1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
////////////////////////////////////////////////////////////////
// ELF Loader
////////////////////////////////////////////////////////////////
// Header files for simulator
#include "elf.h"
#include "rts.h"
#include "sail.h"
// Use the zlib library to uncompress ELF.gz files
#include <zlib.h>
// Define ELF constants/types. These come from the
// Tool Interface Standard Executable and Linking Format Specification 1.2
typedef uint32_t Elf32_Addr;
typedef uint16_t Elf32_Half;
typedef uint32_t Elf32_Off;
typedef uint32_t Elf32_Word;
typedef uint64_t Elf64_Addr;
typedef uint16_t Elf64_Half;
typedef uint64_t Elf64_Off;
typedef uint32_t Elf64_Word;
typedef uint64_t Elf64_Xword;
/* Type for section indices, which are 16-bit quantities. */
typedef uint16_t Elf32_Section;
typedef uint16_t Elf64_Section;
/* Type for version symbol information. */
typedef Elf32_Half Elf32_Versym;
typedef Elf64_Half Elf64_Versym;
// Big-Endian support functions which reverse values
uint16_t rev16(uint16_t x) {
uint16_t a = (x >> 0) & 0xff;
uint16_t b = (x >> 8) & 0xff;
return (a << 8) | (b << 0);
}
uint32_t rev32(uint32_t x) {
uint32_t a = (x >> 0) & 0xff;
uint32_t b = (x >> 8) & 0xff;
uint32_t c = (x >> 16) & 0xff;
uint32_t d = (x >> 24) & 0xff;
return (a << 24) | (b << 16) | (c << 8) | (d << 0);
}
uint64_t rev64(uint64_t x) {
uint64_t a = (x >> 0) & 0xff;
uint64_t b = (x >> 8) & 0xff;
uint64_t c = (x >> 16) & 0xff;
uint64_t d = (x >> 24) & 0xff;
uint64_t e = (x >> 32) & 0xff;
uint64_t f = (x >> 40) & 0xff;
uint64_t g = (x >> 48) & 0xff;
uint64_t h = (x >> 56) & 0xff;
return (a << 56) | (b << 48) | (c << 40) | (d << 32) | (e << 24) | (f << 16) | (g << 8) | (h << 0);
}
// Endian support macros which reverse values on big-endian machines
// (We assume that the host machine is little-endian)
#define rdAddr32(le, x) ((le) ? (x) : rev32(x))
#define rdHalf32(le, x) ((le) ? (x) : rev16(x))
#define rdOff32(le, x) ((le) ? (x) : rev32(x))
#define rdWord32(le, x) ((le) ? (x) : rev32(x))
#define rdAddr64(le, x) ((le) ? (x) : rev64(x))
#define rdHalf64(le, x) ((le) ? (x) : rev16(x))
#define rdOff64(le, x) ((le) ? (x) : rev64(x))
#define rdWord64(le, x) ((le) ? (x) : rev32(x))
#define rdXword64(le, x) ((le) ? (x) : rev64(x))
#define EI_NIDENT 16 /* Size of e_ident */
#define EI_MAG0 0 /* Offsets in e_ident */
#define EI_MAG1 1
#define EI_MAG2 2
#define EI_MAG3 3
#define EI_CLASS 4
#define EI_DATA 5
#define ELFMAG0 0x7f /* Magic string */
#define ELFMAG1 'E'
#define ELFMAG2 'L'
#define ELFMAG3 'F'
#define ELFCLASS32 1 /* 32-bit ELF */
#define ELFCLASS64 2 /* 64-bit ELF */
#define ELFDATA2LSB 1 /* Little-endian ELF */
#define ET_EXEC 2 /* Executable file */
#define EM_ARM 0x0028 /* 32-bit ARM */
#define EM_AARCH64 0x00B7 /* 64-bit ARM */
#define EM_RISCV 0x00F3 /* RISC-V */
#define PT_LOAD 1 /* Loadable segment */
#define SHT_SYMTAB 2 /* Symbol table type */
#define SHT_STRTAB 3 /* String table type */
/* How to extract and insert information held in the st_info field. */
#define ELF32_ST_BIND(val) (((unsigned char) (val)) >> 4)
#define ELF32_ST_TYPE(val) ((val) & 0xf)
#define ELF32_ST_INFO(bind, type) (((bind) << 4) + ((type) & 0xf))
/* Both Elf32_Sym and Elf64_Sym use the same one-byte st_info field. */
#define ELF64_ST_BIND(val) ELF32_ST_BIND (val)
