summaryrefslogtreecommitdiff
path: root/snapshots/isabelle/lib/lem/LemExtraDefs.thy
blob: e43ff6634060537617d8f15c6e63f364f0d9d659 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
(*========================================================================*)
(*                        Lem                                             *)
(*                                                                        *)
(*          Dominic Mulligan, University of Cambridge                     *)
(*          Francesco Zappa Nardelli, INRIA Paris-Rocquencourt            *)
(*          Gabriel Kerneis, University of Cambridge                      *)
(*          Kathy Gray, University of Cambridge                           *)
(*          Peter Boehm, University of Cambridge (while working on Lem)   *)
(*          Peter Sewell, University of Cambridge                         *)
(*          Scott Owens, University of Kent                               *)
(*          Thomas Tuerk, University of Cambridge                         *)
(*          Brian Campbell, University of Edinburgh                       *)
(*          Shaked Flur, University of Cambridge                          *)
(*          Thomas Bauereiss, University of Cambridge                     *)
(*          Stephen Kell, University of Cambridge                         *)
(*          Thomas Williams                                               *)
(*          Lars Hupel                                                    *)
(*          Basile Clement                                                *)
(*                                                                        *)
(*  The Lem sources are copyright 2010-2018                               *)
(*  by the authors above and Institut National de Recherche en            *)
(*  Informatique et en Automatique (INRIA).                               *)
(*                                                                        *)
(*  All files except ocaml-lib/pmap.{ml,mli} and ocaml-libpset.{ml,mli}   *)
(*  are distributed under the license below.  The former are distributed  *)
(*  under the LGPLv2, as in the LICENSE file.                             *)
(*                                                                        *)
(*                                                                        *)
(*  Redistribution and use in source and binary forms, with or without    *)
(*  modification, are permitted provided that the following conditions    *)
(*  are met:                                                              *)
(*  1. Redistributions of source code must retain the above copyright     *)
(*  notice, this list of conditions and the following disclaimer.         *)
(*  2. Redistributions in binary form must reproduce the above copyright  *)
(*  notice, this list of conditions and the following disclaimer in the   *)
(*  documentation and/or other materials provided with the distribution.  *)
(*  3. The names of the authors may not be used to endorse or promote     *)
(*  products derived from this software without specific prior written    *)
(*  permission.                                                           *)
(*                                                                        *)
(*  THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS    *)
(*  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED     *)
(*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE    *)
(*  ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY       *)
(*  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL    *)
(*  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE     *)
(*  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS         *)
(*  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER  *)
(*  IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR       *)
(*  OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN   *)
(*  IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                         *)
(*========================================================================*)

chapter \<open>Auxiliary Definitions needed by Lem\<close>

theory "LemExtraDefs"

imports
   Main
   "HOL-Library.Permutation"
   "HOL-Library.While_Combinator"
begin

subsection \<open>General\<close>

consts failwith :: " 'a \<Rightarrow> 'b"

subsection \<open>Lists\<close>

fun index :: " 'a list \<Rightarrow> nat \<Rightarrow> 'a option "  where
   "index [] n = None"
 | "index (x # xs) 0 = Some x"
 | "index (x # xs) (Suc n) = index xs n"

lemma index_eq_some [simp]:
   "index l n = Some x \<longleftrightarrow> (n < length l \<and> (x = l ! n))"
proof (induct l arbitrary: n x)
  case Nil thus ?case by simp
next
  case (Cons e es n x)
  note ind_hyp = this

  show ?case
  proof (cases n)
    case 0 thus ?thesis by auto
  next
    case (Suc n')
    with ind_hyp show ?thesis by simp
  qed
qed

lemma index_eq_none [simp]:
   "index l n = None \<longleftrightarrow> length l \<le> n"
by (rule iffD1[OF Not_eq_iff]) auto


lemma index_simps [simp]:
   "length l \<le> n \<Longrightarrow> index l n = None"
   "n < length l \<Longrightarrow> index l n = Some (l ! n)"
by (simp_all)

fun find_indices :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> nat list" where
   "find_indices P [] = []"
 | "find_indices P (x # xs) = (if P x then 0 # (map Suc (find_indices P xs)) else (map Suc (find_indices P xs)))"

lemma length_find_indices :
  "length (find_indices P l) \<le> length l"
by (induct l) auto

lemma sorted_map_suc :
  "sorted l \<Longrightarrow> sorted (map Suc l)"
by (induct l) (simp_all)

lemma sorted_find_indices :
  "sorted (find_indices P xs)"
proof (induct xs)
  case Nil thus ?case by simp
next
  case (Cons x xs)
  from sorted_map_suc[OF this]
  show ?case
    by (simp)
qed

lemma find_indices_set [simp] :
  "set (find_indices P l) = {i. i < length l \<and> P (l ! i)}"
proof (intro set_eqI)
  fix i
  show "i \<in> set (find_indices P l) \<longleftrightarrow> (i \<in> {i. i < length l \<and> P (l ! i)})"
  proof (induct l arbitrary: i)
    case Nil thus ?case by simp
  next
    case (Cons x l' i)
    note ind_hyp = this
    show ?case
    proof (cases i)
      case 0 thus ?thesis by auto
    next
      case (Suc i') with ind_hyp[of i'] show ?thesis by auto
    qed
  qed
qed

definition find_index where
  "find_index P xs = (case find_indices P xs of
      []    \<Rightarrow> None
    | i # _ \<Rightarrow> Some i)"

lemma find_index_eq_some [simp] :
  "(find_index P xs = Some ii) \<longleftrightarrow> (ii < length xs \<and> P (xs ! ii) \<and> (\<forall>i' < ii. \<not>(P (xs ! i'))))"
  (is "?lhs = ?rhs")
proof (cases "find_indices P xs")
  case Nil
  with find_indices_set[of P xs]
  show ?thesis
    unfolding find_index_def by auto
next
  case (Cons i il) note find_indices_eq = this

  from sorted_find_indices[of P xs] find_indices_eq
  have "sorted (i # il)" by simp
  hence i_leq: "\<And>i'. i' \<in> set (i # il) \<Longrightarrow> i \<le> i'" by auto

  from find_indices_set[of P xs, unfolded find_indices_eq]
  have set_i_il_eq:"\<And>i'. i' \<in> set (i # il) = (i' < length xs \<and> P (xs ! i'))"
    by simp

  have lhs_eq: "find_index P xs = Some i"
    unfolding find_index_def find_indices_eq by simp

  show ?thesis
  proof (intro iffI)
    assume ?lhs
    with lhs_eq have ii_eq[simp]: "ii = i" by simp

