(**************************************************************************) (* Sail *) (* *) (* Copyright (c) 2013-2017 *) (* Kathyrn Gray *) (* Shaked Flur *) (* Stephen Kell *) (* Gabriel Kerneis *) (* Robert Norton-Wright *) (* Christopher Pulte *) (* Peter Sewell *) (* Alasdair Armstrong *) (* Brian Campbell *) (* Thomas Bauereiss *) (* Anthony Fox *) (* Jon French *) (* Dominic Mulligan *) (* Stephen Kell *) (* Mark Wassell *) (* *) (* All rights reserved. *) (* *) (* This software was developed by the University of Cambridge Computer *) (* Laboratory as part of the Rigorous Engineering of Mainstream Systems *) (* (REMS) project, funded by EPSRC grant EP/K008528/1. *) (* *) (* Redistribution and use in source and binary forms, with or without *) (* modification, are permitted provided that the following conditions *) (* are met: *) (* 1. Redistributions of source code must retain the above copyright *) (* notice, this list of conditions and the following disclaimer. *) (* 2. Redistributions in binary form must reproduce the above copyright *) (* notice, this list of conditions and the following disclaimer in *) (* the documentation and/or other materials provided with the *) (* distribution. *) (* *) (* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *) (* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *) (* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *) (* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *) (* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *) (* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *) (* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *) (* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *) (* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *) (* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *) (* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *) (* SUCH DAMAGE. *) (**************************************************************************) (* Could fix list: - Can probably trigger non-termination in the analysis or constant propagation with carefully constructed recursive (or mutually recursive) functions *) open Parse_ast open Ast open Ast_util module Big_int = Nat_big_num open Type_check let size_set_limit = 64 let optmap v f = match v with | None -> None | Some v -> Some (f v) let kbindings_from_list = List.fold_left (fun s (v,i) -> KBindings.add v i s) KBindings.empty let bindings_from_list = List.fold_left (fun s (v,i) -> Bindings.add v i s) Bindings.empty (* union was introduced in 4.03.0, a bit too recently *) let bindings_union s1 s2 = Bindings.merge (fun _ x y -> match x,y with | _, (Some x) -> Some x | (Some x), _ -> Some x | _, _ -> None) s1 s2 let kbindings_union s1 s2 = KBindings.merge (fun _ x y -> match x,y with | _, (Some x) -> Some x | (Some x), _ -> Some x | _, _ -> None) s1 s2 let subst_nexp substs nexp = let rec s_snexp substs (Nexp_aux (ne,l) as nexp) = let re ne = Nexp_aux (ne,l) in let s_snexp = s_snexp substs in match ne with | Nexp_var (Kid_aux (_,l) as kid) -> (try KBindings.find kid substs with Not_found -> nexp) | Nexp_id _ | Nexp_constant _ -> nexp | Nexp_times (n1,n2) -> re (Nexp_times (s_snexp n1, s_snexp n2)) | Nexp_sum (n1,n2) -> re (Nexp_sum (s_snexp n1, s_snexp n2)) | Nexp_minus (n1,n2) -> re (Nexp_minus (s_snexp n1, s_snexp n2)) | Nexp_exp ne -> re (Nexp_exp (s_snexp ne)) | Nexp_neg ne -> re (Nexp_neg (s_snexp ne)) | Nexp_app (id,args) -> re (Nexp_app (id,List.map s_snexp args)) in s_snexp substs nexp let subst_nc, subst_src_typ, subst_src_typ_arg = let rec subst_nc substs (NC_aux (nc,l) as n_constraint) = let snexp nexp = subst_nexp substs nexp in let snc nc = subst_nc substs nc in let re nc = NC_aux (nc,l) in match nc with | NC_equal (n1,n2) -> re (NC_equal (snexp n1, snexp n2)) | NC_bounded_ge (n1,n2) -> re (NC_bounded_ge (snexp n1, snexp n2)) | NC_bounded_le (n1,n2) -> re (NC_bounded_le (snexp n1, snexp n2)) | NC_not_equal (n1,n2) -> re (NC_not_equal (snexp n1, snexp n2)) | NC_set (kid,is) -> begin match KBindings.find kid substs with | Nexp_aux (Nexp_constant i,_) -> if List.exists (fun j -> Big_int.equal i j) is then re NC_true else re NC_false | nexp -> raise (Reporting.err_general l ("Unable to substitute " ^ string_of_nexp nexp ^ " into set constraint " ^ string_of_n_constraint n_constraint)) | exception Not_found -> n_constraint end | NC_or (nc1,nc2) -> re (NC_or (snc nc1, snc nc2)) | NC_and (nc1,nc2) -> re (NC_and (snc nc1, snc nc2)) | NC_true | NC_false -> n_constraint | NC_var kid -> re (NC_var kid) | NC_app (f, args) -> re (NC_app (f, List.map (s_starg substs) args)) and s_styp substs ((Typ_aux (t,l)) as ty) = let re t = Typ_aux (t,l) in match t with | Typ_id _ | Typ_var _ -> ty | Typ_fn (t1,t2,e) -> re (Typ_fn (List.map (s_styp substs) t1, s_styp substs t2,e)) | Typ_bidir (t1, t2) -> re (Typ_bidir (s_styp substs t1, s_styp substs t2)) | Typ_tup ts -> re (Typ_tup (List.map (s_styp substs) ts)) | Typ_app (id,tas) -> re (Typ_app (id,List.map (s_starg substs) tas)) | Typ_exist (kopts,nc,t) -> let substs = List.fold_left (fun sub kopt -> KBindings.remove (kopt_kid kopt) sub) substs kopts in re (Typ_exist (kopts,subst_nc substs nc,s_styp substs t)) | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and s_starg substs (A_aux (ta,l) as targ) = match ta with | A_nexp ne -> A_aux (A_nexp (subst_nexp substs ne),l) | A_typ t -> A_aux (A_typ (s_styp substs t),l) | A_order _ -> targ | A_bool nc -> A_aux (A_bool (subst_nc substs nc), l) in subst_nc, s_styp, s_starg let make_vector_lit sz i = let f j = if Big_int.equal (Big_int.modulus (Big_int.shift_right i (sz-j-1)) (Big_int.of_int 2)) Big_int.zero then '0' else '1' in let s = String.init sz f in L_aux (L_bin s,Generated Unknown) let tabulate f n = let rec aux acc n = let acc' = f n::acc in if Big_int.equal n Big_int.zero then acc' else aux acc' (Big_int.sub n (Big_int.of_int 1)) in if Big_int.equal n Big_int.zero then [] else aux [] (Big_int.sub n (Big_int.of_int 1)) let make_vectors sz = tabulate (make_vector_lit sz) (Big_int.shift_left (Big_int.of_int 1) sz) let pat_id_is_variable env id = match Env.lookup_id id env with (* Unbound is returned for both variables and constructors which take arguments, but the latter only don't appear in a P_id *) | Unbound (* Shadowing of immutable locals is allowed; mutable locals and registers are rejected by the type checker, so don't matter *) | Local _ | Register _ -> true | Enum _ -> false let rec is_value (E_aux (e,(l,annot))) = let is_constructor id = match destruct_tannot annot with | None -> (Reporting.print_err l "Monomorphisation" ("Missing type information for identifier " ^ string_of_id id); false) (* Be conservative if we have no info *) | Some (env,_,_) -> Env.is_union_constructor id env || (match Env.lookup_id id env with | Enum _ -> true | Unbound | Local _ | Register _ -> false) in match e with | E_id id -> is_constructor id | E_lit _ -> true | E_tuple es -> List.for_all is_value es | E_app (id,es) -> is_constructor id && List.for_all is_value es (* We add casts to undefined to keep the type information in the AST *) | E_cast (typ,E_aux (E_lit (L_aux (L_undef,_)),_)) -> true (* TODO: more? *) | _ -> false let is_pure (Effect_opt_aux (e,_)) = match e with | Effect_opt_pure -> true | Effect_opt_effect (Effect_aux (Effect_set [],_)) -> true | _ -> false let rec list_extract f = function | [] -> None | h::t -> match f h with None -> list_extract f t | Some v -> Some v let rec cross = function | [] -> failwith "cross" | [(x,l)] -> List.map (fun y -> [(x,y)]) l | (x,l)::t -> let t' = cross t in List.concat (List.map (fun y -> List.map (fun l' -> (x,y)::l') t') l) let rec cross' = function | [] -> [[]] | (h::t) -> let t' = cross' t in List.concat (List.map (fun x -> List.map (fun l -> x::l) t') h) let rec cross'' = function | [] -> [[]] | (k,None)::t -> List.map (fun l -> (k,None)::l) (cross'' t) | (k,Some h)::t -> let t' = cross'' t in List.concat (List.map (fun x -> List.map (fun l -> (k,Some x)::l) t') h) let kidset_bigunion = function | [] -> KidSet.empty | h::t -> List.fold_left KidSet.union h t let rec flatten_constraints = function | [] -> [] | (NC_aux (NC_and (nc1,nc2),_))::t -> flatten_constraints (nc1::nc2::t) | h::t -> h::(flatten_constraints t) (* NB: this only looks for direct equalities with the given kid. It would be better in principle to find the entire set of equal kids, but it isn't necessary to deal with the fresh kids produced by the type checker while checking P_var patterns, so we don't do it for now. *) let equal_kids_ncs kid ncs = let is_eq = function | NC_aux (NC_equal (Nexp_aux (Nexp_var var1,_), Nexp_aux (Nexp_var var2,_)),_) -> if Kid.compare kid var1 == 0 then Some var2 else if Kid.compare kid var2 == 0 then Some var1 else None | _ -> None in let kids = Util.map_filter is_eq ncs in List.fold_left (fun s k -> KidSet.add k s) (KidSet.singleton kid) kids let equal_kids env kid = let ncs = flatten_constraints (Env.get_constraints env) in equal_kids_ncs kid ncs (* TODO: deal with