#define ELF64_ST_TYPE(val) ELF32_ST_TYPE (val)
#define ELF64_ST_INFO(bind, type) ELF32_ST_INFO ((bind), (type))
/* Legal values for ST_TYPE subfield of st_info (symbol type). */
#define STT_NOTYPE 0 /* Symbol type is unspecified */
#define STT_OBJECT 1 /* Symbol is a data object */
#define STT_FUNC 2 /* Symbol is a code object */
#define STT_SECTION 3 /* Symbol associated with a section */
#define STT_FILE 4 /* Symbol's name is file name */
#define STT_COMMON 5 /* Symbol is a common data object */
#define STT_TLS 6 /* Symbol is thread-local data object*/
#define STT_NUM 7 /* Number of defined types. */
#define STT_LOOS 10 /* Start of OS-specific */
#define STT_GNU_IFUNC 10 /* Symbol is indirect code object */
#define STT_HIOS 12 /* End of OS-specific */
#define STT_LOPROC 13 /* Start of processor-specific */
#define STT_HIPROC 15 /* End of processor-specific */
typedef struct
{
uint8_t e_ident[EI_NIDENT]; /* ELF file identifier */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Processor architecture */
Elf32_Word e_version; /* Object file version */
Elf32_Addr e_entry; /* Entry point (loader jumps to this virtual address if != 0) */
Elf32_Off e_phoff; /* Program header table offset */
Elf32_Off e_shoff; /* Section header table offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size */
Elf32_Half e_phentsize; /* Size of a single program header */
Elf32_Half e_phnum; /* Number of program headers in table */
Elf32_Half e_shensize; /* Size of a single section header */
Elf32_Half e_shnum; /* Number of section headers in table */
Elf32_Half e_shtrndx; /* Index of string table in section header table */
} Elf32_Ehdr;
typedef struct
{
Elf32_Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment offset in file */
Elf32_Addr p_vaddr; /* Segment load virtual address */
Elf32_Addr p_paddr; /* Segment load physical address */
Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz; /* Segment size in memory. Must be >= p_filesz. If > p_filesz, zero pad */
Elf32_Word p_flags; /* Segment flags */
Elf32_Word p_align; /* Segment alignment */
} Elf32_Phdr;
typedef struct
{
uint8_t e_ident[EI_NIDENT]; /* ELF file identifier */
Elf64_Half e_type; /* Object file type */
Elf64_Half e_machine; /* Processor architecture */
Elf64_Word e_version; /* Object file version */
Elf64_Addr e_entry; /* Entry point (loader jumps to this virtual address if != 0) */
Elf64_Off e_phoff; /* Program header table offset */
Elf64_Off e_shoff; /* Section header table offset */
Elf64_Word e_flags; /* Processor-specific flags */
Elf64_Half e_ehsize; /* ELF header size */
Elf64_Half e_phentsize; /* Size of a single program header */
Elf64_Half e_phnum; /* Number of program headers in table */
Elf64_Half e_shensize; /* Size of a single section header */
Elf64_Half e_shnum; /* Number of section headers in table */
Elf64_Half e_shtrndx; /* Index of string table in section header table */
} Elf64_Ehdr;
typedef struct
{
Elf64_Word p_type; /* Segment type */
Elf64_Word p_flags; /* Segment flags */
Elf64_Off p_offset; /* Segment offset in file */
Elf64_Addr p_vaddr; /* Segment load virtual address */
Elf64_Addr p_paddr; /* Segment load physical address */
Elf64_Xword p_filesz; /* Segment size in file */
Elf64_Xword p_memsz; /* Segment size in memory. Must be >= p_filesz.
