E_internal_return _ -> failwith ("subst " ^ string_of_exp exp)
in
wrap e_aux
and subst_measure id value (Measure_aux (m_aux, l)) =
match m_aux with
| Measure_none -> Measure_aux (Measure_none, l)
| Measure_some exp -> Measure_aux (Measure_some (subst id value exp), l)
and subst_pexp id value (Pat_aux (pexp_aux, annot)) =
let pexp_aux = match pexp_aux with
| Pat_exp (pat, exp) when IdSet.mem id (pat_ids pat) -> Pat_exp (pat, exp)
| Pat_exp (pat, exp) -> Pat_exp (pat, subst id value exp)
| Pat_when (pat, guard, exp) when IdSet.mem id (pat_ids pat) -> Pat_when (pat, guard, exp)
| Pat_when (pat, guard, exp) -> Pat_when (pat, subst id value guard, subst id value exp)
in
Pat_aux (pexp_aux, annot)
and subst_fexp id value (FE_aux (FE_Fexp (id', exp), annot)) =
FE_aux (FE_Fexp (id', subst id value exp), annot)
and subst_lexp id value (LEXP_aux (lexp_aux, annot) as lexp) =
let wrap lexp_aux = LEXP_aux (lexp_aux, annot) in
let lexp_aux = match lexp_aux with
| LEXP_deref exp -> LEXP_deref (subst id value exp)
| LEXP_id id' -> LEXP_id id'
| LEXP_memory (f, exps) -> LEXP_memory (f, List.map (subst id value) exps)
| LEXP_cast (typ, id') -> LEXP_cast (typ, id')
| LEXP_tup lexps -> LEXP_tup (List.map (subst_lexp id value) lexps)
| LEXP_vector (lexp, exp) -> LEXP_vector (subst_lexp id value lexp, subst id value exp)
| LEXP_vector_range (lexp, exp1, exp2) -> LEXP_vector_range (subst_lexp id value lexp, subst id value exp1, subst id value exp2)
| LEXP_vector_concat lexps ->
LEXP_vector_concat (List.map (subst_lexp id value) lexps)
| LEXP_field (lexp, id') -> LEXP_field (subst_lexp id value lexp, id')
in
wrap lexp_aux
let hex_to_bin hex =
Util.string_to_list hex
|> List.map Sail_lib.hex_char
|> List.concat
|> List.map Sail_lib.char_of_bit
|> (fun bits -> String.init (List.length bits) (List.nth bits))
let explode s =
let rec exp i l = if i < 0 then l else exp (i - 1) (s.[i] :: l) in
exp (String.length s - 1) []
let vector_string_to_bit_list (L_aux (lit, l)) =
let hexchar_to_binlist = function
| '0' -> ['0';'0';'0';'0']
| '1' -> ['0';'0';'0';'1']
| '2' -> ['0';'0';'1';'0']
| '3' -> ['0';'0';'1';'1']
| '4' -> ['0';'1';'0';'0']
| '5' -> ['0';'1';'0';'1']
| '6' -> ['0';'1';'1';'0']
| '7' -> ['0';'1';'1';'1']
| '8' -> ['1';'0';'0';'0']
| '9' -> ['1';'0';'0';'1']
| 'A' -> ['1';'0';'1';'0']
| 'B' -> ['1';'0';'1';'1']
| 'C' -> ['1';'1';'0';'0']
| 'D' -> ['1';'1';'0';'1']
| 'E' -> ['1';'1';'1';'0']
| 'F' -> ['1';'1';'1';'1']
| _ -> raise (Reporting.err_unreachable l __POS__ "hexchar_to_binlist given unrecognized character") in
let s_bin = match lit with
| L_hex s_hex -> List.flatten (List.map hexchar_to_binlist (explode (String.uppercase_ascii s_hex)))
| L_bin s_bin -> explode s_bin
| _ -> raise (Reporting.err_unreachable l __POS__ "s_bin given non vector literal") in
List.map (function '0' -> L_aux (L_zero, gen_loc l)
| '1' -> L_aux (L_one, gen_loc l)
| _ -> raise (Reporting.err_unreachable (gen_loc l) __POS__ "binary had non-zero or one")) s_bin
(* Functions for working with locations *)
let locate_id f (Id_aux (name, l)) = Id_aux (name, f l)
let locate_kid f (Kid_aux (name, l)) = Kid_aux (name, f l)
let locate_kind f (K_aux (kind, l)) = K_aux (kind, f l)
let locate_kinded_id f (KOpt_aux (KOpt_kind (k, kid), l)) =