non-set constraints, intersections, etc somehow *) let extract_set_nc l var nc = let vars = equal_kids_ncs var [nc] in let rec aux_or (NC_aux (nc,l)) = match nc with | NC_equal (Nexp_aux (Nexp_var id,_), Nexp_aux (Nexp_constant n,_)) when KidSet.mem id vars -> Some [n] | NC_or (nc1,nc2) -> (match aux_or nc1, aux_or nc2 with | Some l1, Some l2 -> Some (l1 @ l2) | _, _ -> None) | _ -> None in let rec aux (NC_aux (nc,l) as nc_full) = let re nc = NC_aux (nc,l) in match nc with | NC_set (id,is) when KidSet.mem id vars -> Some (is,re NC_true) | NC_and (nc1,nc2) -> (match aux nc1, aux nc2 with | None, None -> None | None, Some (is,nc2') -> Some (is, re (NC_and (nc1,nc2'))) | Some (is,nc1'), None -> Some (is, re (NC_and (nc1',nc2))) | Some _, Some _ -> raise (Reporting.err_general l ("Multiple set constraints for " ^ string_of_kid var))) | NC_or _ -> (match aux_or nc_full with | Some is -> Some (is, re NC_true) | None -> None) | _ -> None in match aux nc with | Some is -> is | None -> raise (Reporting.err_general l ("No set constraint for " ^ string_of_kid var ^ " in " ^ string_of_n_constraint nc)) let rec peel = function | [], l -> ([], l) | h1::t1, h2::t2 -> let (l1,l2) = peel (t1, t2) in ((h1,h2)::l1,l2) | _,_ -> assert false let rec split_insts = function | [] -> [],[] | (k,None)::t -> let l1,l2 = split_insts t in l1,k::l2 | (k,Some v)::t -> let l1,l2 = split_insts t in (k,v)::l1,l2 let apply_kid_insts kid_insts t = let kid_insts, kids' = split_insts kid_insts in let kid_insts = List.map (fun (v,i) -> (v,Nexp_aux (Nexp_constant i,Generated Unknown))) kid_insts in let subst = kbindings_from_list kid_insts in kids', subst_src_typ subst t let rec inst_src_type insts (Typ_aux (ty,l) as typ) = match ty with | Typ_id _ | Typ_var _ -> insts,typ | Typ_fn _ -> raise (Reporting.err_general l "Function type in constructor") | Typ_bidir _ -> raise (Reporting.err_general l "Mapping type in constructor") | Typ_tup ts -> let insts,ts = List.fold_right (fun typ (insts,ts) -> let insts,typ = inst_src_type insts typ in insts,typ::ts) ts (insts,[]) in insts, Typ_aux (Typ_tup ts,l) | Typ_app (id,args) -> let insts,ts = List.fold_right (fun arg (insts,args) -> let insts,arg = inst_src_typ_arg insts arg in insts,arg::args) args (insts,[]) in insts, Typ_aux (Typ_app (id,ts),l) | Typ_exist (kopts, nc, t) -> begin (* TODO handle non-integer existentials *) let kids = List.map kopt_kid kopts in let kid_insts, insts' = peel (kids,insts) in let kids', t' = apply_kid_insts kid_insts t in (* TODO: subst in nc *) match kids' with | [] -> insts', t' | _ -> insts', Typ_aux (Typ_exist (List.map (mk_kopt K_int) kids', nc, t'), l) end | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and inst_src_typ_arg insts (A_aux (ta,l) as tyarg) = match ta with | A_nexp _ | A_order _ -> insts, tyarg | A_typ typ -> let insts', typ' = inst_src_type insts typ in insts', A_aux (A_typ typ',l) let rec contains_exist (Typ_aux (ty,l)) = match ty with | Typ_id _ | Typ_var _ -> false | Typ_fn (t1,t2,_) -> List.exists contains_exist t1 || contains_exist t2 | Typ_bidir (t1, t2) -> contains_exist t1 || contains_exist t2 | Typ_tup ts -> List.exists contains_exist ts | Typ_app (_,args) -> List.exists contains_exist_arg args | Typ_exist _ -> true | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and contains_exist_arg (A_aux (arg,_)) = match arg with | A_nexp _ | A_order _ -> false | A_typ typ -> contains_exist typ let rec size_nvars_nexp (Nexp_aux (ne,_)) = match ne with | Nexp_var v -> [v] | Nexp_id _ | Nexp_constant _ -> [] | Nexp_times (n1,n2) | Nexp_sum (n1,n2) | Nexp_minus (n1,n2) -> size_nvars_nexp n1 @ size_nvars_nexp n2 | Nexp_exp n | Nexp_neg n -> size_nvars_nexp n | Nexp_app (_,args) -> List.concat (List.map size_nvars_nexp args) (* Given a type for a constructor, work out which refinements we ought to produce *) (* TODO collision avoidance *) let split_src_type id ty (TypQ_aux (q,ql)) = let i = string_of_id id in (* This was originally written for the general case, but I cut it down to the more manageable prenex-form below *) let rec size_nvars_ty (Typ_aux (ty,l) as typ) = match ty with | Typ_id _ | Typ_var _ -> (KidSet.empty,[[],typ]) | Typ_fn _ -> raise (Reporting.err_general l ("Function type in constructor " ^ i)) | Typ_bidir _ -> raise (Reporting.err_general l ("Mapping type in constructor " ^ i)) | Typ_tup ts -> let (vars,tys) = List.split (List.map size_nvars_ty ts) in let insttys = List.map (fun x -> let (insts,tys) = List.split x in List.concat insts, Typ_aux (Typ_tup tys,l)) (cross' tys) in (kidset_bigunion vars, insttys) | Typ_app (Id_aux (Id "vector",_), [A_aux (A_nexp sz,_); _;A_aux (A_typ (Typ_aux (Typ_id (Id_aux (Id "bit",_)),_)),_)]) -> (KidSet.of_list (size_nvars_nexp sz), [[],typ]) | Typ_app (_, tas) -> (KidSet.empty,[[],typ]) (* We only support sizes for bitvectors mentioned explicitly, not any buried inside another type *) | Typ_exist (kopts, nc, t) -> (* TODO handle non integer existentials *) let kids = List.map kopt_kid kopts in let (vars,tys) = size_nvars_ty t in let find_insts k (insts,nc) = let inst,nc' = if KidSet.mem k vars then let is,nc' = extract_set_nc l k nc in Some is,nc' else None,nc in (k,inst)::insts,nc' in let (insts,nc') = List.fold_right find_insts kids ([],nc) in let insts = cross'' insts in let ty_and_inst (inst0,ty) inst = let kids, ty = apply_kid_insts inst ty in let ty = (* Typ_exist is not allowed an empty list of kids *) match kids with | [] -> ty | _ -> Typ_aux (Typ_exist (List.map (mk_kopt K_int) kids, nc', ty),l) in inst@inst0, ty in let tys = List.concat (List.map (fun instty -> List.map (ty_and_inst instty) insts) tys) in let free = List.fold_left (fun vars k -> KidSet.remove k vars) vars kids in (free,tys) | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" in (* Only single-variable prenex-form for now *) let size_nvars_ty (Typ_aux (ty,l) as typ) = match ty with | Typ_exist (kids,_,t) -> begin match snd (size_nvars_ty typ) with | [] -> [] | tys -> (* One level of tuple type is stripped off by the type checker, so add another here *) let tys = List.map (fun (x,ty) -> x, match ty with | Typ_aux (Typ_tup _,_) -> Typ_aux (Typ_tup [ty],Unknown) | _ -> ty) tys in if contains_exist t then raise (Reporting.err_general l "Only prenex types in unions are supported by monomorphisation") else if List.length kids > 1 then raise (Reporting.err_general l "Only single-variable existential types in unions are currently supported by monomorphisation") else tys end | _ -> [] in (* TODO: reject universally quantification or monomorphise it *) let variants = size_nvars_ty ty in match variants with | [] -> None | sample::__ -> let () = if List.length variants > size_set_limit then raise (Reporting.err_general ql (string_of_int (List.length variants) ^ "variants for constructor " ^ i ^ "bigger than limit " ^ string_of_int size_set_limit)) else () in let wrap = match id with | Id_aux (Id i,l) -> (fun f -> Id_aux (Id (f i),Generated l)) | Id_aux (DeIid i,l) -> (fun f -> Id_aux (DeIid (f i),l)) in let name_seg = function | (_,None) -> "" | (k,Some i) -> string_of_kid k ^ Big_int.to_string i in let name l i = String.concat "_" (i::(List.map name_seg l)) in Some (List.map (fun (l,ty) -> (l, wrap (name l),ty)) variants) let reduce_nexp subst ne = let rec eval (Nexp_aux (ne,_) as nexp) = match ne with | Nexp_constant i -> i | Nexp_sum (n1,n2) -> Big_int.add (eval n1) (eval n2) | Nexp_minus (n1,n2) -> Big_int.sub (eval n1) (eval n2) | Nexp_times (n1,n2) -> Big_int.mul (eval n1) (eval n2) | Nexp_exp n -> Big_int.shift_left (eval n) 1 | Nexp_neg n -> Big_int.negate (eval n) | _ -> raise (Reporting.err_general Unknown ("Couldn't turn nexp " ^ string_of_nexp nexp ^ " into concrete value")) in eval ne let typ_of_args args = match args with | [(E_aux (E_tuple args, (_, tannot)) as exp)] -> begin match destruct_tannot tannot with | Some (_,Typ_aux (Typ_exist _,_),_) -> let tys = List.map Type_check.typ_of args in Typ_aux (Typ_tup tys,Unknown) | _ -> Type_check.typ_of exp end | [exp] -> Type_check.typ_of exp | _ -> let tys = List.map Type_check.typ_of args in Typ_aux (Typ_tup tys,Unknown) (* Check to see if we need to monomorphise a use of a constructor. Currently assumes that bitvector sizes are always given as a variable; don't yet handle more general cases (e.g., 8 * var) *) let refine_constructor refinements l env id args = match List.find (fun (id',_) -> Id.compare id id' = 0) refinements with | (_,irefinements) -> begin let (_,constr_ty) = Env.get_val_spec id env in match constr_ty with (* A constructor should always have a single argument. *) | Typ_aux (Typ_fn ([constr_ty],_,_),_) -> begin let arg_ty = typ_of_args args in match Type_check.destruct_exist (Type_check.Env.expand_synonyms env constr_ty) with | None -> None | Some (kopts,nc,constr_ty) -> (* TODO: Handle non-integer existentials *) let kids = List.map kopt_kid kopts in let bindings = Type_check.unify l env (tyvars_of_typ constr_ty) constr_ty arg_ty in let find_kid kid = try Some (KBindings.find