    from set_i_il_eq[of i] i_leq[unfolded set_i_il_eq]
    show ?rhs by auto (metis leD less_trans)
  next
    assume ?rhs
    with set_i_il_eq[of ii]
    have "ii \<in> set (i # il) \<and> (ii \<le> i)"
      by (metis leI length_pos_if_in_set nth_Cons_0 nth_mem set_i_il_eq)

    with i_leq [of ii] have "i = ii" by simp
    thus ?lhs unfolding lhs_eq by simp
  qed
qed

lemma find_index_eq_none [simp] :
  "(find_index P xs = None) \<longleftrightarrow> (\<forall>x \<in> set xs. \<not>(P x))" (is "?lhs = ?rhs")
proof (rule iffD1[OF Not_eq_iff], intro iffI)
  assume "\<not> ?lhs"
  then obtain i where "find_index P xs = Some i" by auto
  hence "i < length xs \<and> P (xs ! i)" by simp
  thus "\<not> ?rhs" by auto
next
  let ?p = "(\<lambda>i. i < length xs \<and> P(xs ! i))"

  assume "\<not> ?rhs"
  then obtain i where "?p i"
    by (metis in_set_conv_nth)

  from LeastI [of ?p, OF \<open>?p i\<close>]
  have "?p (Least ?p)" .

  hence "find_index P xs = Some (Least ?p)"
    by (subst find_index_eq_some) (metis (mono_tags) less_trans not_less_Least)

  thus "\<not> ?lhs" by blast
qed

definition genlist where
  "genlist f n = map f (upt 0 n)"

lemma genlist_length [simp] :
  "length (genlist f n) = n"
unfolding genlist_def by simp

lemma genlist_simps [simp]:
   "genlist f 0 = []"
   "genlist f (Suc n) = genlist f n @ [f n]"
unfolding genlist_def by auto

definition split_at where
  "split_at n l = (take n l, drop n l)"

fun delete_first :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> ('a list) option "  where
    "delete_first P [] = None"
  | "delete_first P (x # xs) =
     (if (P x) then Some xs else
      map_option (\<lambda>xs'. x # xs') (delete_first P xs))"
declare delete_first.simps [simp del]

lemma delete_first_simps [simp] :
   "delete_first P [] = None"
   "P x \<Longrightarrow> delete_first P (x # xs) = Some xs"
   "\<not>(P x) \<Longrightarrow> delete_first P (x # xs) = map_option (\<lambda>xs'. x # xs') (delete_first P xs)"
unfolding delete_first.simps by auto

lemmas delete_first_unroll = delete_first.simps(2)


lemma delete_first_eq_none [simp] :
  "delete_first P l = None \<longleftrightarrow> (\<forall>x \<in> set l. \<not> (P x))"
by (induct l) (auto simp add: delete_first_unroll)

lemma delete_first_eq_some :
  "delete_first P l = (Some l') \<longleftrightarrow> (\<exists>l1 x l2. P x \<and> (\<forall>x \<in> set l1. \<not>(P x)) \<and> (l = l1 @ (x # l2)) \<and> (l' = l1 @ l2))"
  (is "?lhs l l' = (\<exists>l1 x l2. ?rhs_body l1 x l2 l l')")
proof (induct l arbitrary: l')
  case Nil thus ?case by simp
next
  case (Cons e l l')
  note ind_hyp = this

  show ?case
  proof (cases "P e")
    case True
    show ?thesis
    proof (rule iffI)
      assume "?lhs (e # l) l'"
      with \<open>P e\<close> have "l = l'" by simp
      with \<open>P e\<close> have "?rhs_body [] e l' (e # l) l'" by simp
      thus "\<exists>l1 x l2. ?rhs_body l1 x l2 (e # l) l'" by blast
    next
      assume "\<exists>l1 x l2. ?rhs_body l1 x l2 (e # l) l'"
      then obtain l1 x l2 where body_ok: "?rhs_body l1 x l2 (e # l) l'" by blast

      from body_ok \<open>P e\<close> have l1_eq[simp]: "l = l'"
        by (cases l1) (simp_all)
      with \<open>P e\<close> show "?lhs (e # l) l'" by simp
    qed
  next
    case False
    define rhs_pred where "rhs_pred \<equiv> \<lambda>l1 x l2 l l'. ?rhs_body l1 x l2 l l'"
    have rhs_fold: "\<And>l1 x l2 l l'. ?rhs_body l1 x l2 l l' = rhs_pred l1 x l2 l l'"
       unfolding rhs_pred_def by simp

    have "(\<exists>z l1 x l2. rhs_pred l1 x l2 l z \<and> e # z = l') = (\<exists>l1 x l2. rhs_pred l1 x l2 (e # l) l')"
    proof (intro iffI)
      assume "\<exists>z l1 x l2. rhs_pred l1 x l2 l z \<and> e # z = l'"
      then obtain z l1 x l2 where "rhs_pred l1 x l2 l z" and l'_eq: "l' = e # z" by auto
      with \<open>\<not>(P e)\<close> have "rhs_pred (e # l1) x l2 (e # l) l'"
        unfolding rhs_pred_def by simp
      thus "\<exists>l1 x l2. rhs_pred l1 x l2 (e # l) l'" by blast
    next
      assume "\<exists>l1 x l2. rhs_pred l1 x l2 (e # l) l'"
      then obtain l1 x l2 where "rhs_pred l1 x l2 (e # l) l'" by blast
      with \<open>\<not> (P e)\<close> obtain l1' where l1_eq[simp]: "l1 = e # l1'"
        unfolding rhs_pred_def by (cases l1) (auto)

      with \<open>rhs_pred l1 x l2 (e # l) l'\<close>
      have "rhs_pred l1' x l2 l (l1' @ l2) \<and> e # (l1' @ l2) = l'"
        unfolding rhs_pred_def by (simp)
      thus "\<exists>z l1 x l2. rhs_pred l1 x l2 l z \<and> e # z = l'" by blast
    qed
    with \<open>\<not> P e\<close> show ?thesis
      unfolding rhs_fold
      by (simp add: ind_hyp[unfolded rhs_fold])
  qed
qed


lemma perm_eval [code] :
  "perm [] l \<longleftrightarrow> l = []" (is ?g1)
  "perm (x # xs) l \<longleftrightarrow> (case delete_first (\<lambda>e. e = x) l of
       None => False
     | Some l' => perm xs l')" (is ?g2)
proof -
  show ?g1 by auto
next
  show ?g2
  proof (cases "delete_first (\<lambda>e. e = x) l")
    case None note del_eq = this
    hence "x \<notin> set l" by auto
    with perm_set_eq [of "x # xs" l]
    have "\<not> perm (x # xs) l" by auto
    thus ?thesis unfolding del_eq by simp
  next
    case (Some l') note del_eq = this