KOpt_aux (KOpt_kind (locate_kind f k, locate_kid f kid), f l)
let locate_lit f (L_aux (lit, l)) = L_aux (lit, f l)
let locate_base_effect f (BE_aux (base_effect, l)) = BE_aux (base_effect, f l)
let locate_effect f (Effect_aux (Effect_set effects, l)) =
Effect_aux (Effect_set (List.map (locate_base_effect f) effects), f l)
let locate_order f (Ord_aux (ord_aux, l)) =
let ord_aux = match ord_aux with
| Ord_inc -> Ord_inc
| Ord_dec -> Ord_dec
| Ord_var v -> Ord_var (locate_kid f v)
in
Ord_aux (ord_aux, f l)
let rec locate_nexp f (Nexp_aux (nexp_aux, l)) =
let nexp_aux = match nexp_aux with
| Nexp_id id -> Nexp_id (locate_id f id)
| Nexp_var kid -> Nexp_var (locate_kid f kid)
| Nexp_constant n -> Nexp_constant n
| Nexp_app (id, nexps) -> Nexp_app (locate_id f id, List.map (locate_nexp f) nexps)
| Nexp_times (nexp1, nexp2) -> Nexp_times (locate_nexp f nexp1, locate_nexp f nexp2)
| Nexp_sum (nexp1, nexp2) -> Nexp_sum (locate_nexp f nexp1, locate_nexp f nexp2)
| Nexp_minus (nexp1, nexp2) -> Nexp_minus (locate_nexp f nexp1, locate_nexp f nexp2)
| Nexp_exp nexp -> Nexp_exp (locate_nexp f nexp)
| Nexp_neg nexp -> Nexp_neg (locate_nexp f nexp)
in
Nexp_aux (nexp_aux, f l)
let rec locate_nc f (NC_aux (nc_aux, l)) =
let nc_aux = match nc_aux with
| NC_equal (nexp1, nexp2) -> NC_equal (locate_nexp f nexp1, locate_nexp f nexp2)
| NC_bounded_ge (nexp1, nexp2) -> NC_bounded_ge (locate_nexp f nexp1, locate_nexp f nexp2)
| NC_bounded_gt (nexp1, nexp2) -> NC_bounded_gt (locate_nexp f nexp1, locate_nexp f nexp2)
| NC_bounded_le (nexp1, nexp2) -> NC_bounded_le (locate_nexp f nexp1, locate_nexp f nexp2)
| NC_bounded_lt (nexp1, nexp2) -> NC_bounded_lt (locate_nexp f nexp1, locate_nexp f nexp2)
| NC_not_equal (nexp1, nexp2) -> NC_not_equal (locate_nexp f nexp1, locate_nexp f nexp2)
| NC_set (kid, nums) -> NC_set (locate_kid f kid, nums)
| NC_or (nc1, nc2) -> NC_or (locate_nc f nc1, locate_nc f nc2)
| NC_and (nc1, nc2) -> NC_and (locate_nc f nc1, locate_nc f nc2)
| NC_true -> NC_true
| NC_false -> NC_false
| NC_var v -> NC_var (locate_kid f v)
| NC_app (id, args) -> NC_app (locate_id f id, List.map (locate_typ_arg f) args)
in
NC_aux (nc_aux, f l)
and locate_typ f (Typ_aux (typ_aux, l)) =
let typ_aux = match typ_aux with
| Typ_internal_unknown -> Typ_internal_unknown
| Typ_id id -> Typ_id (locate_id f id)
| Typ_var kid -> Typ_var (locate_kid f kid)
| Typ_fn (arg_typs, ret_typ, effect) ->
Typ_fn (List.map (locate_typ f) arg_typs, locate_typ f ret_typ, locate_effect f effect)
| Typ_bidir (typ1, typ2, effect) -> Typ_bidir (locate_typ f typ1, locate_typ f typ2, locate_effect f effect)
| Typ_tup typs -> Typ_tup (List.map (locate_typ f) typs)
| Typ_exist (kopts, constr, typ) -> Typ_exist (List.map (locate_kinded_id f) kopts, locate_nc f constr, locate_typ f typ)
| Typ_app (id, typ_args) -> Typ_app (locate_id f id, List.map (locate_typ_arg f) typ_args)
in
Typ_aux (typ_aux, f l)
and locate_typ_arg f (A_aux (typ_arg_aux, l)) =
let typ_arg_aux = match typ_arg_aux with
| A_nexp nexp -> A_nexp (locate_nexp f nexp)
| A_typ typ -> A_typ (locate_typ f typ)
| A_order ord -> A_order (locate_order f ord)
| A_bool nc -> A_bool (locate_nc f nc)
in
A_aux (typ_arg_aux, f l)
let rec locate_typ_pat f (TP_aux (tp_aux, l)) =
let tp_aux = match tp_aux with
| TP_wild -> TP_wild