kid bindings) with Not_found -> None in let bindings = List.map find_kid kids in let matches_refinement (mapping,_,_) = List.for_all2 (fun v (_,w) -> match v,w with | _,None -> true | Some (A_aux (A_nexp (Nexp_aux (Nexp_constant n, _)), _)),Some m -> Big_int.equal n m | _,_ -> false) bindings mapping in match List.find matches_refinement irefinements with | (_,new_id,_) -> Some (E_app (new_id,args)) | exception Not_found -> (Reporting.print_err l "Monomorphisation" ("Unable to refine constructor " ^ string_of_id id); None) end | _ -> None end | exception Not_found -> None (* Substitute found nexps for variables in an expression, and rename constructors to reflect specialisation *) (* TODO: kid shadowing *) let nexp_subst_fns substs = let s_t t = subst_src_typ substs t in (* let s_typschm (TypSchm_aux (TypSchm_ts (q,t),l)) = TypSchm_aux (TypSchm_ts (q,s_t t),l) in hopefully don't need this anyway *)(* let s_typschm tsh = tsh in*) let s_tannot tannot = match destruct_tannot tannot with | None -> empty_tannot | Some (env,t,eff) -> mk_tannot env (s_t t) eff (* TODO: what about env? *) in let rec s_pat (P_aux (p,(l,annot))) = let re p = P_aux (p,(l,s_tannot annot)) in match p with | P_lit _ | P_wild | P_id _ -> re p | P_or (p1, p2) -> re (P_or (s_pat p1, s_pat p2)) | P_not (p) -> re (P_not (s_pat p)) | P_var (p',tpat) -> re (P_var (s_pat p',tpat)) | P_as (p',id) -> re (P_as (s_pat p', id)) | P_typ (ty,p') -> re (P_typ (s_t ty,s_pat p')) | P_app (id,ps) -> re (P_app (id, List.map s_pat ps)) | P_record (fps,flag) -> re (P_record (List.map s_fpat fps, flag)) | P_vector ps -> re (P_vector (List.map s_pat ps)) | P_vector_concat ps -> re (P_vector_concat (List.map s_pat ps)) | P_string_append ps -> re (P_string_append (List.map s_pat ps)) | P_tup ps -> re (P_tup (List.map s_pat ps)) | P_list ps -> re (P_list (List.map s_pat ps)) | P_cons (p1,p2) -> re (P_cons (s_pat p1, s_pat p2)) and s_fpat (FP_aux (FP_Fpat (id, p), (l,annot))) = FP_aux (FP_Fpat (id, s_pat p), (l,s_tannot annot)) in let rec s_exp (E_aux (e,(l,annot))) = let re e = E_aux (e,(l,s_tannot annot)) in match e with | E_block es -> re (E_block (List.map s_exp es)) | E_nondet es -> re (E_nondet (List.map s_exp es)) | E_id _ | E_ref _ | E_lit _ | E_internal_value _ -> re e | E_sizeof ne -> begin let ne' = subst_nexp substs ne in match ne' with | Nexp_aux (Nexp_constant i,l) -> re (E_lit (L_aux (L_num i,l))) | _ -> re (E_sizeof ne') end | E_constraint nc -> re (E_constraint (subst_nc substs nc)) | E_cast (t,e') -> re (E_cast (s_t t, s_exp e')) | E_app (id,es) -> re (E_app (id, List.map s_exp es)) | E_app_infix (e1,id,e2) -> re (E_app_infix (s_exp e1,id,s_exp e2)) | E_tuple es -> re (E_tuple (List.map s_exp es)) | E_if (e1,e2,e3) -> re (E_if (s_exp e1, s_exp e2, s_exp e3)) | E_for (id,e1,e2,e3,ord,e4) -> re (E_for (id,s_exp e1,s_exp e2,s_exp e3,ord,s_exp e4)) | E_loop (loop,e1,e2) -> re (E_loop (loop,s_exp e1,s_exp e2)) | E_vector es -> re (E_vector (List.map s_exp es)) | E_vector_access (e1,e2) -> re (E_vector_access (s_exp e1,s_exp e2)) | E_vector_subrange (e1,e2,e3) -> re (E_vector_subrange (s_exp e1,s_exp e2,s_exp e3)) | E_vector_update (e1,e2,e3) -> re (E_vector_update (s_exp e1,s_exp e2,s_exp e3)) | E_vector_update_subrange (e1,e2,e3,e4) -> re (E_vector_update_subrange (s_exp e1,s_exp e2,s_exp e3,s_exp e4)) | E_vector_append (e1,e2) -> re (E_vector_append (s_exp e1,s_exp e2)) | E_list es -> re (E_list (List.map s_exp es)) | E_cons (e1,e2) -> re (E_cons (s_exp e1,s_exp e2)) | E_record fes -> re (E_record (List.map s_fexp fes)) | E_record_update (e,fes) -> re (E_record_update (s_exp e, List.map s_fexp fes)) | E_field (e,id) -> re (E_field (s_exp e,id)) | E_case (e,cases) -> re (E_case (s_exp e, List.map s_pexp cases)) | E_let (lb,e) -> re (E_let (s_letbind lb, s_exp e)) | E_assign (le,e) -> re (E_assign (s_lexp le, s_exp e)) | E_exit e -> re (E_exit (s_exp e)) | E_return e -> re (E_return (s_exp e)) | E_assert (e1,e2) -> re (E_assert (s_exp e1,s_exp e2)) | E_var (le,e1,e2) -> re (E_var (s_lexp le, s_exp e1, s_exp e2)) | E_internal_plet (p,e1,e2) -> re (E_internal_plet (s_pat p, s_exp e1, s_exp e2)) | E_internal_return e -> re (E_internal_return (s_exp e)) | E_throw e -> re (E_throw (s_exp e)) | E_try (e,cases) -> re (E_try (s_exp e, List.map s_pexp cases)) and s_fexp (FE_aux (FE_Fexp (id,e), (l,annot))) = FE_aux (FE_Fexp (id,s_exp e),(l,s_tannot annot)) and s_pexp = function | (Pat_aux (Pat_exp (p,e),(l,annot))) -> Pat_aux (Pat_exp (s_pat p, s_exp e),(l,s_tannot annot)) | (Pat_aux (Pat_when (p,e1,e2),(l,annot))) -> Pat_aux (Pat_when (s_pat p, s_exp e1, s_exp e2),(l,s_tannot annot)) and s_letbind (LB_aux (lb,(l,annot))) = match lb with | LB_val (p,e) -> LB_aux (LB_val (s_pat p,s_exp e), (l,s_tannot annot)) and s_lexp (LEXP_aux (e,(l,annot))) = let re e = LEXP_aux (e,(l,s_tannot annot)) in match e with | LEXP_id _ -> re e | LEXP_cast (typ,id) -> re (LEXP_cast (s_t typ, id)) | LEXP_memory (id,es) -> re (LEXP_memory (id,List.map s_exp es)) | LEXP_tup les -> re (LEXP_tup (List.map s_lexp les)) | LEXP_vector (le,e) -> re (LEXP_vector (s_lexp le, s_exp e)) | LEXP_vector_range (le,e1,e2) -> re (LEXP_vector_range (s_lexp le, s_exp e1, s_exp e2)) | LEXP_vector_concat les -> re (LEXP_vector_concat (List.map s_lexp les)) | LEXP_field (le,id) -> re (LEXP_field (s_lexp le, id)) | LEXP_deref e -> re (LEXP_deref (s_exp e)) in (s_pat,s_exp) let nexp_subst_pat substs = fst (nexp_subst_fns substs) let nexp_subst_exp substs = snd (nexp_subst_fns substs) let bindings_from_pat p = let rec aux_pat (P_aux (p,(l,annot))) = let env = Type_check.env_of_annot (l, annot) in match p with | P_lit _ | P_wild -> [] | P_or (p1, p2) -> aux_pat p1 @ aux_pat p2 | P_not (p) -> aux_pat p | P_as (p,id) -> id::(aux_pat p) | P_typ (_,p) -> aux_pat p | P_id id -> if pat_id_is_variable env id then [id] else [] | P_var (p,kid) -> aux_pat p | P_vector ps | P_vector_concat ps | P_string_append ps | P_app (_,ps) | P_tup ps | P_list ps -> List.concat (List.map aux_pat ps) | P_record (fps,_) -> List.concat (List.map aux_fpat fps) | P_cons (p1,p2) -> aux_pat p1 @ aux_pat p2 and aux_fpat (FP_aux (FP_Fpat (_,p), _)) = aux_pat p in aux_pat p let remove_bound (substs,ksubsts) pat = let bound = bindings_from_pat pat in List.fold_left (fun sub v -> Bindings.remove v sub) substs bound, ksubsts (* Attempt simple pattern matches *) let lit_match = function | (L_zero | L_false), (L_zero | L_false) -> true | (L_one | L_true ), (L_one | L_true ) -> true | L_num i1, L_num i2 -> Big_int.equal i1 i2 | l1,l2 -> l1 = l2 (* There's no undefined nexp, so replace undefined sizes with a plausible size. 32 is used as a sensible default. *) let fabricate_nexp_exist env l typ kids nc typ' = match kids,nc,Env.expand_synonyms env typ' with | ([kid],NC_aux (NC_set (kid',i::_),_), Typ_aux (Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (Nexp_var kid'',_)),_)]),_)) when Kid.compare kid kid' = 0 && Kid.compare kid kid'' = 0 -> Nexp_aux (Nexp_constant i,Unknown) | ([kid],NC_aux (NC_true,_), Typ_aux (Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (Nexp_var kid'',_)),_)]),_)) when Kid.compare kid kid'' = 0 -> nint 32 | ([kid],NC_aux (NC_set (kid',i::_),_), Typ_aux (Typ_app (Id_aux (Id "range",_), [A_aux (A_nexp (Nexp_aux (Nexp_var kid'',_)),_); A_aux (A_nexp (Nexp_aux (Nexp_var kid''',_)),_)]),_)) when Kid.compare kid kid' = 0 && Kid.compare kid kid'' = 0 && Kid.compare kid kid''' = 0 -> Nexp_aux (Nexp_constant i,Unknown) | ([kid],NC_aux (NC_true,_), Typ_aux (Typ_app (Id_aux (Id "range",_), [A_aux (A_nexp (Nexp_aux (Nexp_var kid'',_)),_); A_aux (A_nexp (Nexp_aux (Nexp_var kid''',_)),_)]),_)) when Kid.compare kid kid'' = 0 && Kid.compare kid kid''' = 0 -> nint 32 | ([], _, typ) -> nint 32 | (kids, nc, typ) -> raise (Reporting.err_general l ("Undefined value at unsupported type " ^ string_of_typ typ ^ " with " ^ Util.string_of_list ", " string_of_kid kids)) let fabricate_nexp l tannot = match destruct_tannot tannot with | None -> nint 32 | Some (env,typ,_) -> match Type_check.destruct_exist (Type_check.Env.expand_synonyms env typ) with | None -> nint 32 (* TODO: check this *) | Some (kopts,nc,typ') -> fabricate_nexp_exist env l typ (List.map kopt_kid kopts) nc typ' let atom_typ_kid kid = function | Typ_aux (Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (Nexp_var kid',_)),_)]),_) -> Kid.compare kid kid' = 0 | _ -> false (* We reduce casts in a few cases, in particular to ensure that where the type checker has added a ({'n, true. atom('n)}) ex_int(...) cast we can fill in the 'n. For undefined we fabricate a suitable value for 'n. *) let reduce_cast typ exp l annot = let env = env_of_annot (l,annot) in let typ' = Env.base_typ_of env typ in match exp, destruct_exist (Env.expand_synonyms env typ') with | E_aux (E_lit (L_aux (L_num n,_)),_), Some ([kopt],nc,typ'') when atom_typ_kid (kopt_kid kopt) typ'' -> let nc_env = Env.add_typ_var l kopt env in let nc_env = Env.add_constraint (nc_eq (nvar (kopt_kid kopt)) (nconstant n)) nc_env in if prove __POS__ nc_env nc then exp else raise (Reporting.err_unreachable l __POS__ ("Constant propagation error: literal " ^ Big_int.to_string n ^ " does not satisfy constraint " ^ string_of_n_constraint nc)) | E_aux (E_lit (L_aux (L_undef,_)),_), Some ([kopt],nc,typ'') when atom_typ_kid (kopt_kid kopt) typ'' -> let nexp = fabricate_nexp_exist env Unknown typ [kopt_kid kopt] nc typ'' in let newtyp = subst_src_typ (KBindings.singleton (kopt_kid kopt) nexp) typ'' in E_aux (E_cast (newtyp, exp), (Generated l,replace_typ newtyp annot)) | E_aux (E_cast (_, (E_aux (E_lit (L_aux (L_undef,_)),_) as exp)),_), Some ([kopt],nc,typ'') when atom_typ_kid (kopt_kid kopt) typ'' -> let nexp = fabricate_nexp_exist env Unknown typ [kopt_kid kopt] nc typ'' in let newtyp = subst_src_typ (KBindings.singleton (kopt_kid kopt) nexp) typ'' in E_aux (E_cast (newtyp, exp), (Generated l,replace_typ newtyp annot)) | _ -> E_aux (E_cast (typ,exp),(l,annot)) (* Used for constant propagation in pattern matches *) type 'a matchresult = | DoesMatch of 'a | DoesNotMatch | GiveUp (* Remove top-level casts from an expression. Useful when we need to look at subexpressions to reduce something, but could break type-checking if we used it everywhere. *) let rec drop_casts = function | E_aux (E_cast (_,e),_) -> drop_casts e | exp -> exp let int_of_str_lit = function | L_hex hex -> Big_int.of_string ("0x" ^ hex) | L_bin bin -> Big_int.of_string ("0b" ^ bin) | _ -> assert false let bits_of_lit = function | L_bin bin -> bin | L_hex hex -> hex_to_bin hex | _ -> assert false let slice_lit (L_aux (lit,ll)) i len (Ord_aux (ord,_)) = let i = Big_int.to_int i in let len = Big_int.to_int len in let bin = bits_of_lit lit in match match ord with | Ord_inc -> Some i | Ord_dec -> Some (String.length bin - i - len) | Ord_var _ -> None with | None -> None | Some i -> Some (L_aux (L_bin (String.sub bin i len),Generated ll)) let concat_vec lit1 lit2 = let bits1 = bits_of_lit lit1 in let bits2 = bits_of_lit lit2 in L_bin (bits1 ^ bits2) let lit_eq (L_aux (l1,_)) (L_aux (l2,_)) = match l1,l2 with | (L_zero|L_false), (L_zero|L_false) | (L_one |L_true ), (L_one |L_true) -> Some true | (L_hex _| L_bin _), (L_hex _|L_bin _) -> Some (Big_int.equal (int_of_str_lit l1) (int_of_str_lit l2)) | L_undef, _ | _, L_undef -> None | L_num i1, L_num i2 -> Some (Big_int.equal i1 i2) | _ -> Some (l1 = l2) let try_app (l,ann) (id,args) = let new_l = Generated l in let env = env_of_annot (l,ann) in let get_overloads f = List.map string_of_id (Env.get_overloads (Id_aux (Id f, Parse_ast.Unknown)) env @ Env.get_overloads (Id_aux (DeIid f, Parse_ast.Unknown)) env) in let is_id f = List.mem (string_of_id id) (f :: get_overloads f) in if is_id "==" || is_id "!=" then match args with | [E_aux (E_lit l1,_); E_aux (E_lit l2,_)] -> let lit b = if b then L_true else L_false in let lit b = lit (if is_id "==" then b else not b) in (match lit_eq l1 l2 with | None -> None | Some b -> Some (E_aux (E_lit (L_aux (lit b,new_l)),(l,ann)))) | _ -> None else if is_id "cast_bit_bool" then match args with | [E_aux (E_lit L_aux (L_zero,_),_)] -> Some (E_aux (E_lit (L_aux (L_false,new_l)),(l,ann))) | [E_aux (E_lit L_aux (L_one ,_),_)] -> Some (E_aux (E_lit (L_aux (L_true ,new_l)),(l,ann))) | _ -> None else if is_id "UInt" || is_id "unsigned" then match args with | [E_aux (E_lit L_aux ((L_hex _| L_bin _) as lit,_), _)] -> Some (E_aux (E_lit (L_aux (L_num (int_of_str_lit lit),new_l)),(l,ann))) | _ -> None else if is_id "slice" then match args with | [E_aux (E_lit (L_aux ((L_hex _| L_bin _),_) as lit), annot); E_aux (E_lit L_aux (L_num i,_), _); E_aux (E_lit L_aux (L_num len,_), _)] -> (match Env.base_typ_of (env_of_annot annot) (typ_of_annot annot) with | Typ_aux (Typ_app (_,[_;A_aux (A_order ord,_);_]),_) -> (match slice_lit lit i len ord with | Some lit' -> Some (E_aux (E_lit lit',(l,ann))) | None -> None) | _ -> None) | _ -> None else if is_id "bitvector_concat" then match args with | [E_aux (E_lit L_aux ((L_hex _| L_bin _) as lit1,_), _); E_aux (E_lit L_aux ((L_hex _| L_bin _) as lit2,_), _)] -> Some (E_aux (E_lit (L_aux (concat_vec lit1 lit2,new_l)),(l,ann))) | _ -> None else if is_id "shl_int" then match args with | [E_aux (E_lit L_aux (L_num i,_),_); E_aux (E_lit L_aux (L_num j,_),_)] -> Some (E_aux (E_lit (L_aux (L_num (Big_int.shift_left i (Big_int.to_int j)),new_l)),(l,ann))) | _ -> None else if is_id "mult_atom" || is_id "mult_int" || is_id "mult_range" then match args with | [E_aux (E_lit L_aux (L_num i,_),_); E_aux (E_lit L_aux (L_num j,_),_)] -> Some (E_aux (E_lit (L_aux (L_num (Big_int.mul i j),new_l)),(l,ann))) | _ -> None else if is_id "quotient_nat" then match args with | [E_aux (E_lit L_aux (L_num i,_),_); E_aux (E_lit L_aux (L_num j,_),_)] -> Some (E_aux (E_lit (L_aux (L_num (Big_int.div i j),new_l)),(l,ann))) | _ -> None else if is_id "add_atom" || is_id "add_int" || is_id "add_range" then match args with | [E_aux (E_lit L_aux (L_num i,_),_); E_aux (E_lit L_aux (L_num j,_),_)] -> Some (E_aux (E_lit (L_aux (L_num (Big_int.add i j),new_l)),(l,ann))) | _ -> None else if is_id "negate_range" then match args with | [E_aux (E_lit L_aux (L_num i,_),_)] -> Some (E_aux (E_lit (L_aux (L_num (Big_int.negate i),new_l)),(l,ann))) | _ -> None else if is_id "ex_int" then match args with | [E_aux (E_lit lit,(l,_))] -> Some (E_aux (E_lit lit,(l,ann))) | [E_aux (E_cast (_,(E_aux (E_lit (L_aux (L_undef,_)),_) as e)),(l,_))] -> Some (reduce_cast (typ_of_annot (l,ann)) e l ann) | _ -> None else if is_id "vector_access" || is_id "bitvector_access" then match args with | [E_aux (E_lit L_aux ((L_hex _ | L_bin _) as lit,_),_); E_aux (E_lit L_aux (L_num i,_),_)] -> let v = int_of_str_lit lit in let b = Big_int.bitwise_and (Big_int.shift_right v (Big_int.to_int i)) (Big_int.of_int 1) in let lit' = if Big_int.equal b (Big_int.of_int 1) then L_one else L_zero in Some (E_aux (E_lit (L_aux (lit',new_l)),(l,ann))) | _ -> None else None let construct_lit_vector args = let rec aux l = function | [] -> Some (L_aux (L_bin (String.concat "" (List.rev l)),Unknown)) | E_aux (E_lit (L_aux ((L_zero | L_one) as lit,_)),_)::t -> aux ((if lit = L_zero then "0" else "1")::l) t | _ -> None in aux [] args type pat_choice = Parse_ast.l * (int * int * (id * tannot exp) list) (* We may need to split up a pattern match if (1) we've been told to case split on a variable by the user or analysis, or (2) we monomorphised a constructor that's used in the pattern. *) type split = | NoSplit | VarSplit of (tannot pat * (* pattern for this case *) (id * tannot Ast.exp) list * (* substitutions for arguments *) pat_choice list * (* optional locations of constraints/case expressions to reduce *) (kid * nexp) list) (* substitutions for type variables *) list | ConstrSplit of (tannot pat * nexp KBindings.t) list let threaded_map f state l = let l',state' = List.fold_left (fun (tl,state) element -> let (el',state') = f state element in (el'::tl,state')) ([],state) l in List.rev l',state' let isubst_minus subst subst' = Bindings.merge (fun _ x y -> match x,y with (Some a), None -> Some a | _, _ -> None) subst subst' let isubst_minus_set subst set = IdSet.fold Bindings.remove set subst let assigned_vars exp = fst (Rewriter.fold_exp { (Rewriter.compute_exp_alg IdSet.empty IdSet.union) with Rewriter.lEXP_id = (fun id -> IdSet.singleton id, LEXP_id id); Rewriter.lEXP_cast = (fun (ty,id) -> IdSet.singleton id, LEXP_cast (ty,id)) } exp) let referenced_vars exp = let open Rewriter in fst (fold_exp { (compute_exp_alg IdSet.empty IdSet.union) with e_ref = (fun id -> IdSet.singleton id, E_ref id) } exp) let assigned_vars_in_fexps fes = List.fold_left (fun vs (FE_aux (FE_Fexp (_,e),_)) -> IdSet.union vs (assigned_vars e)) IdSet.empty fes let assigned_vars_in_pexp (Pat_aux (p,_)) = match p with | Pat_exp (_,e) -> assigned_vars e | Pat_when (p,e1,e2) -> IdSet.union (assigned_vars e1) (assigned_vars e2) let rec assigned_vars_in_lexp (LEXP_aux (le,_)) = match le with | LEXP_id id | LEXP_cast (_,id) -> IdSet.singleton id | LEXP_tup lexps | LEXP_vector_concat lexps -> List.fold_left (fun vs le -> IdSet.union vs (assigned_vars_in_lexp le)) IdSet.empty lexps | LEXP_memory (_,es) -> List.fold_left (fun vs e -> IdSet.union vs (assigned_vars e)) IdSet.empty es | LEXP_vector (le,e) -> IdSet.union (assigned_vars_in_lexp le) (assigned_vars e) | LEXP_vector_range (le,e1,e2) -> IdSet.union (assigned_vars_in_lexp le) (IdSet.union (assigned_vars e1) (assigned_vars e2)) | LEXP_field (le,_) -> assigned_vars_in_lexp le | LEXP_deref e -> assigned_vars e (* Add a cast to undefined so that it retains its type, otherwise it can't be substituted safely *) let keep_undef_typ value = match value with | E_aux (E_lit (L_aux (L_undef,lann)),eann) -> E_aux (E_cast (typ_of_annot eann,value),(Generated Unknown,snd eann)) | _ -> value let freshen_id = let counter = ref 0 in fun id -> let n = !counter in let () = counter := n + 1 in match id with | Id_aux (Id x, l) -> Id_aux (Id (x ^ "#m" ^ string_of_int n),Generated l) | Id_aux (DeIid