If > p_filesz, zero pad memory */
Elf64_Xword p_align; /* Segment alignment */
} Elf64_Phdr;
typedef struct
{
Elf32_Word sh_name; /* Section name (string tbl index) */
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr at execution */
Elf32_Off sh_offset; /* Section file offset */
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section information */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds table */
} Elf32_Shdr;
typedef struct
{
Elf64_Word sh_name; /* Section name (string tbl index) */
Elf64_Word sh_type; /* Section type */
Elf64_Xword sh_flags; /* Section flags */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Section size in bytes */
Elf64_Word sh_link; /* Link to another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */
} Elf64_Shdr;
/* Symbol table entry. */
typedef struct
{
Elf32_Word st_name; /* Symbol name (string tbl index) */
Elf32_Addr st_value; /* Symbol value */
Elf32_Word st_size; /* Symbol size */
uint8_t st_info; /* Symbol type and binding */
uint8_t st_other; /* Symbol visibility */
Elf32_Section st_shndx; /* Section index */
} Elf32_Sym;
typedef struct
{
Elf64_Word st_name; /* Symbol name (string tbl index) */
uint8_t st_info; /* Symbol type and binding */
uint8_t st_other; /* Symbol visibility */
Elf64_Section st_shndx; /* Section index */
Elf64_Addr st_value; /* Symbol value */
Elf64_Xword st_size; /* Symbol size */
} Elf64_Sym;
void loadBlock32(const char* buffer, Elf32_Off off, Elf32_Addr addr, Elf32_Word filesz, Elf32_Word memsz) {
//// std::cout << "Loading block from " << off << " to " << addr << "+:" << filesz << std::endl;
for(Elf32_Off i = 0; i < filesz; ++i) {
//// std::cout << "Writing " << (int)buffer[off+i] << " to " << addr+i << std::endl;
write_mem(addr+i, 0xff & buffer[off+i]);
}
// Zero fill if p_memsz > p_filesz
for(Elf32_Off i = filesz; i < memsz; ++i) {
write_mem(addr+i, 0);
}
}
void loadProgHdr32(bool le, const char* buffer, Elf32_Off off, const int total_file_size) {
//// std::cout << "Loading program header at " << off << std::endl;
if (off > total_file_size - sizeof(Elf32_Phdr)) {
fprintf(stderr, "Invalid ELF file, section header overruns end of file\n");
exit(EXIT_FAILURE);
}
Elf32_Phdr *phdr = (Elf32_Phdr*) &buffer[off];
// Only PT_LOAD segments should be loaded;
if (rdWord32(le, phdr->p_type) == PT_LOAD) {
Elf32_Off off = rdOff32(le, phdr->p_offset);
Elf32_Word filesz = rdWord32(le, phdr->p_filesz);
if (filesz > total_file_size - off) {
fprintf(stderr, "Invalid ELF file, section overruns end of file\n");
exit(EXIT_FAILURE);
}
loadBlock32(buffer, off, rdAddr32(le, phdr->p_paddr), filesz, rdWord32(le, phdr->p_memsz));
}
}
void loadBlock64(const char* buffer, Elf64_Off off, Elf64_Addr addr, Elf64_Word filesz, Elf64_Word memsz) {
//// std::cout << "Loading block from " << off << " to " << addr << "+:" << filesz << std::endl;
for(Elf64_Off i = 0; i < filesz; ++i) {
// fprintf(stderr, "Writing 0x%x to 0x%lx\n", (int)buffer[off+i], addr+i);
write_mem(addr+i, 0xff & buffer[off+i]);
}
// Zero fill if p_memsz > p_filesz
for(Elf64_Off i = filesz; i < memsz; ++i) {
write_mem(addr+i, 0);
}
}
void loadProgHdr64(bool le, const char* buffer, Elf64_Off off, const int total_file_size) {
//// std::cout << "Loading program header at " << off << std::endl;
if (off > total_file_size - sizeof(Elf64_Phdr)) {
fprintf(stderr, "Invalid ELF file, section header overruns end of file\n");
exit(EXIT_FAILURE);
}
Elf64_Phdr *phdr = (Elf64_Phdr*) &buffer[off];
// Only PT_LOAD segments should be loaded;
if (rdWord64(le, phdr->p_type) == PT_LOAD) {
Elf64_Off off = rdOff64(le, phdr->p_offset);