| TP_var kid -> TP_var (locate_kid f kid)
| TP_app (id, tps) -> TP_app (locate_id f id, List.map (locate_typ_pat f) tps)
in
TP_aux (tp_aux, f l)
let rec locate_pat : 'a. (l -> l) -> 'a pat -> 'a pat = fun f (P_aux (p_aux, (l, annot))) ->
let p_aux = match p_aux with
| P_lit lit -> P_lit (locate_lit f lit)
| P_wild -> P_wild
| P_or (pat1, pat2) -> P_or (locate_pat f pat1, locate_pat f pat2)
| P_not pat -> P_not (locate_pat f pat)
| P_as (pat, id) -> P_as (locate_pat f pat, locate_id f id)
| P_typ (typ, pat) -> P_typ (locate_typ f typ, locate_pat f pat)
| P_id id -> P_id (locate_id f id)
| P_var (pat, typ_pat) -> P_var (locate_pat f pat, locate_typ_pat f typ_pat)
| P_app (id, pats) -> P_app (locate_id f id, List.map (locate_pat f) pats)
| P_vector pats -> P_vector (List.map (locate_pat f) pats)
| P_vector_concat pats -> P_vector_concat (List.map (locate_pat f) pats)
| P_tup pats -> P_tup (List.map (locate_pat f) pats)
| P_list pats -> P_list (List.map (locate_pat f) pats)
| P_cons (hd_pat, tl_pat) -> P_cons (locate_pat f hd_pat, locate_pat f tl_pat)
| P_string_append pats -> P_string_append (List.map (locate_pat f) pats)
in
P_aux (p_aux, (f l, annot))
let rec locate : 'a. (l -> l) -> 'a exp -> 'a exp = fun f (E_aux (e_aux, (l, annot))) ->
let e_aux = match e_aux with
| E_block exps -> E_block (List.map (locate f) exps)
| E_id id -> E_id (locate_id f id)
| E_lit lit -> E_lit (locate_lit f lit)
| E_cast (typ, exp) -> E_cast (locate_typ f typ, locate f exp)
| E_app (id, exps) -> E_app (locate_id f id, List.map (locate f) exps)
| E_app_infix (exp1, op, exp2) -> E_app_infix (locate f exp1, locate_id f op, locate f exp2)
| E_tuple exps -> E_tuple (List.map (locate f) exps)
| E_if (cond_exp, then_exp, else_exp) -> E_if (locate f cond_exp, locate f then_exp, locate f else_exp)
| E_loop (loop, measure, cond, body) -> E_loop (loop, locate_measure f measure, locate f cond, locate f body)
| E_for (id, exp1, exp2, exp3, ord, exp4) ->
E_for (locate_id f id, locate f exp1, locate f exp2, locate f exp3, ord, locate f exp4)
| E_vector exps -> E_vector (List.map (locate f) exps)
| E_vector_access (exp1, exp2) -> E_vector_access (locate f exp1, locate f exp2)
| E_vector_subrange (exp1, exp2, exp3) -> E_vector_subrange (locate f exp1, locate f exp2, locate f exp3)
| E_vector_update (exp1, exp2, exp3) -> E_vector_update (locate f exp1, locate f exp2, locate f exp3)
| E_vector_update_subrange (exp1, exp2, exp3, exp4) ->
E_vector_update_subrange (locate f exp1, locate f exp2, locate f exp3, locate f exp4)
| E_vector_append (exp1, exp2) ->
E_vector_append (locate f exp1, locate f exp2)
| E_list exps -> E_list (List.map (locate f) exps)
| E_cons (exp1, exp2) -> E_cons (locate f exp1, locate f exp2)
| E_record fexps -> E_record (List.map (locate_fexp f) fexps)
| E_record_update (exp, fexps) -> E_record_update (locate f exp, List.map (locate_fexp f) fexps)
| E_field (exp, id) -> E_field (locate f exp, locate_id f id)
| E_case (exp, cases) -> E_case (locate f exp, List.map (locate_pexp f) cases)
| E_let (letbind, exp) -> E_let (locate_letbind f letbind, locate f exp)
| E_assign (lexp, exp) -> E_assign (locate_lexp f lexp, locate f exp)
| E_sizeof nexp -> E_sizeof (locate_nexp f nexp)
| E_return exp -> E_return (locate f exp)