x, l) -> Id_aux (DeIid (x ^ "#m" ^ string_of_int n),Generated l) (* TODO: only freshen bindings that might be shadowed *) let rec freshen_pat_bindings p = let rec aux (P_aux (p,(l,annot)) as pat) = let mkp p = P_aux (p,(Generated l, annot)) in match p with | P_lit _ | P_wild -> pat, [] | P_or (p1, p2) -> let (r1, vs1) = aux p1 in let (r2, vs2) = aux p2 in (mkp (P_or (r1, r2)), vs1 @ vs2) | P_not p -> let (r, vs) = aux p in (mkp (P_not r), vs) | P_as (p,_) -> aux p | P_typ (typ,p) -> let p',vs = aux p in mkp (P_typ (typ,p')),vs | P_id id -> let id' = freshen_id id in mkp (P_id id'),[id,E_aux (E_id id',(Generated Unknown,empty_tannot))] | P_var (p,_) -> aux p | P_app (id,args) -> let args',vs = List.split (List.map aux args) in mkp (P_app (id,args')),List.concat vs | P_record (fpats,flag) -> let fpats,vs = List.split (List.map auxr fpats) in mkp (P_record (fpats,flag)),List.concat vs | P_vector ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_vector ps),List.concat vs | P_vector_concat ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_vector_concat ps),List.concat vs | P_string_append ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_string_append ps),List.concat vs | P_tup ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_tup ps),List.concat vs | P_list ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_list ps),List.concat vs | P_cons (p1,p2) -> let p1,vs1 = aux p1 in let p2,vs2 = aux p2 in mkp (P_cons (p1, p2)), vs1@vs2 and auxr (FP_aux (FP_Fpat (id,p),(l,annot))) = let p,vs = aux p in FP_aux (FP_Fpat (id, p),(Generated l,annot)), vs in aux p (* This cuts off function bodies at false assertions that we may have produced in a wildcard pattern match. It should handle the same assertions that find_set_assertions does. *) let stop_at_false_assertions e = let dummy_value_of_typ typ = let l = Generated Unknown in E_aux (E_exit (E_aux (E_lit (L_aux (L_unit,l)),(l,empty_tannot))),(l,empty_tannot)) in let rec nc_false (NC_aux (nc,_)) = match nc with | NC_false -> true | NC_and (nc1,nc2) -> nc_false nc1 || nc_false nc2 | _ -> false in let rec exp_false (E_aux (e,_)) = match e with | E_constraint nc -> nc_false nc | E_lit (L_aux (L_false,_)) -> true | E_app (Id_aux (Id "and_bool",_),[e1;e2]) -> exp_false e1 || exp_false e2 | _ -> false in let rec exp (E_aux (e,ann) as ea) = match e with | E_block es -> let rec aux = function | [] -> [], None | e::es -> let e,stop = exp e in match stop with | Some _ -> [e],stop | None -> let es',stop = aux es in e::es',stop in let es,stop = aux es in begin match stop with | None -> E_aux (E_block es,ann), stop | Some typ -> let typ' = typ_of_annot ann in if Type_check.alpha_equivalent (env_of_annot ann) typ typ' then E_aux (E_block es,ann), stop else E_aux (E_block (es@[dummy_value_of_typ typ']),ann), Some typ' end | E_nondet es -> let es,stops = List.split (List.map exp es) in let stop = List.exists (function Some _ -> true | _ -> false) stops in let stop = if stop then Some (typ_of_annot ann) else None in E_aux (E_nondet es,ann), stop | E_cast (typ,e) -> let e,stop = exp e in let stop = match stop with Some _ -> Some typ | None -> None in E_aux (E_cast (typ,e),ann),stop | E_let (LB_aux (LB_val (p,e1),lbann),e2) -> let e1,stop = exp e1 in begin match stop with | Some _ -> e1,stop | None -> let e2,stop = exp e2 in E_aux (E_let (LB_aux (LB_val (p,e1),lbann),e2),ann), stop end | E_assert (e1,_) when exp_false e1 -> ea, Some (typ_of_annot ann) | _ -> ea, None in fst (exp e) (* Use the location pairs in choices to reduce case expressions at the first location to the given case at the second. *) let apply_pat_choices choices = let rec rewrite_ncs (NC_aux (nc,l) as nconstr) = match nc with | NC_set _ | NC_or _ -> begin match List.assoc l choices with | choice,max,_ -> NC_aux ((if choice < max then NC_true else NC_false), Generated l) | exception Not_found -> nconstr end | NC_and (nc1,nc2) -> begin match rewrite_ncs nc1, rewrite_ncs nc2 with | NC_aux (NC_false,l), _ | _, NC_aux (NC_false,l) -> NC_aux (NC_false,l) | nc1,nc2 -> NC_aux (NC_and (nc1,nc2),l) end | _ -> nconstr in let rec rewrite_assert_cond (E_aux (e,(l,ann)) as exp) = match List.assoc l choices with | choice,max,_ -> E_aux (E_lit (L_aux ((if choice < max then L_true else L_false (* wildcard *)), Generated l)),(Generated l,ann)) | exception Not_found -> match e with | E_constraint nc -> E_aux (E_constraint (rewrite_ncs nc),(l,ann)) | E_app (Id_aux (Id "and_bool",andl), [e1;e2]) -> E_aux (E_app (Id_aux (Id "and_bool",andl), [rewrite_assert_cond e1; rewrite_assert_cond e2]),(l,ann)) | _ -> exp in let rewrite_assert (e1,e2) = E_assert (rewrite_assert_cond e1, e2) in let rewrite_case (e,cases) = match List.assoc (exp_loc e) choices with | choice,max,subst -> (match List.nth cases choice with | Pat_aux (Pat_exp (p,E_aux (e,_)),_) -> let dummyannot = (Generated Unknown,empty_tannot) in (* TODO: use a proper substitution *) List.fold_left (fun e (id,e') -> E_let (LB_aux (LB_val (P_aux (P_id id, dummyannot),e'),dummyannot),E_aux (e,dummyannot))) e subst | Pat_aux (Pat_when _,(l,_)) -> raise (Reporting.err_unreachable l __POS__ "Pattern acquired a guard after analysis!") | exception Not_found -> raise (Reporting.err_unreachable (exp_loc e) __POS__ "Unable to find case I found earlier!")) | exception Not_found -> E_case (e,cases) in let open Rewriter in fold_exp { id_exp_alg with e_assert = rewrite_assert; e_case = rewrite_case } (* Check whether the current environment with the given kid assignments is inconsistent (and hence whether the code is dead) *) let is_env_inconsistent env ksubsts = let env = KBindings.fold (fun k nexp env -> Env.add_constraint (nc_eq (nvar k) nexp) env) ksubsts env in prove __POS__ env nc_false let split_defs all_errors splits defs = let no_errors_happened = ref true in let split_constructors (Defs defs) = let sc_type_union q (Tu_aux (Tu_ty_id (ty, id), l)) = match split_src_type id ty q with | None -> ([],[Tu_aux (Tu_ty_id (ty,id),l)]) | Some variants -> ([(id,variants)], List.map (fun (insts, id', ty) -> Tu_aux (Tu_ty_id (ty,id'),Generated l)) variants) in let sc_type_def ((TD_aux (tda,annot)) as td) = match tda with | TD_variant (id,quant,tus,flag) -> let (refinements, tus') = List.split (List.map (sc_type_union quant) tus) in (List.concat refinements, TD_aux (TD_variant (id,quant,List.concat tus',flag),annot)) | _ -> ([],td) in let sc_def d = match d with | DEF_type td -> let (refinements,td') = sc_type_def td in (refinements, DEF_type td') | _ -> ([], d) in let (refinements, defs') = List.split (List.map sc_def defs) in (List.concat refinements, Defs defs') in let (refinements, defs') = split_constructors defs in (* COULD DO: dead code is only eliminated at if expressions, but we could also cut out impossible case branches and code after assertions. *) (* Constant propogation. Takes maps of immutable/mutable variables to subsitute. The substs argument also contains the current type-level kid refinements so that we can check for dead code. Extremely conservative about evaluation order of assignments in subexpressions, dropping assignments rather than committing to any particular order *) let rec const_prop_exp ref_vars substs assigns ((E_aux (e,(l,annot))) as exp) = (* Functions to treat lists and tuples of subexpressions as possibly non-deterministic: that is, we stop making any assumptions about variables that are assigned to in any of the subexpressions *) let non_det_exp_list es = let assigned_in = List.fold_left (fun vs exp -> IdSet.union vs (assigned_vars exp)) IdSet.empty es in let assigns = isubst_minus_set assigns assigned_in in let es' = List.map (fun e -> fst (const_prop_exp ref_vars substs assigns e)) es in es',assigns in let non_det_exp_2 e1 e2 = let assigned_in_e12 = IdSet.union (assigned_vars e1) (assigned_vars e2) in let assigns = isubst_minus_set assigns assigned_in_e12 in let e1',_ = const_prop_exp ref_vars substs assigns e1 in let e2',_ = const_prop_exp ref_vars substs assigns e2 in e1',e2',assigns in let non_det_exp_3 e1 e2 e3 = let assigned_in_e12 = IdSet.union (assigned_vars e1) (assigned_vars e2) in let assigned_in_e123 = IdSet.union assigned_in_e12 (assigned_vars e3) in let assigns = isubst_minus_set assigns assigned_in_e123 in let e1',_ = const_prop_exp ref_vars substs assigns e1 in let e2',_ = const_prop_exp ref_vars substs assigns e2 in let e3',_ = const_prop_exp ref_vars substs assigns e3 in e1',e2',e3',assigns in let non_det_exp_4 e1 e2 e3 e4 = let assigned_in_e12 = IdSet.union (assigned_vars e1) (assigned_vars e2) in let assigned_in_e123 = IdSet.union assigned_in_e12 (assigned_vars e3) in let assigned_in_e1234 = IdSet.union assigned_in_e123 (assigned_vars e4) in let assigns = isubst_minus_set assigns assigned_in_e1234 in let e1',_ = const_prop_exp ref_vars substs assigns e1 in let e2',_ = const_prop_exp ref_vars substs assigns e2 in let e3',_ = const_prop_exp ref_vars substs assigns e3 in let e4',_ = const_prop_exp ref_vars substs assigns e4 in e1',e2',e3',e4',assigns in let