Elf64_Word filesz = rdXword64(le, phdr->p_filesz);
if (filesz > total_file_size - off) {
fprintf(stderr, "Invalid ELF file, section overruns end of file\n");
exit(EXIT_FAILURE);
}
loadBlock64(buffer, off, rdAddr64(le, phdr->p_paddr), filesz, rdXword64(le, phdr->p_memsz));
}
}
void checkELFHdr(const char* buffer, const int total_file_size) {
if (total_file_size < sizeof(Elf32_Ehdr)) {
fprintf(stderr, "File too small, not big enough even for 32-bit ELF header\n");
exit(EXIT_FAILURE);
}
Elf32_Ehdr *hdr = (Elf32_Ehdr*) &buffer[0]; // both Elf32 and Elf64 have same magic
if (hdr->e_ident[EI_MAG0] != ELFMAG0 ||
hdr->e_ident[EI_MAG1] != ELFMAG1 ||
hdr->e_ident[EI_MAG2] != ELFMAG2 ||
hdr->e_ident[EI_MAG3] != ELFMAG3) {
fprintf(stderr, "Invalid ELF magic bytes. Not an ELF file?\n");
exit(EXIT_FAILURE);
}
if (hdr->e_ident[EI_CLASS] == ELFCLASS32) {
bool le = hdr->e_ident[EI_DATA] == ELFDATA2LSB;
Elf32_Ehdr *ehdr = (Elf32_Ehdr*) &buffer[0];
if (rdHalf32(le, ehdr->e_type) != ET_EXEC ||
(rdHalf32(le, ehdr->e_machine) != EM_ARM &&
rdHalf64(le, ehdr->e_machine) != EM_RISCV)) {
fprintf(stderr, "Invalid ELF type or machine for class (32-bit)\n");
exit(EXIT_FAILURE);
}
} else if (hdr->e_ident[EI_CLASS] == ELFCLASS64) {
if (total_file_size < sizeof(Elf64_Ehdr)) {
fprintf(stderr, "File too small, specifies 64-bit ELF but not big enough for 64-bit ELF header\n");
exit(EXIT_FAILURE);
}
bool le = hdr->e_ident[EI_DATA] == ELFDATA2LSB;
Elf64_Ehdr *ehdr = (Elf64_Ehdr*) &buffer[0];
if (rdHalf64(le, ehdr->e_type) != ET_EXEC ||
(rdHalf64(le, ehdr->e_machine) != EM_AARCH64 &&
rdHalf64(le, ehdr->e_machine) != EM_RISCV)) {
fprintf(stderr, "Invalid ELF type or machine for class (64-bit)\n");
exit(EXIT_FAILURE);
}
} else {
fprintf(stderr, "Unrecognized ELF file format\n");
exit(EXIT_FAILURE);
}
}
void loadELFHdr(const char* buffer, const int total_file_size, bool *is32bit_p, uint64_t *entry) {
checkELFHdr(buffer, total_file_size);
Elf32_Ehdr *hdr = (Elf32_Ehdr*) &buffer[0];
if (hdr->e_ident[EI_CLASS] == ELFCLASS32) {
bool le = hdr->e_ident[EI_DATA] == ELFDATA2LSB;
Elf32_Ehdr *ehdr = (Elf32_Ehdr*) &buffer[0];
for(int i = 0; i < rdHalf32(le, ehdr->e_phnum); ++i) {
loadProgHdr32(le, buffer, rdOff32(le, ehdr->e_phoff) + i * rdHalf32(le, ehdr->e_phentsize), total_file_size);
}
if (is32bit_p) *is32bit_p = true;
if (entry) *entry = (uint64_t) ehdr->e_entry;
} else if (hdr->e_ident[EI_CLASS] == ELFCLASS64) {
bool le = hdr->e_ident[EI_DATA] == ELFDATA2LSB;
Elf64_Ehdr *ehdr = (Elf64_Ehdr*) &buffer[0];
for(int i = 0; i < rdHalf64(le, ehdr->e_phnum); ++i) {
loadProgHdr64(le, buffer, rdOff64(le, ehdr->e_phoff) + i * rdHalf64(le, ehdr->e_phentsize), total_file_size);
}
if (is32bit_p) *is32bit_p = false;
if (entry) *entry = ehdr->e_entry;
} else {
fprintf(stderr, "Unrecognized ELF file format\n");
exit(EXIT_FAILURE);
}
}
void load_elf(char *filename, bool *is32bit_p, uint64_t *entry) {
// Read input file into memory
char* buffer = NULL;
int size = 0;
int chunk = (1<<24); // increments output buffer this much
int read = 0;
gzFile in = gzopen(filename, "rb");
if (in == NULL) { goto fail; }
while (!gzeof(in)) {
size = read + chunk;
buffer = (char*)realloc(buffer, size);
if (buffer == NULL) { goto fail; }
int s = gzread(in, buffer+read, size - read);
if (s < 0) { goto fail; }
read += s;
}
loadELFHdr(buffer, read, is32bit_p, entry);
free(buffer);
return;
fail:
fprintf(stderr, "Unable to read file %s\n", filename);
exit(EXIT_FAILURE);
}
// symbol lookup for very simple ELF files (single symtab, two strtabs): looks up a
// single symbol at a time, but avoids retaining memory.