    from del_eq[unfolded delete_first_eq_some]
    obtain l1 l2 where l_eq: "l = l1 @ [x] @ l2" and l'_eq: "l' = l1 @ l2" by auto

    have "(x # xs <~~> l1 @ x # l2) = (xs <~~> l1 @ l2)"
    proof -
      from perm_append_swap [of l1 "[x]"]
           perm_append2 [of "l1 @ [x]" "x # l1" l2]
      have "l1 @ x # l2 <~~> x # (l1 @ l2)" by simp
      hence "x # xs <~~> l1 @ x # l2 \<longleftrightarrow> x # xs <~~> x # (l1 @ l2)"
        by (metis perm.trans perm_sym)
      thus ?thesis by simp
    qed
    with del_eq l_eq l'_eq show ?thesis by simp
  qed
qed


fun sorted_by  :: "('a \<Rightarrow> 'a \<Rightarrow> bool)\<Rightarrow> 'a list \<Rightarrow> bool "  where
   "sorted_by cmp [] = True"
 | "sorted_by cmp [_] = True"
 | "sorted_by cmp (x1 # x2 # xs) = ((cmp x1 x2) \<and> sorted_by cmp (x2 # xs))"

lemma sorted_by_lesseq [simp] :
  "sorted_by ((\<le>) :: ('a::{linorder}) => 'a => bool) = sorted"
proof (rule ext)
  fix l :: "'a list"
  show "sorted_by (\<le>) l = sorted l"
  proof (induct l)
    case Nil thus ?case by simp
  next
    case (Cons x xs)
    thus ?case by (cases xs) (simp_all del: sorted.simps(2) add: sorted2_simps)
  qed
qed

lemma sorted_by_cons_imp :
  "sorted_by cmp (x # xs) \<Longrightarrow> sorted_by cmp xs"
by (cases xs) simp_all

lemma sorted_by_cons_trans :
  assumes trans_cmp: "transp cmp"
  shows "sorted_by cmp (x # xs) = ((\<forall>x' \<in> set xs . cmp x x') \<and> sorted_by cmp xs)"
proof (induct xs arbitrary: x)
  case Nil thus ?case by simp
next
  case (Cons x2 xs x1)
  note ind_hyp = this

  from trans_cmp
  show ?case
    by (auto simp add: ind_hyp transp_def)
qed


fun insert_sort_insert_by  :: "('a \<Rightarrow> 'a \<Rightarrow> bool)\<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list "  where
  "insert_sort_insert_by cmp e ([]) = ( [e])"
| "insert_sort_insert_by cmp e (x # xs) = ( if cmp e x then (e # (x # xs)) else x # (insert_sort_insert_by cmp e xs))"


lemma insert_sort_insert_by_length [simp] :
  "length (insert_sort_insert_by cmp e l) = Suc (length l)"
by (induct l) auto

lemma insert_sort_insert_by_set [simp] :
  "set (insert_sort_insert_by cmp e l) = insert e (set l)"
by (induct l) auto

lemma insert_sort_insert_by_perm :
  "(insert_sort_insert_by cmp e l) <~~> (e # l)"
proof (induct l)
  case Nil thus ?case by simp
next
  case (Cons e2 l')
  note ind_hyp = this

  have "e2 # e # l' <~~> e # e2 # l'" by (rule perm.swap)
  hence "e2 # insert_sort_insert_by cmp e l' <~~> e # e2 # l'"
    using ind_hyp by (metis cons_perm_eq perm.trans)
  thus ?case by simp
qed


lemma insert_sort_insert_by_sorted_by :
assumes cmp_cases: "\<And>y. y \<in> set l \<Longrightarrow> \<not> (cmp e y) \<Longrightarrow> cmp y e"
assumes cmp_trans: "transp cmp"
shows "sorted_by cmp l \<Longrightarrow> sorted_by cmp (insert_sort_insert_by cmp e l)"
using cmp_cases
proof (induct l)
  case Nil thus ?case by simp
next
  case (Cons x1 l')
  note ind_hyp = Cons(1)
  note sorted_x1_l' = Cons(2)
  note cmp_cases = Cons(3)

  show ?case
  proof (cases l')
    case Nil with cmp_cases show ?thesis by simp
  next
    case (Cons x2 l'') note l'_eq = this

    from l'_eq sorted_x1_l' have "cmp x1 x2" "sorted_by cmp l'" by simp_all

    show ?thesis
    proof (cases "cmp e x1")
      case True
      with \<open>cmp x1 x2\<close> \<open>sorted_by cmp l'\<close>
      have "sorted_by cmp (x1 # l')"
        unfolding l'_eq by (simp)
      with \<open>cmp e x1\<close>
      show ?thesis by simp
    next
      case False

      with cmp_cases have "cmp x1 e" by simp
      have "\<And>x'.  x' \<in> set l' \<Longrightarrow> cmp x1 x'"
      proof -
        fix x'
        assume "x' \<in> set l'"
        hence "x' = x2 \<or> cmp x2 x'"
          using \<open>sorted_by cmp l'\<close> l'_eq sorted_by_cons_trans [OF cmp_trans, of x2 l'']
          by auto
        with transpD[OF cmp_trans, of x1 x2 x'] \<open>cmp x1 x2\<close>
        show "cmp x1 x'" by blast
      qed
      hence "sorted_by cmp (x1 # insert_sort_insert_by cmp e l')"
        using ind_hyp [OF \<open>sorted_by cmp l'\<close>] \<open>cmp x1 e\<close> cmp_cases
        unfolding sorted_by_cons_trans[OF cmp_trans]
        by simp
      with \<open>\<not>(cmp e x1)\<close>
      show ?thesis by simp
    qed
  qed
qed



fun insert_sort_by :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list "  where
    "insert_sort_by cmp [] = []"
  | "insert_sort_by cmp (x # xs) = insert_sort_insert_by cmp x (insert_sort_by cmp xs)"


lemma insert_sort_by_perm :
  "(insert_sort_by cmp l) <~~> l"
proof (induct l)
  case Nil thus ?case by simp
next
  case (Cons x l)
  thus ?case
   by simp (metis cons_perm_eq insert_sort_insert_by_perm perm.trans)
qed

lemma insert_sort_by_length [simp]:
  "length (insert_sort_by cmp l) = length l"
by (induct l) auto

lemma insert_sort_by_set [simp]:
  "set (insert_sort_by cmp l) = set l"
by (induct l) auto

definition sort_by where
  "sort_by = insert_sort_by"

lemma sort_by_simps [simp]:
  "length (sort_by cmp l) = length l"
  "set (sort_by cmp l) = set l"
unfolding sort_by_def by simp_all