| E_exit exp -> E_exit (locate f exp)
| E_ref id -> E_ref (locate_id f id)
| E_throw exp -> E_throw (locate f exp)
| E_try (exp, cases) -> E_try (locate f exp, List.map (locate_pexp f) cases)
| E_assert (exp, message) -> E_assert (locate f exp, locate f message)
| E_constraint constr -> E_constraint (locate_nc f constr)
| E_var (lexp, exp1, exp2) -> E_var (locate_lexp f lexp, locate f exp1, locate f exp2)
| E_internal_plet (pat, exp1, exp2) -> E_internal_plet (locate_pat f pat, locate f exp1, locate f exp2)
| E_internal_return exp -> E_internal_return (locate f exp)
| E_internal_value value -> E_internal_value value
in
E_aux (e_aux, (f l, annot))
and locate_measure : 'a. (l -> l) -> 'a internal_loop_measure -> 'a internal_loop_measure = fun f (Measure_aux (m, l)) ->
let m = match m with
| Measure_none -> Measure_none
| Measure_some exp -> Measure_some (locate f exp)
in Measure_aux (m, f l)
and locate_letbind : 'a. (l -> l) -> 'a letbind -> 'a letbind = fun f (LB_aux (LB_val (pat, exp), (l, annot))) ->
LB_aux (LB_val (locate_pat f pat, locate f exp), (f l, annot))
and locate_pexp : 'a. (l -> l) -> 'a pexp -> 'a pexp = fun f (Pat_aux (pexp_aux, (l, annot))) ->
let pexp_aux = match pexp_aux with
| Pat_exp (pat, exp) -> Pat_exp (locate_pat f pat, locate f exp)
| Pat_when (pat, guard, exp) -> Pat_when (locate_pat f pat, locate f guard, locate f exp)
in
Pat_aux (pexp_aux, (f l, annot))
and locate_lexp : 'a. (l -> l) -> 'a lexp -> 'a lexp = fun f (LEXP_aux (lexp_aux, (l, annot))) ->
let lexp_aux = match lexp_aux with
| LEXP_id id -> LEXP_id (locate_id f id)
| LEXP_deref exp -> LEXP_deref (locate f exp)
| LEXP_memory (id, exps) -> LEXP_memory (locate_id f id, List.map (locate f) exps)
| LEXP_cast (typ, id) -> LEXP_cast (locate_typ f typ, locate_id f id)
| LEXP_tup lexps -> LEXP_tup (List.map (locate_lexp f) lexps)
| LEXP_vector_concat lexps -> LEXP_vector_concat (List.map (locate_lexp f) lexps)
| LEXP_vector (lexp, exp) -> LEXP_vector (locate_lexp f lexp, locate f exp)
| LEXP_vector_range (lexp, exp1, exp2) -> LEXP_vector_range (locate_lexp f lexp, locate f exp1, locate f exp2)
| LEXP_field (lexp, id) -> LEXP_field (locate_lexp f lexp, locate_id f id)
in
LEXP_aux (lexp_aux, (f l, annot))
and locate_fexp : 'a. (l -> l) -> 'a fexp -> 'a fexp = fun f (FE_aux (FE_Fexp (id, exp), (l, annot))) ->
FE_aux (FE_Fexp (locate_id f id, locate f exp), (f l, annot))
let unique_ref = ref 0
let unique l =
let l = Parse_ast.Unique (!unique_ref, l) in
incr unique_ref;
l
let extern_assoc backend exts =
try
try
Some (List.assoc backend exts)
with Not_found ->
Some (List.assoc "_" exts)
with Not_found ->
None
(**************************************************************************)
(* 1. Substitutions *)
(**************************************************************************)
let order_subst_aux sv subst = function
| Ord_var kid ->
begin match subst with
| A_aux (A_order ord, _) when Kid.compare kid sv = 0 ->
unaux_order ord
| _ -> Ord_var kid
end
| Ord_inc -> Ord_inc
| Ord_dec -> Ord_dec
let order_subst sv subst (Ord_aux (ord, l)) = Ord_aux (order_subst_aux sv subst ord, l)
let rec nexp_subst sv subst = function
| (Nexp_aux (Nexp_var kid, l)) as nexp ->
begin match subst with
| A_aux (A_nexp n, _) when Kid.compare kid sv = 0 -> n