int lookupSymbol(const char *buffer, const int total_file_size, const char *symname, uint64_t *value) {
checkELFHdr(buffer, total_file_size);
Elf32_Ehdr *hdr = (Elf32_Ehdr*) &buffer[0];
if (hdr->e_ident[EI_CLASS] == ELFCLASS32) {
bool le = hdr->e_ident[EI_DATA] == ELFDATA2LSB;
Elf32_Ehdr *ehdr = (Elf32_Ehdr*) &buffer[0];
if (total_file_size < rdOff32(le, ehdr->e_shoff)
+ rdHalf32(le, ehdr->e_shnum)*sizeof(Elf32_Shdr)) {
fprintf(stderr, "File too small for %d sections from offset %ud\n",
rdHalf32(le, ehdr->e_shnum), rdOff32(le, ehdr->e_shoff));
exit(EXIT_FAILURE);
}
if (rdHalf32(le, ehdr->e_shtrndx) >= rdHalf32(le, ehdr->e_shnum)) {
fprintf(stderr, "Invalid string section table index %d\n", hdr->e_shtrndx);
exit(EXIT_FAILURE);
}
Elf32_Shdr *shdr = (Elf32_Shdr *)&buffer[ehdr->e_shoff];
Elf32_Shdr *shstrtab = (Elf32_Shdr *)&shdr[rdHalf32(le, ehdr->e_shtrndx)];
if (total_file_size < rdOff32(le, shstrtab->sh_offset) + rdWord32(le, shstrtab->sh_size)) {
fprintf(stderr, "File too small for string section\n");
exit(EXIT_FAILURE);
}
const char *shstrbuf = buffer + rdOff32(le, shstrtab->sh_offset);
Elf32_Word strtabidx = 0, symtabidx = 0;
for (Elf32_Word i = 0; i < rdHalf32(le, ehdr->e_shnum); i++) {
if (rdWord32(le, shdr[i].sh_type) == SHT_SYMTAB) {
symtabidx = i;
}
if (rdWord32(le, shdr[i].sh_type) == SHT_STRTAB) {
// skip section name string table
if (i != rdHalf32(le, ehdr->e_shtrndx)) {
strtabidx = i;
}
}
}
if (!strtabidx || !symtabidx) {
fprintf(stderr, "ELF: unable to find string or symbol table\n");
return -1;
}
const char *strtab = buffer + rdOff32(le, shdr[strtabidx].sh_offset);
Elf32_Word strtab_size = rdWord32(le, shdr[strtabidx].sh_size);
Elf32_Sym *sym_ent = (Elf32_Sym *)(buffer + rdOff32(le, shdr[symtabidx].sh_offset));
for (Elf32_Word i = 0; i < rdWord32(le, shdr[symtabidx].sh_size)/sizeof(*sym_ent); i++) {
Elf32_Word sidx = rdWord32(le, sym_ent[i].st_name);
if (sidx >= strtab_size) {
fprintf(stderr, "Symbol name index out of bounds\n");
exit(EXIT_FAILURE);
}
Elf32_Word max_len = strtab_size - sidx;
const char *sname = strtab + sidx;
if (strnlen(sname, max_len) >= max_len) {
fprintf(stderr, "Unterminated symbol name\n");
exit(EXIT_FAILURE);
}
if (!strcmp(sname, symname)) {
if (value) *value = (uint64_t) rdAddr32(le, sym_ent[i].st_value);
return 0;
}
}
return -1;
} else if (hdr->e_ident[EI_CLASS] == ELFCLASS64) {
bool le = hdr->e_ident[EI_DATA] == ELFDATA2LSB;
Elf64_Ehdr *ehdr = (Elf64_Ehdr*) &buffer[0];
if (total_file_size < rdOff64(le, ehdr->e_shoff)
+ rdHalf64(le, ehdr->e_shnum)*sizeof(Elf64_Shdr)) {
fprintf(stderr, "File too small for %d sections from offset %" PRIu64 "\n",
rdHalf64(le, ehdr->e_shnum), rdOff64(le, ehdr->e_shoff));