lemma sort_by_perm :
  "sort_by cmp l <~~> l"
unfolding sort_by_def
by (simp add: insert_sort_by_perm)

subsection \<open>Maps\<close>

definition map_image :: "('v \<Rightarrow> 'w) \<Rightarrow> ('k, 'v) map \<Rightarrow> ('k, 'w) map" where
  "map_image f m = (\<lambda>k. map_option f (m k))"

definition map_domain_image :: "('k \<Rightarrow> 'v \<Rightarrow> 'w) \<Rightarrow> ('k, 'v) map \<Rightarrow> ('k, 'w) map" where
  "map_domain_image f m = (\<lambda>k. map_option (f k) (m k))"


lemma map_image_simps [simp]:
  "(map_image f m) k = None \<longleftrightarrow> m k = None"
  "(map_image f m) k = Some x \<longleftrightarrow> (\<exists>x'. (m k = Some x') \<and> (x = f x'))"
  "(map_image f Map.empty) = Map.empty"
  "(map_image f (m (k \<mapsto> v)) = (map_image f m) (k \<mapsto> f v))"
unfolding map_image_def by auto

lemma map_image_dom_ran [simp]:
  "dom (map_image f m) = dom m"
  "ran (map_image f m) = f ` (ran m)"
unfolding dom_def ran_def by auto

definition map_to_set :: "('k, 'v) map \<Rightarrow> ('k * 'v) set" where
  "map_to_set m = { (k, v) . m k = Some v }"

lemma map_to_set_simps [simp] :
  "map_to_set Map.empty = {}"  (is ?g1)
  "map_to_set (m ((k::'k) \<mapsto> (v::'v))) = (insert (k, v) (map_to_set (m |` (- {k}))))" (is ?g2)
proof -
  show ?g1 unfolding map_to_set_def by simp
next
  show ?g2
  proof (rule set_eqI)
    fix kv :: "('k * 'v)"
    obtain k' v' where kv_eq[simp]: "kv = (k', v')" by (rule prod.exhaust)

    show "(kv \<in> map_to_set (m(k \<mapsto> v))) = (kv \<in> insert (k, v) (map_to_set (m |` (- {k}))))"
      by (auto simp add: map_to_set_def)
  qed
qed


subsection \<open>Sets\<close>

definition "set_choose s \<equiv> (SOME x. (x \<in> s))"
  
definition without_trans_edges :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" where
  "without_trans_edges S \<equiv>
     let ts = trancl S in
       { (x, y) \<in> S. \<forall>z \<in> snd ` S. x \<noteq> z \<and> y \<noteq> z \<longrightarrow> \<not> ((x, z) \<in> ts \<and> (z, y) \<in> ts)}"
  
definition unbounded_lfp :: "'a set \<Rightarrow> ('a set \<Rightarrow> 'a set) \<Rightarrow> 'a set" where
  "unbounded_lfp S f \<equiv>
     while (\<lambda>x. x \<subset> S) f S"
  
definition unbounded_gfp :: "'a set \<Rightarrow> ('a set \<Rightarrow> 'a set) \<Rightarrow> 'a set" where
  "unbounded_gfp S f \<equiv>
     while (\<lambda>x. S \<subset> x) f S"

lemma set_choose_thm[simp]:
  "s \<noteq> {} \<Longrightarrow> (set_choose s) \<in> s"
unfolding set_choose_def
by (rule someI_ex) auto

lemma set_choose_sing [simp]:
  "set_choose {x} = x"
  unfolding set_choose_def
  by auto

lemma set_choose_code [code]:
  "set_choose (set [x]) = x"
by auto

lemma set_choose_in [intro] :
  assumes "s \<noteq> {}"
  shows "set_choose s \<in> s"
proof -
  from \<open>s \<noteq> {}\<close>
  obtain x where "x \<in> s" by auto
  thus ?thesis
    unfolding set_choose_def
    by (rule someI)
qed


definition set_case where
  "set_case s c_empty c_sing c_else =
    (if (s = {}) then c_empty else
    (if (card s = 1) then c_sing (set_choose s) else
       c_else))"

lemma set_case_simps [simp] :
  "set_case {} c_empty c_sing c_else = c_empty"
  "set_case {x} c_empty c_sing c_else = c_sing x"
  "card s > 1 \<Longrightarrow> set_case s c_empty c_sing c_else = c_else"
  "\<not>(finite s) \<Longrightarrow> set_case s c_empty c_sing c_else = c_else"
unfolding set_case_def by auto

lemma set_case_simp_insert2 [simp] :
assumes x12_neq: "x1 \<noteq> x2"
shows "set_case (insert x1 (insert x2 xs))  c_empty c_sing c_else = c_else"
proof (cases "finite xs")
  case False thus ?thesis by (simp)
next
  case True note fin_xs = this

  have "card {x1,x2} \<le> card (insert x1 (insert x2 xs))"
    by (rule card_mono) (auto simp add: fin_xs)
  with x12_neq have "1 < card (insert x1 (insert x2 xs))" by simp
  thus ?thesis by auto
qed

lemma set_case_code [code] :
  "set_case (set []) c_empty c_sing c_else = c_empty"
  "set_case (set [x]) c_empty c_sing c_else = c_sing x"
  "set_case (set (x1 # x2 # xs)) c_empty c_sing c_else =
   (if (x1 = x2) then
     set_case (set (x2 # xs)) c_empty c_sing c_else
   else
     c_else)"
by auto

definition set_lfp:: "'a set \<Rightarrow> ('a set \<Rightarrow> 'a set) \<Rightarrow> 'a set" where
  "set_lfp s f = lfp (\<lambda>s'. f s' \<union> s)"

lemma set_lfp_tail_rec_def :
assumes mono_f: "mono f"
shows "set_lfp s f = (if (f s) \<subseteq> s then s else (set_lfp (s \<union> f s) f))" (is "?ls = ?rs")
proof (cases "f s \<subseteq> s")
  case True note fs_sub_s = this

  from fs_sub_s have "\<Inter>{u. f u \<union> s \<subseteq> u} = s" by auto
  hence "?ls = s" unfolding set_lfp_def lfp_def .
  with fs_sub_s show "?ls = ?rs" by simp
next
  case False note not_fs_sub_s = this

  from mono_f have mono_f': "mono (\<lambda>s'. f s' \<union> s)"
    unfolding mono_def by auto

  have "\<Inter>{u. f u \<union> s \<subseteq> u} = \<Inter>{u. f u \<union> (s \<union> f s) \<subseteq> u}" (is "\<Inter>?S1 = \<Inter>?S2")
  proof
    have "?S2 \<subseteq> ?S1" by auto
    thus "\<Inter>?S1 \<subseteq> \<Inter>?S2" by (rule Inf_superset_mono)
  next
    { fix e
      assume "e \<in> \<Inter>?S2"
      hence S2_prop: "\<And>s'. f s' \<subseteq> s' \<Longrightarrow> s \<subseteq> s' \<Longrightarrow> f s \<subseteq> s' \<Longrightarrow> e \<in> s'" by simp