| _ -> nexp
end
| Nexp_aux (nexp, l) -> Nexp_aux (nexp_subst_aux sv subst nexp, l)
and nexp_subst_aux sv subst = function
| Nexp_var kid ->
begin match subst with
| A_aux (A_nexp n, _) when Kid.compare kid sv = 0 -> unaux_nexp n
| _ -> Nexp_var kid
end
| Nexp_id id -> Nexp_id id
| Nexp_constant c -> Nexp_constant c
| Nexp_times (nexp1, nexp2) -> Nexp_times (nexp_subst sv subst nexp1, nexp_subst sv subst nexp2)
| Nexp_sum (nexp1, nexp2) -> Nexp_sum (nexp_subst sv subst nexp1, nexp_subst sv subst nexp2)
| Nexp_minus (nexp1, nexp2) -> Nexp_minus (nexp_subst sv subst nexp1, nexp_subst sv subst nexp2)
| Nexp_app (id, nexps) -> Nexp_app (id, List.map (nexp_subst sv subst) nexps)
| Nexp_exp nexp -> Nexp_exp (nexp_subst sv subst nexp)
| Nexp_neg nexp -> Nexp_neg (nexp_subst sv subst nexp)
let rec nexp_set_to_or l subst = function
| [] -> raise (Reporting.err_unreachable l __POS__ "Empty set in constraint")
| [int] -> NC_equal (subst, nconstant int)
| (int :: ints) -> NC_or (mk_nc (NC_equal (subst, nconstant int)), mk_nc (nexp_set_to_or l subst ints))
let rec constraint_subst sv subst (NC_aux (nc, l)) = NC_aux (constraint_subst_aux l sv subst nc, l)
and constraint_subst_aux l sv subst = function
| NC_equal (n1, n2) -> NC_equal (nexp_subst sv subst n1, nexp_subst sv subst n2)
| NC_bounded_ge (n1, n2) -> NC_bounded_ge (nexp_subst sv subst n1, nexp_subst sv subst n2)
| NC_bounded_gt (n1, n2) -> NC_bounded_gt (nexp_subst sv subst n1, nexp_subst sv subst n2)
| NC_bounded_le (n1, n2) -> NC_bounded_le (nexp_subst sv subst n1, nexp_subst sv subst n2)
| NC_bounded_lt (n1, n2) -> NC_bounded_lt (nexp_subst sv subst n1, nexp_subst sv subst n2)
| NC_not_equal (n1, n2) -> NC_not_equal (nexp_subst sv subst n1, nexp_subst sv subst n2)
| NC_set (kid, ints) as set_nc ->
begin match subst with
| A_aux (A_nexp (Nexp_aux (Nexp_var kid',_)), _) when Kid.compare kid sv = 0 ->
NC_set (kid', ints)
| A_aux (A_nexp n, _) when Kid.compare kid sv = 0 ->
nexp_set_to_or l n ints
| _ -> set_nc
end
| NC_or (nc1, nc2) -> NC_or (constraint_subst sv subst nc1, constraint_subst sv subst nc2)
| NC_and (nc1, nc2) -> NC_and (constraint_subst sv subst nc1, constraint_subst sv subst nc2)
| NC_app (id, args) -> NC_app (id, List.map (typ_arg_subst sv subst) args)
| NC_var kid ->
begin match subst with
| A_aux (A_bool nc, _) when Kid.compare kid sv = 0 ->
unaux_constraint nc
| _ -> NC_var kid
end
| NC_false -> NC_false
| NC_true -> NC_true
and typ_subst sv subst (Typ_aux (typ, l)) = Typ_aux (typ_subst_aux sv subst typ, l)
and typ_subst_aux sv subst = function
| Typ_internal_unknown -> Typ_internal_unknown
| Typ_id v -> Typ_id v
| Typ_var kid ->
begin match subst with
| A_aux (A_typ typ, _) when Kid.compare kid sv = 0 ->
unaux_typ typ
| _ -> Typ_var kid
end
| Typ_fn (arg_typs, ret_typ, effs) -> Typ_fn (List.map (typ_subst sv subst) arg_typs, typ_subst sv subst ret_typ, effs)
| Typ_bidir (typ1, typ2, effs) -> Typ_bidir (typ_subst sv subst typ1, typ_subst sv subst typ2, effs)
| Typ_tup typs -> Typ_tup (List.map (typ_subst sv subst) typs)
| Typ_app (f, args) -> Typ_app (f, List.map (typ_arg_subst sv subst) args)
| Typ_exist (kopts, nc, typ) when KidSet.mem sv (KidSet.of_list (List.map kopt_kid kopts)) ->
Typ_exist (kopts, nc, typ)