exit(EXIT_FAILURE);
}
if (rdHalf64(le, ehdr->e_shtrndx) >= rdHalf64(le, ehdr->e_shnum)) {
fprintf(stderr, "Invalid string section table index %d\n", hdr->e_shtrndx);
exit(EXIT_FAILURE);
}
Elf64_Shdr *shdr = (Elf64_Shdr *)&buffer[ehdr->e_shoff];
Elf64_Shdr *shstrtab = (Elf64_Shdr *)&shdr[rdHalf64(le, ehdr->e_shtrndx)];
if (total_file_size < rdOff64(le, shstrtab->sh_offset) + rdWord64(le, shstrtab->sh_size)) {
fprintf(stderr, "File too small for string section\n");
exit(EXIT_FAILURE);
}
const char *shstrbuf = buffer + rdOff64(le, shstrtab->sh_offset);
Elf64_Word strtabidx = 0, symtabidx = 0;
for (Elf64_Word i = 0; i < rdHalf64(le, ehdr->e_shnum); i++) {
if (rdWord64(le, shdr[i].sh_type) == SHT_SYMTAB) {
symtabidx = i;
}
if (rdWord64(le, shdr[i].sh_type) == SHT_STRTAB) {
// skip section name string table
if (i != rdHalf64(le, ehdr->e_shtrndx)) {
strtabidx = i;
}
}
}
if (!strtabidx || !symtabidx) {
fprintf(stderr, "ELF: unable to find string or symbol table\n");
return -1;
}
const char *strtab = buffer + rdOff64(le, shdr[strtabidx].sh_offset);
Elf64_Xword strtab_size = rdXword64(le, shdr[strtabidx].sh_size);
Elf64_Sym *sym_ent = (Elf64_Sym *)(buffer + rdOff64(le, shdr[symtabidx].sh_offset));
for (Elf64_Xword i = 0; i < rdXword64(le, shdr[symtabidx].sh_size)/sizeof(*sym_ent); i++) {
Elf64_Word sidx = rdWord64(le, sym_ent[i].st_name);
if (sidx >= strtab_size) {
fprintf(stderr, "Symbol name index out of bounds\n");
exit(EXIT_FAILURE);
}
Elf64_Word max_len = strtab_size - sidx;
const char *sname = strtab + sidx;
if (strnlen(sname, max_len) >= max_len) {
fprintf(stderr, "Unterminated symbol name\n");
exit(EXIT_FAILURE);
}
if (!strcmp(sname, symname)) {
if (value) *value = (uint64_t) rdAddr64(le, sym_ent[i].st_value);
return 0;
}
}
return -1;
} else {
fprintf(stderr, "Unrecognized ELF file format\n");
exit(EXIT_FAILURE);
}
}
int lookup_sym(const char *filename, const char *symname, uint64_t *value) {
// Read input file into memory
char* buffer = NULL;
int size = 0;
int chunk = (1<<24); // increments output buffer this much
int read = 0;
int ret = 0;
gzFile in = gzopen(filename, "rb");
if (in == NULL) { goto fail; }
while (!gzeof(in)) {
size = read + chunk;
buffer = (char*)realloc(buffer, size);
if (buffer == NULL) { goto fail; }
int s = gzread(in, buffer+read, size - read);
if (s < 0) { goto fail; }
read += s;
}
ret = lookupSymbol(buffer, read, symname, value);
free(buffer);
return ret;
fail:
fprintf(stderr, "Unable to read file %s\n", filename);
exit(EXIT_FAILURE);
}
////////////////////////////////////////////////////////////////
// ELF Loader
////////////////////////////////////////////////////////////////
|