      { fix s'
        assume "f s' \<subseteq> s'" "s \<subseteq> s'"

        from mono_f \<open>s \<subseteq> s'\<close>
        have "f s \<subseteq> f s'" unfolding mono_def by simp
        with \<open>f s' \<subseteq> s'\<close> have "f s \<subseteq> s'" by simp
        with \<open>f s' \<subseteq> s'\<close> \<open>s \<subseteq> s'\<close> S2_prop
        have "e \<in> s'" by simp
      }
      hence "e \<in> \<Inter>?S1" by simp
    }
    thus "\<Inter>?S2 \<subseteq> \<Inter>?S1" by auto
  qed
  hence "?ls = (set_lfp (s \<union> f s) f)"
     unfolding set_lfp_def lfp_def .
  with not_fs_sub_s show "?ls = ?rs" by simp
qed

lemma set_lfp_simps [simp] :
"mono f \<Longrightarrow> f s \<subseteq> s \<Longrightarrow> set_lfp s f = s"
"mono f \<Longrightarrow> \<not>(f s \<subseteq> s) \<Longrightarrow> set_lfp s f = (set_lfp (s \<union> f s) f)"
by (metis set_lfp_tail_rec_def)+


fun insert_in_list_at_arbitrary_pos where
   "insert_in_list_at_arbitrary_pos x [] = {[x]}"
 | "insert_in_list_at_arbitrary_pos x (y # ys) =
    insert (x # y # ys) ((\<lambda>l. y # l) ` (insert_in_list_at_arbitrary_pos x ys))"

lemma insert_in_list_at_arbitrary_pos_thm :
  "xl \<in> insert_in_list_at_arbitrary_pos x l \<longleftrightarrow>
   (\<exists>l1 l2. l = l1 @ l2 \<and> xl = l1 @ [x] @ l2)"
proof (induct l arbitrary: xl)
  case Nil thus ?case by simp
next
  case (Cons y l xyl)
  note ind_hyp = this

  show ?case
  proof (rule iffI)
    assume xyl_in: "xyl \<in> insert_in_list_at_arbitrary_pos x (y # l)"
    show "\<exists>l1 l2. y # l = l1 @ l2 \<and> xyl = l1 @ [x] @ l2"
    proof (cases "xyl = x # y # l")
      case True
      hence "y # l = [] @ (y # l) \<and> xyl = [] @ [x] @ (y # l)" by simp
      thus ?thesis by blast
    next
      case False
      with xyl_in have "xyl \<in> (#) y ` insert_in_list_at_arbitrary_pos x l" by simp
      with ind_hyp obtain l1 l2 where "l = l1 @ l2 \<and> xyl = y # l1 @ x # l2"
         by (auto simp add: image_def Bex_def)
      hence "y # l = (y # l1) @ l2 \<and> xyl = (y # l1) @ [x] @ l2" by simp
      thus ?thesis by blast
    qed
  next
    assume "\<exists>l1 l2. y # l = l1 @ l2 \<and> xyl = l1 @ [x] @ l2"
    then obtain l1 l2 where yl_eq: "y # l = l1 @ l2" and xyl_eq: "xyl = l1 @ [x] @ l2" by blast
    show "xyl \<in> insert_in_list_at_arbitrary_pos x (y # l)"
    proof (cases l1)
      case Nil
      with yl_eq xyl_eq
      have "xyl = x # y # l" by simp
      thus ?thesis by simp
    next
      case (Cons y' l1')
      with yl_eq have l1_eq: "l1 = y # l1'" and l_eq: "l = l1' @ l2" by simp_all

      have "\<exists>l1'' l2''. l = l1'' @ l2'' \<and> l1' @ [x] @ l2 = l1'' @ [x] @ l2''"
        apply (rule_tac exI[where x = l1'])
        apply (rule_tac exI [where x = l2])
        apply (simp add: l_eq)
      done
      hence "(l1' @ [x] @ l2) \<in> insert_in_list_at_arbitrary_pos x l"
        unfolding ind_hyp by blast
      hence "\<exists>l'. l' \<in> insert_in_list_at_arbitrary_pos x l \<and> l1 @ x # l2 = y # l'"
        by (rule_tac exI [where x = "l1' @ [x] @ l2"]) (simp add: l1_eq)
      thus ?thesis
        by (simp add: image_def Bex_def xyl_eq)
    qed
  qed
qed

definition list_of_set_set :: "'a set \<Rightarrow> ('a list) set" where
"list_of_set_set s = { l . (set l = s) \<and> distinct l }"

lemma list_of_set_set_empty [simp]:
  "list_of_set_set {} = {[]}"
unfolding list_of_set_set_def by auto

lemma list_of_set_set_insert [simp] :
  "list_of_set_set (insert x s) =
     \<Union> ((insert_in_list_at_arbitrary_pos x) ` (list_of_set_set (s - {x})))"
   (is "?lhs = ?rhs")
proof (intro set_eqI)
  fix l

  have "(set l = insert x s \<and> distinct l) \<longleftrightarrow> (\<exists>l1 l2. set (l1 @ l2) = s - {x} \<and> distinct (l1 @ l2) \<and> l = l1 @ x # l2)"
  proof (intro iffI)
    assume "set l = insert x s \<and> distinct l"
    hence set_l_eq: "set l = insert x s" and "distinct l" by simp_all

    from \<open>set l = insert x s\<close>
    have "x \<in> set l" by simp
    then obtain l1 l2 where l_eq: "l = l1 @ x # l2"
      unfolding in_set_conv_decomp by blast

    from \<open>distinct l\<close>  l_eq
    have "distinct (l1 @ l2)" and x_nin: "x \<notin> set (l1 @ l2)"
      by auto

    from x_nin set_l_eq[unfolded l_eq]
    have set_l12_eq: "set (l1 @ l2) = s - {x}"
      by auto

    from \<open>distinct (l1 @ l2)\<close> l_eq set_l12_eq
    show "\<exists>l1 l2. set (l1 @ l2) = s - {x} \<and> distinct (l1 @ l2) \<and> l = l1 @ x # l2"
      by blast
  next
    assume "\<exists>l1 l2. set (l1 @ l2) = s - {x} \<and> distinct (l1 @ l2) \<and> l = l1 @ x # l2"
    then obtain l1 l2 where "set (l1 @ l2) = s - {x}"  "distinct (l1 @ l2)" "l = l1 @ x # l2"
      by blast
    thus "set l = insert x s \<and> distinct l"
       by auto
  qed