| Typ_exist (kopts, nc, typ) ->
Typ_exist (kopts, constraint_subst sv subst nc, typ_subst sv subst typ)
and typ_arg_subst sv subst (A_aux (arg, l)) = A_aux (typ_arg_subst_aux sv subst arg, l)
and typ_arg_subst_aux sv subst = function
| A_nexp nexp -> A_nexp (nexp_subst sv subst nexp)
| A_typ typ -> A_typ (typ_subst sv subst typ)
| A_order ord -> A_order (order_subst sv subst ord)
| A_bool nc -> A_bool (constraint_subst sv subst nc)
let subst_kid subst sv v x =
x
|> subst sv (mk_typ_arg (A_bool (nc_var v)))
|> subst sv (mk_typ_arg (A_nexp (nvar v)))
|> subst sv (mk_typ_arg (A_order (Ord_aux (Ord_var v, Parse_ast.Unknown))))
|> subst sv (mk_typ_arg (A_typ (mk_typ (Typ_var v))))
let kopt_subst_kid sv subst (KOpt_aux (KOpt_kind (k, kid), l) as orig) =
if Kid.compare kid sv = 0 then KOpt_aux (KOpt_kind (k, subst), l) else orig
let quant_item_subst_kid_aux sv subst = function
| QI_id kopt ->
QI_id (kopt_subst_kid sv subst kopt)
| QI_constant kopts ->
QI_constant (List.map (kopt_subst_kid sv subst) kopts)
| QI_constraint nc ->
QI_constraint (subst_kid constraint_subst sv subst nc)
let quant_item_subst_kid sv subst (QI_aux (quant, l)) = QI_aux (quant_item_subst_kid_aux sv subst quant, l)
let typquant_subst_kid_aux sv subst = function
| TypQ_tq quants -> TypQ_tq (List.map (quant_item_subst_kid sv subst) quants)
| TypQ_no_forall -> TypQ_no_forall
let typquant_subst_kid sv subst (TypQ_aux (typq, l)) = TypQ_aux (typquant_subst_kid_aux sv subst typq, l)
let subst_kids_nexp substs nexp =
let rec s_snexp substs (Nexp_aux (ne,l) as nexp) =
let re ne = Nexp_aux (ne,l) in
let s_snexp = s_snexp substs in
match ne with
| Nexp_var (Kid_aux (_,l) as kid) ->
(try KBindings.find kid substs
with Not_found -> nexp)
| Nexp_id _
| Nexp_constant _ -> nexp
| Nexp_times (n1,n2) -> re (Nexp_times (s_snexp n1, s_snexp n2))
| Nexp_sum (n1,n2) -> re (Nexp_sum (s_snexp n1, s_snexp n2))
| Nexp_minus (n1,n2) -> re (Nexp_minus (s_snexp n1, s_snexp n2))
| Nexp_exp ne -> re (Nexp_exp (s_snexp ne))
| Nexp_neg ne -> re (Nexp_neg (s_snexp ne))
| Nexp_app (id,args) -> re (Nexp_app (id,List.map s_snexp args))
in s_snexp substs nexp
let subst_kids_nc, subst_kids_typ, subst_kids_typ_arg =
let rec subst_kids_nc substs (NC_aux (nc,l) as n_constraint) =
let snexp nexp = subst_kids_nexp substs nexp in
let snc nc = subst_kids_nc substs nc in
let re nc = NC_aux (nc,l) in
match nc with
| NC_equal (n1,n2) -> re (NC_equal (snexp n1, snexp n2))
| NC_bounded_ge (n1,n2) -> re (NC_bounded_ge (snexp n1, snexp n2))
| NC_bounded_gt (n1,n2) -> re (NC_bounded_gt (snexp n1, snexp n2))
| NC_bounded_le (n1,n2) -> re (NC_bounded_le (snexp n1, snexp n2))
| NC_bounded_lt (n1,n2) -> re (NC_bounded_lt (snexp n1, snexp n2))
| NC_not_equal (n1,n2) -> re (NC_not_equal (snexp n1, snexp n2))
| NC_set (kid,is) ->
begin
match KBindings.find kid substs with
| Nexp_aux (Nexp_constant i,_) ->
if List.exists (fun j -> Big_int.equal i j) is then re NC_true else re NC_false
| nexp ->
raise (Reporting.err_general l
("Unable to substitute " ^ string_of_nexp nexp ^
" into set constraint " ^ string_of_n_constraint n_constraint))
| exception Not_found -> n_constraint
end
| NC_or (nc1,nc2) -> re (NC_or (snc nc1, snc nc2))
| NC_and (nc1,nc2) -> re (NC_and (snc nc1, snc nc2))
| NC_true
| NC_false
-> n_constraint