  thus "l \<in> list_of_set_set (insert x s) \<longleftrightarrow> l \<in> (\<Union> ((insert_in_list_at_arbitrary_pos x) ` (list_of_set_set (s - {x}))))"
     unfolding list_of_set_set_def
     by (simp add: insert_in_list_at_arbitrary_pos_thm ex_simps[symmetric] del: ex_simps)
qed

lemma list_of_set_set_code [code]:
  "list_of_set_set (set []) = {[]}"
  "list_of_set_set (set (x # xs)) =
     \<Union> ((insert_in_list_at_arbitrary_pos x) ` (list_of_set_set ((set xs) - {x})))"
by simp_all

lemma list_of_set_set_is_empty :
  "list_of_set_set s = {} \<longleftrightarrow> \<not> (finite s)"
proof -
  have "finite s \<longleftrightarrow> (\<exists>l. set l = s \<and> distinct l)"
  proof (rule iffI)
    assume "\<exists>l. set l = s \<and> distinct l" then
    obtain l where "s = set l" by blast
    thus "finite s" by simp
  next
    assume "finite s"
    thus "\<exists>l. set l = s \<and> distinct l"
    proof (induct s)
      case empty
      show ?case by auto
    next
      case (insert e s)
      note e_nin_s = insert(2)
      from insert(3) obtain l where set_l: "set l = s" and dist_l: "distinct l" by blast

      from set_l have set_el: "set (e # l) = insert e s" by auto
      from dist_l set_l e_nin_s have dist_el: "distinct (e # l)" by simp

      from set_el dist_el show ?case by blast
    qed
  qed
  thus ?thesis
    unfolding list_of_set_set_def by simp
qed

definition list_of_set :: "'a set \<Rightarrow> 'a list" where
   "list_of_set s = set_choose (list_of_set_set s)"

lemma list_of_set [simp] :
  assumes fin_s: "finite s"
  shows "set (list_of_set s) = s"
        "distinct (list_of_set s)"
proof -
  from fin_s list_of_set_set_is_empty[of s]
  have "\<not> (list_of_set_set s = {})" by simp
  hence "list_of_set s \<in> list_of_set_set s"
    unfolding list_of_set_def
    by (rule set_choose_thm)
  thus "set (list_of_set s) = s"
       "distinct (list_of_set s)" unfolding list_of_set_set_def
  by simp_all
qed

lemma list_of_set_in:
  "finite s \<Longrightarrow> list_of_set s \<in> list_of_set_set s"
unfolding list_of_set_def
by (metis list_of_set_set_is_empty set_choose_thm)

definition ordered_list_of_set where
  "ordered_list_of_set cmp s = set_choose (sort_by cmp ` list_of_set_set s)"

subsection \<open>sum\<close>

find_consts "'a list => ('a list * _)"

fun sum_partition :: "('a + 'b) list \<Rightarrow> 'a list * 'b list"  where
  "sum_partition [] = ([], [])"
| "sum_partition ((Inl l) # lrs) =
     (let (ll, rl) = sum_partition lrs in
     (l # ll, rl))"
| "sum_partition ((Inr r) # lrs) =
     (let (ll, rl) = sum_partition lrs in
     (ll, r # rl))"

lemma sum_partition_length :
  "List.length lrs = List.length (fst (sum_partition lrs)) + List.length (snd (sum_partition lrs))"
proof (induct lrs)
  case Nil thus ?case by simp
next
  case (Cons lr lrs) thus ?case
    by (cases lr) (auto split: prod.split)
qed

subsection \<open>sorting\<close>

subsection \<open>Strings\<close>

declare String.literal.explode_inverse [simp]

subsection \<open>num to string conversions\<close>

definition nat_list_to_string :: "nat list \<Rightarrow> string" where
  "nat_list_to_string nl = map char_of nl"

definition is_digit where
  "is_digit (n::nat) = (n < 10)"

lemma is_digit_simps[simp] :
  "n < 10 \<Longrightarrow> is_digit n"
  "\<not>(n < 10) \<Longrightarrow> \<not>(is_digit n)"
unfolding is_digit_def by simp_all

lemma is_digit_expand :
  "is_digit n \<longleftrightarrow>
     (n = 0) \<or> (n = 1) \<or> (n = 2) \<or> (n = 3) \<or>  (n = 4) \<or>
     (n = 5) \<or> (n = 6) \<or> (n = 7) \<or> (n = 8) \<or>  (n = 9)"
unfolding is_digit_def by auto

lemmas is_digitE = is_digit_expand[THEN iffD1,elim_format]
lemmas is_digitI = is_digit_expand[THEN iffD2,rule_format]

definition is_digit_char where
  "is_digit_char c \<longleftrightarrow>
     (c = CHR ''0'') \<or> (c = CHR ''5'') \<or>
     (c = CHR ''1'') \<or> (c = CHR ''6'') \<or>
     (c = CHR ''2'') \<or> (c = CHR ''7'') \<or>
     (c = CHR ''3'') \<or> (c = CHR ''8'') \<or>
     (c = CHR ''4'') \<or> (c = CHR ''9'')"

lemma is_digit_char_simps[simp] :
  "is_digit_char (CHR ''0'')"
  "is_digit_char (CHR ''1'')"
  "is_digit_char (CHR ''2'')"
  "is_digit_char (CHR ''3'')"
  "is_digit_char (CHR ''4'')"
  "is_digit_char (CHR ''5'')"
  "is_digit_char (CHR ''6'')"
  "is_digit_char (CHR ''7'')"
  "is_digit_char (CHR ''8'')"
  "is_digit_char (CHR ''9'')"
unfolding is_digit_char_def by simp_all

lemmas is_digit_charE = is_digit_char_def[THEN iffD1,elim_format]
lemmas is_digit_charI = is_digit_char_def[THEN iffD2,rule_format]

definition digit_to_char :: "nat \<Rightarrow> char" where
  "digit_to_char n = (
     if n = 0 then CHR ''0''
     else if n = 1 then CHR ''1''
     else if n = 2 then CHR ''2''
     else if n = 3 then CHR ''3''
     else if n = 4 then CHR ''4''
     else if n = 5 then CHR ''5''
     else if n = 6 then CHR ''6''
     else if n = 7 then CHR ''7''
     else if n = 8 then CHR ''8''
     else if n = 9 then CHR ''9''
     else CHR ''X'')"