| NC_var kid -> re (NC_var kid)
| NC_app (f, args) ->
re (NC_app (f, List.map (s_starg substs) args))
and s_styp substs ((Typ_aux (t,l)) as ty) =
let re t = Typ_aux (t,l) in
match t with
| Typ_id _
| Typ_var _
-> ty
| Typ_fn (t1,t2,e) -> re (Typ_fn (List.map (s_styp substs) t1, s_styp substs t2,e))
| Typ_bidir (t1,t2,e) -> re (Typ_bidir (s_styp substs t1, s_styp substs t2,e))
| Typ_tup ts -> re (Typ_tup (List.map (s_styp substs) ts))
| Typ_app (id,tas) -> re (Typ_app (id,List.map (s_starg substs) tas))
| Typ_exist (kopts,nc,t) ->
let substs = List.fold_left (fun sub kopt -> KBindings.remove (kopt_kid kopt) sub) substs kopts in
re (Typ_exist (kopts,subst_kids_nc substs nc,s_styp substs t))
| Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown"
and s_starg substs (A_aux (ta,l) as targ) =
match ta with
| A_nexp ne -> A_aux (A_nexp (subst_kids_nexp substs ne),l)
| A_typ t -> A_aux (A_typ (s_styp substs t),l)
| A_order _ -> targ
| A_bool nc -> A_aux (A_bool (subst_kids_nc substs nc), l)
in subst_kids_nc, s_styp, s_starg
let before p1 p2 =
let open Lexing in
p1.pos_fname = p2.pos_fname && p1.pos_cnum <= p2.pos_cnum
let subloc sl l =
match sl, Reporting.simp_loc l with
| _, None -> false
| None, _ -> false
| Some (p1a, p1b), Some (p2a, p2b) ->
before p2a p1a && before p1b p2b
let rec option_mapm f = function
| [] -> None
| x :: xs ->
begin match f x with
| Some y -> Some y
| None -> option_mapm f xs
end
let option_chain opt1 opt2 =
begin match opt1 with
| None -> opt2
| _ -> opt1
end
let rec find_annot_exp sl (E_aux (aux, (l, annot)) as exp) =
if not (subloc sl l) then None else
let result = match aux with
| E_block exps | E_tuple exps ->
option_mapm (find_annot_exp sl) exps
| E_app (id, exps) ->
option_mapm (find_annot_exp sl) exps
| E_let (LB_aux (LB_val (pat, exp), _), body) ->
option_chain (find_annot_pat sl pat) (option_mapm (find_annot_exp sl) [exp; body])
| E_assign (lexp, exp) ->
option_chain (find_annot_lexp sl lexp) (find_annot_exp sl exp)
| E_var (lexp, exp1, exp2) ->
option_chain (find_annot_lexp sl lexp) (option_mapm (find_annot_exp sl) [exp1; exp2])
| E_if (cond_exp, then_exp, else_exp) ->
option_mapm (find_annot_exp sl) [cond_exp; then_exp; else_exp]
| E_case (exp, cases) | E_try (exp, cases) ->
option_chain (find_annot_exp sl exp) (option_mapm (find_annot_pexp sl) cases)
| E_return exp | E_cast (_, exp) ->
find_annot_exp sl exp
| _ -> None
in
match result with
| None -> Some (l, annot)
| _ -> result
and find_annot_lexp sl (LEXP_aux (aux, (l, annot))) =
if not (subloc sl l) then None else
let result = match aux with
| LEXP_vector_range (lexp, exp1, exp2) ->
option_chain (find_annot_lexp sl lexp) (option_mapm (find_annot_exp sl) [exp1; exp2])
| LEXP_deref exp ->
find_annot_exp sl exp
| LEXP_tup lexps ->
option_mapm (find_annot_lexp sl) lexps
| LEXP_memory (id, exps) ->
option_mapm (find_annot_exp sl) exps
| _ -> None
in
match result with
| None -> Some (l, annot)
| _ -> result
and find_annot_pat sl (P_aux (aux, (l, annot))) =
if not (subloc sl l) then None else
let result = match aux with
| P_vector_concat pats ->
option_mapm (find_annot_pat sl) pats
| _ -> None
in
match result with
| None -> Some (l, annot)
| _ -> result
and find_annot_pexp sl (Pat_aux (aux, (l, annot))) =
if not (subloc sl l) then None else
match aux with
| Pat_exp (pat, exp) ->
option_chain (find_annot_pat sl pat) (find_annot_exp sl exp)
| Pat_when (pat, guard, exp) ->
option_chain (find_annot_pat sl pat) (option_mapm (find_annot_exp sl) [guard; exp])
let find_annot_funcl sl (FCL_aux (FCL_Funcl (id, pexp), (l, annot))) =
if not (subloc sl l) then None else
match find_annot_pexp sl pexp with
| None -> Some (l, annot)
| result -> result
let find_annot_fundef sl (FD_aux (FD_function (_, _, _, funcls), (l, annot))) =
if not (subloc sl l) then None else
match option_mapm (find_annot_funcl sl) funcls with
| None -> Some (l, annot)
| result -> result
let find_annot_scattered sl (SD_aux (aux, (l, annot))) =
if not (subloc sl l) then None else
let result = match aux with
| SD_funcl fcl -> find_annot_funcl sl fcl
| _ -> None
in
match result with
| None -> Some (l, annot)
| _ -> result
let rec find_annot_defs sl = function
| DEF_fundef fdef :: defs ->
begin match find_annot_fundef sl fdef with
| None -> find_annot_defs sl defs
| result -> result
end
| DEF_scattered sdef :: defs ->
begin match find_annot_scattered sl sdef with
| None -> find_annot_defs sl defs
| result -> result
end
| _ :: defs ->
find_annot_defs sl defs
| [] -> None
let rec find_annot_ast sl (Defs defs) = find_annot_defs sl defs
let string_of_lx lx =
let open Lexing in
Printf.sprintf "%s,%d,%d,%d" lx.pos_fname lx.pos_lnum lx.pos_bol lx.pos_cnum
let rec simple_string_of_loc = function
| Parse_ast.Unknown -> "Unknown"
| Parse_ast.Unique (n, l) -> "Unique(" ^ string_of_int n ^ ", " ^ simple_string_of_loc l ^ ")"
| Parse_ast.Generated l -> "Generated(" ^ simple_string_of_loc l ^ ")"
| Parse_ast.Range (lx1,lx2) -> "Range(" ^ string_of_lx lx1 ^ "->" ^ string_of_lx lx2 ^ ")"
| Parse_ast.Documented (_,l) -> "Documented(_," ^ simple_string_of_loc l ^ ")"
let attach_comments comments defs =
let open Lexing in
let module IntMap = Map.Make(struct type t = int let compare = compare end) in
let high_scores = ref IntMap.empty in
let uid = ref (-1) in
let comment_text (Lexer.Comment (_, _, _, text)) = text in
let loc_distance p1 p2 =
abs (p1.pos_lnum - p2.pos_lnum) * 1000 + abs (p1.pos_cnum - p2.pos_cnum) in
let comment_distance (Lexer.Comment (_, c1, c2, _)) l =
match Reporting.simp_loc l with
| None -> None
| Some (p1, p2) -> Some (min (loc_distance c1 p2) (loc_distance c2 p1)) in
let loc_width l =
match Reporting.simp_loc l with
| None -> -1
| Some (p1, p2) -> p1.pos_cnum - p2.pos_cnum in
let score_annot l n comment =
incr uid;
begin match comment_distance comment l with
| Some dist ->
begin match IntMap.find_opt n !high_scores with
| Some (best_dist, best_l, _) ->
if dist < best_dist || (dist = best_dist && loc_width l > loc_width best_l) then
high_scores := IntMap.add n (dist, l, !uid) !high_scores
else
()
| None ->
high_scores := IntMap.add n (dist, l, !uid) !high_scores
end
| None -> ()
end;
!uid
in
let defs = List.map (map_def_annot (fun (l, annot) -> (l, (List.mapi (score_annot l) comments, annot)))) defs in
let attach_comment (l, (uids, annot)) =
let l =
IntMap.fold (fun n (_, _, uid) l ->
if List.mem uid uids then
Parse_ast.Documented (List.nth comments n |> comment_text, l)
else
l
) !high_scores l
in
(l, annot)
in
List.map (map_def_annot attach_comment) defs
|