lemma digit_to_char_simps [simp]:
  "digit_to_char 0 = CHR ''0''"
  "digit_to_char (Suc 0) = CHR ''1''"
  "digit_to_char 2 = CHR ''2''"
  "digit_to_char 3 = CHR ''3''"
  "digit_to_char 4 = CHR ''4''"
  "digit_to_char 5 = CHR ''5''"
  "digit_to_char 6 = CHR ''6''"
  "digit_to_char 7 = CHR ''7''"
  "digit_to_char 8 = CHR ''8''"
  "digit_to_char 9 = CHR ''9''"
  "n > 9 \<Longrightarrow> digit_to_char n = CHR ''X''"
unfolding digit_to_char_def
by simp_all

definition char_to_digit :: "char \<Rightarrow> nat" where
  "char_to_digit c = (
     if c = CHR ''0'' then 0
     else if c = CHR ''1'' then 1
     else if c = CHR ''2'' then 2
     else if c = CHR ''3'' then 3
     else if c = CHR ''4'' then 4
     else if c = CHR ''5'' then 5
     else if c = CHR ''6'' then 6
     else if c = CHR ''7'' then 7
     else if c = CHR ''8'' then 8
     else if c = CHR ''9'' then 9
     else 10)"

lemma char_to_digit_simps [simp]:
  "char_to_digit (CHR ''0'') = 0"
  "char_to_digit (CHR ''1'') = 1"
  "char_to_digit (CHR ''2'') = 2"
  "char_to_digit (CHR ''3'') = 3"
  "char_to_digit (CHR ''4'') = 4"
  "char_to_digit (CHR ''5'') = 5"
  "char_to_digit (CHR ''6'') = 6"
  "char_to_digit (CHR ''7'') = 7"
  "char_to_digit (CHR ''8'') = 8"
  "char_to_digit (CHR ''9'') = 9"
unfolding char_to_digit_def by simp_all


lemma diget_to_char_inv[simp]:
assumes is_digit: "is_digit n"
shows "char_to_digit (digit_to_char n) = n"
using is_digit unfolding is_digit_expand by auto

lemma char_to_diget_inv[simp]:
assumes is_digit: "is_digit_char c"
shows "digit_to_char (char_to_digit c) = c"
using is_digit
unfolding char_to_digit_def is_digit_char_def
by auto

lemma char_to_digit_div_mod [simp]:
assumes is_digit: "is_digit_char c"
shows "char_to_digit c < 10"
using is_digit
unfolding char_to_digit_def is_digit_char_def
by auto


lemma is_digit_char_intro[simp]:
  "is_digit (char_to_digit c) = is_digit_char c"
unfolding char_to_digit_def is_digit_char_def is_digit_expand
by auto

lemma is_digit_intro[simp]:
  "is_digit_char (digit_to_char n) = is_digit n"
unfolding digit_to_char_def is_digit_char_def is_digit_expand
by auto

lemma digit_to_char_11:
"digit_to_char n1 = digit_to_char n2 \<Longrightarrow>
 (is_digit n1 = is_digit n2) \<and> (is_digit n1 \<longrightarrow> (n1 = n2))"
by (metis diget_to_char_inv is_digit_intro)

lemma char_to_digit_11:
"char_to_digit c1 = char_to_digit c2 \<Longrightarrow>
 (is_digit_char c1 = is_digit_char c2) \<and> (is_digit_char c1 \<longrightarrow> (c1 = c2))"
by (metis char_to_diget_inv is_digit_char_intro)

function nat_to_string :: "nat \<Rightarrow> string" where
  "nat_to_string n =
     (if (is_digit n) then [digit_to_char n] else
      nat_to_string (n div 10) @ [digit_to_char (n mod 10)])"
by auto
termination
  by (relation "measure id") (auto simp add: is_digit_def)

definition int_to_string :: "int \<Rightarrow> string" where
  "int_to_string i \<equiv>
     if i < 0 then
       ''-'' @ nat_to_string (nat (abs i))
     else
       nat_to_string (nat i)"

lemma nat_to_string_simps[simp]:
   "is_digit n \<Longrightarrow> nat_to_string n = [digit_to_char n]"
  "\<not>(is_digit n) \<Longrightarrow> nat_to_string n = nat_to_string (n div 10) @ [digit_to_char (n mod 10)]"
by simp_all
declare nat_to_string.simps[simp del]

lemma nat_to_string_neq_nil[simp]:
  "nat_to_string n \<noteq> []"
  by (cases "is_digit n") simp_all

lemmas nat_to_string_neq_nil2[simp] = nat_to_string_neq_nil[symmetric]

lemma nat_to_string_char_to_digit [simp]:
  "is_digit_char c \<Longrightarrow> nat_to_string (char_to_digit c) = [c]"
by auto

lemma nat_to_string_11[simp] :
  "(nat_to_string n1 = nat_to_string n2) \<longleftrightarrow> n1 = n2"
proof (rule iffI)
  assume "n1 = n2"
  thus "nat_to_string n1 = nat_to_string n2" by simp
next
  assume "nat_to_string n1 = nat_to_string n2"
  thus "n1 = n2"
  proof (induct n2 arbitrary: n1 rule: less_induct)
    case (less n2')
    note ind_hyp = this(1)
    note n2s_eq = less(2)

    have is_dig_eq: "is_digit n2' = is_digit n1" using n2s_eq
      apply (cases "is_digit n2'")
      apply (case_tac [!] "is_digit n1")
      apply (simp_all)
    done

    show ?case
    proof (cases "is_digit n2'")
      case True with n2s_eq is_dig_eq show ?thesis by simp (metis digit_to_char_11)
    next
      case False
      with is_dig_eq have not_digs : "\<not> (is_digit n1)"  "\<not> (is_digit n2')" by simp_all

      from not_digs(2) have "n2' div 10 < n2'" unfolding is_digit_def by auto
      note ind_hyp' = ind_hyp [OF this, of "n1 div 10"]

      from not_digs n2s_eq ind_hyp' digit_to_char_11[of "n1 mod 10" "n2' mod 10"]
      have "(n1 mod 10) = (n2' mod 10)" "n1 div 10 = n2' div 10" by simp_all
      thus "n1 = n2'" by (metis div_mult_mod_eq)
    qed
  qed
qed

definition "is_nat_string s \<equiv> (\<forall>c\<in>set s. is_digit_char c)"
definition "is_strong_nat_string s \<equiv> is_nat_string s \<and> (s \<noteq> []) \<and> (hd s = CHR ''0'' \<longrightarrow> length s = 1)"

lemma is_nat_string_simps[simp]:
  "is_nat_string []"
  "is_nat_string (c # s) \<longleftrightarrow> is_digit_char c \<and> is_nat_string s"
unfolding is_nat_string_def by simp_all

lemma is_strong_nat_string_simps[simp]:
  "\<not>(is_strong_nat_string [])"
  "is_strong_nat_string (c # s) \<longleftrightarrow> is_digit_char c \<and> is_nat_string s \<and>
                                    (c = CHR ''0'' \<longrightarrow> s = [])"
unfolding is_strong_nat_string_def by simp_all

fun string_to_nat_aux :: "nat \<Rightarrow> string \<Rightarrow> nat" where
   "string_to_nat_aux n [] = n"
 | "string_to_nat_aux n (d#ds) =
    string_to_nat_aux (n*10 + char_to_digit d) ds"

definition string_to_nat :: "string \<Rightarrow> nat option" where
   "string_to_nat s \<equiv>
    (if is_nat_string s then Some (string_to_nat_aux 0 s) else None)"

definition string_to_nat' :: "string \<Rightarrow> nat" where
  "string_to_nat' s \<equiv> the (string_to_nat s)"

lemma string_to_nat_aux_inv :
assumes "is_nat_string s"
assumes "n > 0 \<or> is_strong_nat_string s"
shows "nat_to_string (string_to_nat_aux n s) =
(if n = 0 then '''' else nat_to_string n) @ s"
using assms
proof (induct s arbitrary: n)
  case Nil
  thus ?case
    by (simp add: is_strong_nat_string_def)
next
  case (Cons c s n)
  from Cons(2) have "is_digit_char c" "is_nat_string s" by simp_all
  note cs_ok = Cons(3)
  let ?m = "n*10 + char_to_digit c"
  note ind_hyp = Cons(1)[OF \<open>is_nat_string s\<close>, of ?m]

  from \<open>is_digit_char c\<close> have m_div: "?m div 10 = n" and
                              m_mod: "?m mod 10 = char_to_digit c"
    unfolding is_digit_char_def
    by auto

  show ?case
  proof (cases "?m = 0")
    case True
    with \<open>is_digit_char c\<close>
    have "n = 0" "c = CHR ''0''" unfolding is_digit_char_def by auto
    moreover with cs_ok have "s = []" by simp
    ultimately show ?thesis by simp
  next
    case False note m_neq_0 = this
    with ind_hyp have ind_hyp':
      "nat_to_string (string_to_nat_aux ?m s) = (nat_to_string ?m) @ s" by auto

    hence "nat_to_string (string_to_nat_aux n (c # s)) = (nat_to_string ?m) @ s"
      by simp

    with \<open>is_digit_char c\<close> m_div show ?thesis by simp
  qed
qed

lemma string_to_nat_inv :
assumes strong_nat_s: "is_strong_nat_string s"
assumes s2n_s: "string_to_nat s = Some n"
shows "nat_to_string n = s"
proof -
  from strong_nat_s have nat_s: "is_nat_string s" unfolding is_strong_nat_string_def by simp
  with s2n_s have n_eq: "n = string_to_nat_aux 0 s" unfolding string_to_nat_def by simp

  from string_to_nat_aux_inv[of s 0, folded n_eq] nat_s strong_nat_s
  show ?thesis by simp
qed

lemma nat_to_string_induct [case_names "digit" "non_digit"]:
assumes digit: "\<And>d. is_digit d \<Longrightarrow> P d"
assumes not_digit: "\<And>n. \<not>(is_digit n) \<Longrightarrow> P (n div 10) \<Longrightarrow> P (n mod 10) \<Longrightarrow> P n"
shows "P n"
proof (induct n rule: less_induct)
  case (less n)
  note ind_hyp = this

  show ?case
  proof (cases "is_digit n")
    case True with digit show ?thesis by simp
  next
    case False note not_dig = this
    hence "n div 10 < n" "n mod 10 < n" unfolding is_digit_def by auto
    with not_dig ind_hyp not_digit show ?thesis by simp
  qed
qed

lemma nat_to_string___is_nat_string [simp]:
  "is_nat_string (nat_to_string n)"
unfolding is_nat_string_def
proof (induct n rule: nat_to_string_induct)
  case (digit d)
  thus ?case by simp
next
  case (non_digit n)
  thus ?case by simp
qed

lemma nat_to_string___eq_0 [simp]:
  "(nat_to_string n = (CHR ''0'')#s) \<longleftrightarrow> (n = 0 \<and> s = [])"
unfolding is_nat_string_def
proof (induct n arbitrary: s rule: nat_to_string_induct)
  case (digit d) thus ?case unfolding is_digit_expand by auto
next
  case (non_digit n)

  obtain c s' where ns_eq: "nat_to_string (n div 10) = c # s'"
     by (cases "nat_to_string (n div 10)") auto

  from non_digit(1) have "n div 10 \<noteq> 0" unfolding is_digit_def by auto
  with non_digit(2) ns_eq have c_neq: "c \<noteq> CHR ''0''" by auto

  from \<open>\<not> (is_digit n)\<close> c_neq ns_eq
  show ?case by auto
qed

lemma nat_to_string___is_strong_nat_string:
  "is_strong_nat_string (nat_to_string n)"
proof (cases "is_digit n")
  case True thus ?thesis by simp
next
  case False note not_digit = this

  obtain c s' where ns_eq: "nat_to_string n = c # s'"
     by (cases "nat_to_string n") auto

  from not_digit have "0 < n" unfolding is_digit_def by simp
  with ns_eq have c_neq: "c \<noteq> CHR ''0''" by auto
  hence "hd (nat_to_string n) \<noteq> CHR ''0''" unfolding ns_eq by simp

  thus ?thesis unfolding is_strong_nat_string_def
    by simp
qed

lemma nat_to_string_inv :
  "string_to_nat (nat_to_string n) = Some n"
by (metis nat_to_string_11
          nat_to_string___is_nat_string
          nat_to_string___is_strong_nat_string
          string_to_nat_def
          string_to_nat_inv)

definition The_opt where
  "The_opt p = (if (\<exists>!x. p x) then Some (The p) else None)"

lemma The_opt_eq_some [simp] :
"((The_opt p) = (Some x)) \<longleftrightarrow> ((p x) \<and> ((\<forall> y.  p y \<longrightarrow> (x = y))))"
    (is "?lhs = ?rhs")
proof (cases "\<exists>!x. p x")
  case True
  note exists_unique = this
  then obtain x where p_x: "p x" by auto

  from the1_equality[of p x] exists_unique p_x
  have the_opt_eq: "The_opt p = Some x"
    unfolding The_opt_def by simp

  from exists_unique the_opt_eq p_x show ?thesis
    by auto
next
  case False
  note not_unique = this

  hence "The_opt p = None"
    unfolding The_opt_def by simp
  with not_unique show ?thesis by auto
qed

lemma The_opt_eq_none [simp] :
"((The_opt p) = None) \<longleftrightarrow> \<not>(\<exists>!x. p x)"
unfolding The_opt_def by auto


end