re e assigns = E_aux (e,(l,annot)),assigns in match e with (* TODO: are there more circumstances in which we should get rid of these? *) | E_block [e] -> const_prop_exp ref_vars substs assigns e | E_block es -> let es',assigns = threaded_map (const_prop_exp ref_vars substs) assigns es in re (E_block es') assigns | E_nondet es -> let es',assigns = non_det_exp_list es in re (E_nondet es') assigns | E_id id -> let env = Type_check.env_of_annot (l, annot) in (try match Env.lookup_id id env with | Local (Immutable,_) -> Bindings.find id (fst substs) | Local (Mutable,_) -> Bindings.find id assigns | _ -> exp with Not_found -> exp),assigns | E_lit _ | E_sizeof _ | E_constraint _ -> exp,assigns | E_cast (t,e') -> let e'',assigns = const_prop_exp ref_vars substs assigns e' in if is_value e'' then reduce_cast t e'' l annot, assigns else re (E_cast (t, e'')) assigns | E_app (id,es) -> let es',assigns = non_det_exp_list es in let env = Type_check.env_of_annot (l, annot) in (match try_app (l,annot) (id,es') with | None -> (match const_prop_try_fn ref_vars l env (id,es') with | None -> re (E_app (id,es')) assigns | Some r -> r,assigns) | Some r -> r,assigns) | E_tuple es -> let es',assigns = non_det_exp_list es in re (E_tuple es') assigns | E_if (e1,e2,e3) -> let e1',assigns = const_prop_exp ref_vars substs assigns e1 in let e1_no_casts = drop_casts e1' in (match e1_no_casts with | E_aux (E_lit (L_aux ((L_true|L_false) as lit ,_)),_) -> (match lit with | L_true -> const_prop_exp ref_vars substs assigns e2 | _ -> const_prop_exp ref_vars substs assigns e3) | _ -> (* If the guard is an equality check, propagate the value. *) let env1 = env_of e1_no_casts in let is_equal id = List.exists (fun id' -> Id.compare id id' == 0) (Env.get_overloads (Id_aux (DeIid "==", Parse_ast.Unknown)) env1) in let substs_true = match e1_no_casts with | E_aux (E_app (id, [E_aux (E_id var,_); vl]),_) | E_aux (E_app (id, [vl; E_aux (E_id var,_)]),_) when is_equal id -> if is_value vl then (match Env.lookup_id var env1 with | Local (Immutable,_) -> Bindings.add var vl (fst substs),snd substs | _ -> substs) else substs | _ -> substs in (* Discard impossible branches *) if is_env_inconsistent (env_of e2) (snd substs) then const_prop_exp ref_vars substs assigns e3 else if is_env_inconsistent (env_of e3) (snd substs) then const_prop_exp ref_vars substs_true assigns e2 else let e2',assigns2 = const_prop_exp ref_vars substs_true assigns e2 in let e3',assigns3 = const_prop_exp ref_vars substs assigns e3 in let assigns = isubst_minus_set assigns (assigned_vars e2) in let assigns = isubst_minus_set assigns (assigned_vars e3) in re (E_if (e1',e2',e3')) assigns) | E_for (id,e1,e2,e3,ord,e4) -> (* Treat e1, e2 and e3 (from, to and by) as a non-det tuple *) let e1',e2',e3',assigns = non_det_exp_3 e1 e2 e3 in let assigns = isubst_minus_set assigns (assigned_vars e4) in let e4',_ = const_prop_exp ref_vars (Bindings.remove id (fst substs),snd substs) assigns e4 in re (E_for (id,e1',e2',e3',ord,e4')) assigns | E_loop (loop,e1,e2) -> let assigns = isubst_minus_set assigns (IdSet.union (assigned_vars e1) (assigned_vars e2)) in let e1',_ = const_prop_exp ref_vars substs assigns e1 in let e2',_ = const_prop_exp ref_vars substs assigns e2 in re (E_loop (loop,e1',e2')) assigns | E_vector es -> let es',assigns = non_det_exp_list es in begin match construct_lit_vector es' with | None -> re (E_vector es') assigns | Some lit -> re (E_lit lit) assigns end | E_vector_access (e1,e2) -> let e1',e2',assigns = non_det_exp_2 e1 e2 in re (E_vector_access (e1',e2')) assigns | E_vector_subrange (e1,e2,e3) -> let e1',e2',e3',assigns = non_det_exp_3 e1 e2 e3 in re (E_vector_subrange (e1',e2',e3')) assigns | E_vector_update (e1,e2,e3) -> let e1',e2',e3',assigns = non_det_exp_3 e1 e2 e3 in re (E_vector_update (e1',e2',e3')) assigns | E_vector_update_subrange (e1,e2,e3,e4) -> let e1',e2',e3',e4',assigns = non_det_exp_4 e1 e2 e3 e4 in re (E_vector_update_subrange (e1',e2',e3',e4')) assigns | E_vector_append (e1,e2) -> let e1',e2',assigns = non_det_exp_2 e1 e2 in re (E_vector_append (e1',e2')) assigns | E_list es -> let es',assigns = non_det_exp_list es in re (E_list es') assigns | E_cons (e1,e2) -> let e1',e2',assigns = non_det_exp_2 e1 e2 in re (E_cons (e1',e2')) assigns | E_record fes -> let assigned_in_fes = assigned_vars_in_fexps fes in let assigns = isubst_minus_set assigns assigned_in_fes in re (E_record (const_prop_fexps ref_vars substs assigns fes)) assigns | E_record_update (e,fes) -> let assigned_in = IdSet.union (assigned_vars_in_fexps fes) (assigned_vars e) in let assigns = isubst_minus_set assigns assigned_in in let e',_ = const_prop_exp ref_vars substs assigns e in re (E_record_update (e', const_prop_fexps ref_vars substs assigns fes)) assigns | E_field (e,id) -> let e',assigns = const_prop_exp ref_vars substs assigns e in re (E_field (e',id)) assigns | E_case (e,cases) -> let e',assigns = const_prop_exp ref_vars substs assigns e in (match can_match ref_vars e' cases substs assigns with | None -> let assigned_in = List.fold_left (fun vs pe -> IdSet.union vs (assigned_vars_in_pexp pe)) IdSet.empty cases in let assigns' = isubst_minus_set assigns assigned_in in re (E_case (e', List.map (const_prop_pexp ref_vars substs assigns) cases)) assigns' | Some (E_aux (_,(_,annot')) as exp,newbindings,kbindings) -> let exp = nexp_subst_exp (kbindings_from_list kbindings) exp in let newbindings_env = bindings_from_list newbindings in let substs' = bindings_union (fst substs) newbindings_env, snd substs in const_prop_exp ref_vars substs' assigns exp) | E_let (lb,e2) -> begin match lb with | LB_aux (LB_val (p,e), annot) -> let e',assigns = const_prop_exp ref_vars substs assigns e in let substs' = remove_bound substs p in let plain () = let e2',assigns = const_prop_exp ref_vars substs' assigns e2 in re (E_let (LB_aux (LB_val (p,e'), annot), e2')) assigns in if is_value e' && not (is_value e) then match can_match ref_vars e' [Pat_aux (Pat_exp (p,e2),(Unknown,empty_tannot))] substs assigns with | None -> plain () | Some (e'',bindings,kbindings) -> let e'' = nexp_subst_exp (kbindings_from_list kbindings) e'' in let bindings = bindings_from_list bindings in let substs'' = bindings_union (fst substs') bindings, snd substs' in const_prop_exp ref_vars substs'' assigns e'' else plain () end (* TODO maybe - tuple assignments *) | E_assign (le,e) -> let env = Type_check.env_of_annot (l, annot) in let assigned_in = IdSet.union (assigned_vars_in_lexp le) (assigned_vars e) in let assigns = isubst_minus_set assigns assigned_in in let le',idopt = const_prop_lexp ref_vars substs assigns le in let e',_ = const_prop_exp ref_vars substs assigns e in let assigns = match idopt with | Some id -> begin match Env.lookup_id id env with | Local (Mutable,_) | Unbound -> if is_value e' && not (IdSet.mem id ref_vars) then Bindings.add id (keep_undef_typ e') assigns else Bindings.remove id assigns | _ -> assigns end | None -> assigns in re (E_assign (le', e')) assigns | E_exit e -> let e',_ = const_prop_exp ref_vars substs assigns e in re (E_exit e') Bindings.empty | E_ref id -> re (E_ref id) Bindings.empty | E_throw e -> let e',_ = const_prop_exp ref_vars substs assigns e in re (E_throw e') Bindings.empty | E_try (e,cases) -> (* TODO: try and preserve *any* assignment info *) let e',_ = const_prop_exp ref_vars substs assigns e in re (E_case (e', List.map (const_prop_pexp ref_vars substs Bindings.empty) cases)) Bindings.empty | E_return e -> let e',_ = const_prop_exp ref_vars substs assigns e in re (E_return e') Bindings.empty | E_assert (e1,e2) -> let e1',e2',assigns = non_det_exp_2 e1 e2 in re (E_assert (e1',e2')) assigns | E_app_infix _ | E_var _ | E_internal_plet _ | E_internal_return _ | E_internal_value _ -> raise (Reporting.err_unreachable l __POS__ ("Unexpected expression encountered in monomorphisation: " ^ string_of_exp exp)) and const_prop_fexps ref_vars substs assigns fes = List.map (const_prop_fexp ref_vars substs assigns) fes and const_prop_fexp ref_vars substs assigns (FE_aux (FE_Fexp (id,e), annot)) = FE_aux (FE_Fexp (id,fst (const_prop_exp ref_vars substs assigns e)),annot) and const_prop_pexp ref_vars substs assigns = function | (Pat_aux (Pat_exp (p,e),l)) -> Pat_aux (Pat_exp (p,fst (const_prop_exp ref_vars (remove_bound substs p) assigns e)),l) | (Pat_aux (Pat_when (p,e1,e2),l)) -> let substs' = remove_bound substs p in let e1',assigns = const_prop_exp ref_vars substs' assigns e1 in Pat_aux (Pat_when (p, e1', fst (const_prop_exp ref_vars substs' assigns e2)),l) and const_prop_lexp ref_vars substs assigns ((LEXP_aux (e,annot)) as le) = let re e = LEXP_aux (e,annot), None in match e with | LEXP_id id (* shouldn't end up substituting here *) | LEXP_cast (_,id) -> le, Some id | LEXP_memory (id,es) -> re (LEXP_memory (id,List.map (fun e -> fst (const_prop_exp ref_vars substs assigns e)) es)) (* or here *) | LEXP_tup les -> re (LEXP_tup (List.map (fun le -> fst (const_prop_lexp ref_vars substs assigns le)) les)) | LEXP_vector (le,e) -> re (LEXP_vector (fst (const_prop_lexp ref_vars substs assigns le), fst (const_prop_exp ref_vars substs assigns e))) | LEXP_vector_range (le,e1,e2) -> re (LEXP_vector_range (fst (const_prop_lexp ref_vars substs assigns le), fst (const_prop_exp ref_vars substs assigns e1), fst (const_prop_exp ref_vars substs assigns e2))) | LEXP_vector_concat les -> re (LEXP_vector_concat (List.map (fun le -> fst (const_prop_lexp ref_vars substs assigns le)) les)) | LEXP_field (le,id) -> re (LEXP_field (fst (const_prop_lexp ref_vars substs assigns le), id)) | LEXP_deref e -> re (LEXP_deref (fst (const_prop_exp ref_vars substs assigns e))) (* Reduce a function when 1. all arguments are values, 2. the function is pure, 3. the result is a value (and 4. the function is not scattered, but that's not terribly important) to try and keep execution time and the results managable. *) and const_prop_try_fn ref_vars l env (id,args) = if not (List.for_all is_value args) then None else let Defs ds = defs in match list_extract (function | (DEF_fundef (FD_aux (FD_function (_,_,eff,((FCL_aux (FCL_Funcl (id',_),_))::_ as fcls)),_))) -> if Id.compare id id' = 0 then Some (eff,fcls) else None | _ -> None) ds with | None -> None | Some (eff,_) when not (is_pure eff) -> None | Some (_,fcls) -> let arg = match args with | [] -> E_aux (E_lit (L_aux (L_unit,Generated l)),(Generated l,empty_tannot)) | [e] -> e | _ -> E_aux (E_tuple args,(Generated l,empty_tannot)) in let cases = List.map (function | FCL_aux (FCL_Funcl (_,pexp), ann) -> pexp) fcls in match can_match_with_env ref_vars env arg cases (Bindings.empty,KBindings.empty) Bindings.empty with | Some (exp,bindings,kbindings) -> let substs = bindings_from_list bindings, kbindings_from_list kbindings in let result,_ = const_prop_exp ref_vars substs Bindings.empty exp in let result = match result with | E_aux (E_return e,_) -> e | _ -> result in if is_value result then Some result else None | None -> None and can_match_with_env ref_vars env (E_aux (e,(l,annot)) as exp0) cases (substs,ksubsts) assigns = let rec findpat_generic check_pat description assigns = function | [] -> (Reporting.print_err l "Monomorphisation" ("Failed to find a case for " ^ description); None) | [Pat_aux (Pat_exp (P_aux (P_wild,_),exp),_)] -> Some (exp,[],[]) | (Pat_aux (Pat_exp (P_aux (P_typ (_,p),_),exp),ann))::tl -> findpat_generic check_pat description assigns ((Pat_aux (Pat_exp (p,exp),ann))::tl) | (Pat_aux (Pat_exp (P_aux (P_id id',_),exp),_))::tlx when pat_id_is_variable env id' -> Some (exp, [(id', exp0)], []) | (Pat_aux (Pat_when (P_aux (P_id id',_),guard,exp),_))::tl when pat_id_is_variable env id' -> begin let substs = Bindings.add id' exp0 substs, ksubsts in let (E_aux (guard,_)),assigns = const_prop_exp ref_vars substs assigns guard in match guard with | E_lit (L_aux (L_true,_)) -> Some (exp,[(id',exp0)],[]) | E_lit (L_aux (L_false,_)) -> findpat_generic check_pat description assigns tl | _ -> None end | (Pat_aux (Pat_when (p,guard,exp),_))::tl -> begin match check_pat p with | DoesNotMatch -> findpat_generic check_pat description assigns tl | DoesMatch (vsubst,ksubst) -> begin let guard = nexp_subst_exp (kbindings_from_list ksubst) guard in let substs = bindings_union substs (bindings_from_list vsubst), kbindings_union ksubsts (kbindings_from_list ksubst) in let (E_aux (guard,_)),assigns = const_prop_exp ref_vars substs assigns guard in match guard with | E_lit (L_aux (L_true,_)) -> Some (exp,vsubst,ksubst) | E_lit (L_aux (L_false,_)) -> findpat_generic check_pat description assigns tl | _ -> None end | GiveUp -> None end | (Pat_aux (Pat_exp (p,exp),_))::tl -> match check_pat p with | DoesNotMatch -> findpat_generic check_pat description assigns tl | DoesMatch (subst,ksubst) -> Some (exp,subst,ksubst) | GiveUp -> None in match e with | E_id id -> (match Env.lookup_id id env with | Enum _ -> let checkpat = function | P_aux (P_id id',_) | P_aux (P_app (id',[]),_) -> if Id.compare id id' = 0 then DoesMatch ([],[]) else DoesNotMatch | P_aux (_,(l',_)) -> (Reporting.print_err l' "Monomorphisation" "Unexpected kind of pattern for enumeration"; GiveUp) in findpat_generic checkpat (string_of_id id) assigns cases | _ -> None) | E_lit (L_aux (lit_e, lit_l)) -> let checkpat = function | P_aux (P_lit (L_aux (lit_p, _)),_) -> if lit_match (lit_e,lit_p) then DoesMatch ([],[]) else DoesNotMatch | P_aux (P_var (P_aux (P_id id,p_id_annot), TP_aux (TP_var kid, _)),_) -> begin match lit_e with | L_num i -> DoesMatch ([id, E_aux (e,(l,annot))], [kid,Nexp_aux (Nexp_constant i,Unknown)]) (* For undefined we fix the type-level size (because there's no good way to construct an undefined size), but leave the term as undefined to make the meaning clear. *) | L_undef -> let nexp = fabricate_nexp l annot in let typ = subst_src_typ (KBindings.singleton kid nexp) (typ_of_annot p_id_annot) in DoesMatch ([id, E_aux (E_cast (typ,E_aux (e,(l,empty_tannot))),(l,empty_tannot))], [kid,nexp]) | _ -> (Reporting.print_err lit_l "Monomorphisation" "Unexpected kind of literal for var match"; GiveUp) end | P_aux (_,(l',_)) -> (Reporting.print_err l' "Monomorphisation" "Unexpected kind of pattern for literal"; GiveUp) in findpat_generic checkpat "literal" assigns cases | E_vector es when List.for_all (function (E_aux (E_lit _,_)) -> true | _ -> false) es -> let checkpat = function | P_aux (P_vector ps,_) -> let matches = List.map2 (fun e p -> match e, p with | E_aux (E_lit (L_aux (lit,_)),_), P_aux (P_lit (L_aux (lit',_)),_) -> if lit_match (lit,lit') then DoesMatch ([],[]) else DoesNotMatch | E_aux (E_lit l,_), P_aux (P_id var,_) when pat_id_is_variable env var -> DoesMatch ([var, e],[]) | _ -> GiveUp) es ps in let final = List.fold_left (fun acc m -> match acc, m with | _, GiveUp -> GiveUp | GiveUp, _ -> GiveUp | DoesMatch (sub,ksub), DoesMatch(sub',ksub') -> DoesMatch(sub@sub',ksub@ksub') | _ -> DoesNotMatch) (DoesMatch ([],[])) matches in (match final with | GiveUp -> (Reporting.print_err l "Monomorphisation" "Unexpected kind of pattern for vector literal"; GiveUp) | _ -> final) | _ -> (Reporting.print_err l "Monomorphisation" "Unexpected kind of pattern for vector literal"; GiveUp) in findpat_generic checkpat "vector literal" assigns cases | E_cast (undef_typ, (E_aux (E_lit (L_aux (L_undef, lit_l)),_) as e_undef)) -> let checkpat = function | P_aux (P_lit (L_aux (lit_p, _)),_) -> DoesNotMatch | P_aux (P_var (P_aux (P_id id,p_id_annot), TP_aux (TP_var kid, _)),_) -> (* For undefined we fix the type-level size (because there's no good way to construct an undefined size), but leave the term as undefined to make the meaning clear. *) let nexp = fabricate_nexp l annot in let kids = equal_kids (env_of_annot p_id_annot) kid in let ksubst = KidSet.fold (fun k b -> KBindings.add k nexp b) kids KBindings.empty in let typ = subst_src_typ ksubst (typ_of_annot p_id_annot) in DoesMatch ([id, E_aux (E_cast (typ,e_undef),(l,empty_tannot))], KBindings.bindings ksubst) | P_aux (_,(l',_)) -> (Reporting.print_err l' "Monomorphisation" "Unexpected kind of pattern for literal"; GiveUp) in findpat_generic checkpat "literal" assigns cases | _ -> None and can_match ref_vars exp = let env = Type_check.env_of exp in can_match_with_env ref_vars env exp in let subst_exp ref_vars substs ksubsts exp = let substs = bindings_from_list substs, ksubsts in fst (const_prop_exp ref_vars substs Bindings.empty exp) in (* Split a variable pattern into every possible value *) let split var pat_l annot = let v = string_of_id var in let env = Type_check.env_of_annot (pat_l, annot) in let typ = Type_check.typ_of_annot (pat_l, annot) in let typ = Env.expand_synonyms env typ in let Typ_aux (ty,l) = typ in let new_l = Generated l in let renew_id (Id_aux (id,l)) = Id_aux (id,new_l) in let cannot msg = let open Reporting in let error = Err_general (pat_l, ("Cannot split type " ^ string_of_typ typ ^ " for variable " ^ v ^ ": " ^ msg)) in if all_errors then (no_errors_happened := false; print_error error; [P_aux (P_id var,(pat_l,annot)),[],[],[]]) else raise (Fatal_error error) in match ty with | Typ_id (Id_aux (Id "bool",_)) | Typ_app (Id_aux (Id "atom_bool", _), [_]) -> [P_aux (P_lit (L_aux (L_true,new_l)),(l,annot)),[var, E_aux (E_lit (L_aux (L_true,new_l)),(new_l,annot))],[],[]; P_aux (P_lit (L_aux (L_false,new_l)),(l,annot)),[var, E_aux (E_lit (L_aux (L_false,new_l)),(new_l,annot))],[],[]] | Typ_id id -> (try (* enumerations *) let ns = Env.get_enum id env in List.map (fun n -> (P_aux (P_id (renew_id n),(l,annot)), [var,E_aux (E_id (renew_id n),(new_l,annot))],[],[])) ns with Type_error _ -> match id with | Id_aux (Id "bit",_) -> List.map (fun b -> P_aux (P_lit (L_aux (b,new_l)),(l,annot)), [var,E_aux (E_lit (L_aux (b,new_l)),(new_l, annot))],[],[]) [L_zero; L_one] | _ -> cannot ("don't know about type " ^ string_of_id id)) | Typ_app (Id_aux (Id "vector",_), [A_aux (A_nexp len,_);_;A_aux (A_typ (Typ_aux (Typ_id (Id_aux (Id "bit",_)),_)),_)]) -> (match len with | Nexp_aux (Nexp_constant sz,_) -> let lits = make_vectors (Big_int.to_int sz) in List.map (fun lit -> P_aux (P_lit lit,(l,annot)), [var,E_aux (E_lit lit,(new_l,annot))],[],[]) lits | _ -> cannot ("length not constant, " ^ string_of_nexp len) ) (* set constrained numbers *) | Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (value,_) as nexp),_)]) -> begin let mk_lit kid i = let lit = L_aux (L_num i,new_l) in P_aux (P_lit lit,(l,annot)), [var,E_aux (E_lit lit,(new_l,annot))],[], match kid with None -> [] | Some k -> [(k,nconstant i)] in match value with | Nexp_constant i -> [mk_lit None i] | Nexp_var kvar -> let ncs = Env.get_constraints env in let nc = List.fold_left nc_and nc_true ncs in (match extract_set_nc l kvar nc with | (is,_) -> List.map (mk_lit (Some kvar)) is | exception Reporting.Fatal_error (Reporting.Err_general (_,msg)) -> cannot msg) | _ -> cannot ("unsupport atom nexp " ^ string_of_nexp nexp) end | _ -> cannot ("unsupported type " ^ string_of_typ typ) in (* Split variable patterns at the given locations *) let map_locs ls (Defs defs) = let rec match_l = function | Unknown -> [] | Unique (_, l) -> match_l l | Generated l -> [] (* Could do match_l l, but only want to split user-written patterns *) | Documented (_,l) -> match_l l | Range (p,q) -> let matches = List.filter (fun ((filename,line),_,_) -> p.Lexing.pos_fname = filename && p.Lexing.pos_lnum <= line && line <= q.Lexing.pos_lnum) ls in List.map (fun (_,var,optpats) -> (var,optpats)) matches in let split_pat vars p = let id_match = function | Id_aux (Id x,_) -> (try Some (List.assoc x vars) with Not_found -> None) | Id_aux (DeIid x,_) -> (try Some (List.assoc x vars) with Not_found -> None) in let rec list f = function | [] -> None | h::t -> let t' = match list f t with | None -> [t,[],[],[]] | Some t' -> t' in let h' = match f h with | None -> [h,[],[],[]] | Some ps -> ps in Some (List.concat (List.map (fun (h,hsubs,hpchoices,hksubs) -> List.map (fun (t,tsubs,tpchoices,tksubs) -> (h::t, hsubs@tsubs, hpchoices@tpchoices, hksubs@tksubs)) t') h')) in let rec spl (P_aux (p,(l,annot))) = let relist f ctx ps = optmap (list f ps) (fun ps -> List.map (fun (ps,sub,pchoices,ksub) -> P_aux (ctx ps,(l,annot)),sub,pchoices,ksub) ps) in let re f p = optmap (spl p) (fun ps -> List.map (fun (p,sub,pchoices,ksub) -> (P_aux (f p,(l,annot)), sub, pchoices, ksub)) ps) in let fpat (FP_aux ((FP_Fpat (id,p),annot))) = optmap (spl p) (fun ps -> List.map (fun (p,sub,pchoices,ksub) -> FP_aux (FP_Fpat (id,p), annot), sub, pchoices, ksub) ps) in match p with | P_lit _ | P_wild -> None | P_or (p1, p2) -> (* Todo: I am not proud of this abuse of relist - but creating a special * version of re just for two entries did not seem worth it *) relist spl (fun [p1'; p2'] -> P_or (p1', p2')) [p1; p2] | P_not p -> (* todo: not sure that I can't split - but can't figure out how at * the moment *) raise (Reporting.err_general l ("Cannot split on 'not' pattern")) | P_as (p',id) when id_match id <> None -> raise (Reporting.err_general l ("Cannot split " ^ string_of_id id ^ " on 'as' pattern")) | P_as (p',id) -> re (fun p -> P_as (p,id)) p' | P_typ (t,p') -> re (fun p -> P_typ (t,p)) p' | P_var (p', (TP_aux (TP_var kid,_) as tp)) -> (match spl p' with | None -> None | Some ps -> let kids = equal_kids (env_of_pat p') kid in Some (List.map (fun (p,sub,pchoices,ksub) -> P_aux (P_var (p,tp),(l,annot)), sub, pchoices, List.concat (List.map (fun (k,nexp) -> if KidSet.mem k kids then [(kid,nexp);(k,nexp)] else [(k,nexp)]) ksub)) ps)) | P_var (p',tp) -> re (fun p -> P_var (p,tp)) p' | P_id id -> (match id_match id with | None -> None (* Total case split *) | Some None -> Some (split id l annot) (* Where the analysis proposed a specific case split, propagate a literal as normal, but perform a more careful transformation otherwise *) | Some (Some (pats,l)) -> let max = List.length pats - 1 in let lit_like = function | P_lit _ -> true | P_vector ps -> List.for_all (function P_aux (P_lit _,_) -> true | _ -> false) ps | _ -> false in let rec to_exp = function | P_aux (P_lit lit,(l,ann)) -> E_aux (E_lit lit,(Generated l,ann)) | P_aux (P_vector ps,(l,ann)) -> E_aux (E_vector (List.map to_exp ps),(Generated l,ann)) | _ -> assert false in Some (List.mapi (fun i p -> match p with | P_aux (P_lit (L_aux (L_num j,_) as lit),(pl,pannot)) -> let orig_typ = Env.base_typ_of (env_of_annot (l,annot)) (typ_of_annot (l,annot)) in let kid_subst = match orig_typ with | Typ_aux (Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (Nexp_var var,_)),_)]),_) -> [var,nconstant j] | _ -> [] in p,[id,E_aux (E_lit lit,(Generated pl,pannot))],[l,(i,max,[])],kid_subst | P_aux (p',(pl,pannot)) when lit_like p' -> p,[id,to_exp p],[l,(i,max,[])],[] | _ -> let p',subst = freshen_pat_bindings p in match p' with | P_aux (P_wild,_) -> P_aux (P_id id,(l,annot)),[],[l,(i,max,subst)],[] | _ -> P_aux (P_as (p',id),(l,annot)),[],[l,(i,max,subst)],[]) pats) ) | P_app (id,ps) -> relist spl (fun ps -> P_app (id,ps)) ps | P_record (fps,flag) -> relist fpat (fun fps -> P_record (fps,flag)) fps | P_vector ps -> relist spl (fun ps -> P_vector ps) ps | P_vector_concat ps -> relist spl (fun ps -> P_vector_concat ps) ps | P_string_append ps -> relist spl (fun ps -> P_string_append ps) ps | P_tup ps -> relist spl (fun ps -> P_tup ps) ps | P_list ps -> relist spl (fun ps -> P_list ps) ps | P_cons (p1,p2) -> match spl p1, spl p2 with | None, None -> None | p1', p2' -> let p1' = match p1' with None -> [p1,[],[],[]] | Some p1' -> p1' in let p2' = match p2' with None -> [p2,[],[],[]] | Some p2' -> p2' in let ps = List.map (fun (p1',subs1,pchoices1,ksub1) -> List.map (fun (p2',subs2,pchoices2,ksub2) -> P_aux (P_cons (p1',p2'),(l,annot)),subs1@subs2,pchoices1@pchoices2,ksub1@ksub2) p2') p1' in Some (List.concat ps) in spl p in let map_pat_by_loc (P_aux (p,(l,_)) as pat) = match match_l l with | [] -> None | vars -> split_pat vars pat in let map_pat (P_aux (p,(l,tannot)) as pat) = match map_pat_by_loc pat with | Some l -> VarSplit l | None -> match p with | P_app (id,args) -> begin match List.find (fun (id',_) -> Id.compare id id' = 0) refinements with | (_,variants) -> let kid,kid_annot = match args with | [P_aux (P_var (_, TP_aux (TP_var kid, _)),ann)] -> kid,ann | _ -> raise (Reporting.err_general l "Pattern match not currently supported by monomorphisation") in let map_inst (insts,id',_) = let insts = match insts with [(v,Some i)] -> [(kid,Nexp_aux (Nexp_constant i, Generated l))] | _ -> assert false in (* let insts,_ = split_insts insts in let insts = List.map (fun (v,i) -> (??, Nexp_aux (Nexp_constant i,Generated l))) insts in P_aux (P_app (id',args),(Generated l,tannot)), *) P_aux (P_app (id',[P_aux (P_id (id_of_kid kid),kid_annot)]),(Generated l,tannot)), kbindings_from_list insts in ConstrSplit (List.map map_inst variants) | exception Not_found -> NoSplit end | _ -> NoSplit in let check_single_pat (P_aux (_,(l,annot)) as p) = match match_l l with | [] -> p | lvs -> let pvs = bindings_from_pat p in let pvs = List.map string_of_id pvs in let overlap = List.exists (fun (v,_) -> List.mem v pvs) lvs in let () = if overlap then Reporting.print_err l "Monomorphisation" "Splitting a singleton pattern is not possible" in p in let check_split_size lst l = let size = List.length lst in if size > size_set_limit then let open Reporting in let error = Err_general (l, "Case split is too large (" ^ string_of_int size ^ " > limit " ^ string_of_int size_set_limit ^ ")") in if all_errors then (no_errors_happened := false; print_error error; false) else raise (Fatal_error error) else true in let map_fns ref_vars = let rec map_exp ((E_aux (e,annot)) as ea) = let re e = E_aux (e,annot) in match e with | E_block es -> re (E_block (List.map map_exp es)) | E_nondet es -> re (E_nondet (List.map map_exp es)) | E_id _ | E_lit _ | E_sizeof _ | E_constraint _ | E_ref _ | E_internal_value _ -> ea | E_cast (t,e') -> re (E_cast (t, map_exp e')) | E_app (id,es) -> let es' = List.map map_exp es in let env = env_of_annot annot in begin match Env.is_union_constructor id env, refine_constructor refinements (fst annot) env id es' with | true, Some exp -> re exp | _,_ -> re (E_app (id,es')) end | E_app_infix (e1,id,e2) -> re (E_app_infix (map_exp e1,id,map_exp e2)) | E_tuple es -> re (E_tuple (List.map map_exp es)) | E_if (e1,e2,e3) -> re (E_if (map_exp e1, map_exp e2, map_exp e3)) | E_for (id,e1,e2,e3,ord,e4) -> re (E_for (id,map_exp e1,map_exp e2,map_exp e3,ord,map_exp e4)) | E_loop (loop,e1,e2) -> re (E_loop (loop,map_exp e1,map_exp e2)) | E_vector es -> re (E_vector (List.map map_exp es)) | E_vector_access (e1,e2) -> re (E_vector_access (map_exp e1,map_exp e2)) | E_vector_subrange (e1,e2,e3) -> re (E_vector_subrange (map_exp e1,map_exp e2,map_exp e3)) | E_vector_update (e1,e2,e3) -> re (E_vector_update (map_exp e1,map_exp e2,map_exp e3)) | E_vector_update_subrange (e1,e2,e3,e4) -> re (E_vector_update_subrange (map_exp e1,map_exp e2,map_exp e3,map_exp e4)) | E_vector_append (e1,e2) -> re (E_vector_append (map_exp e1,map_exp e2)) | E_list es -> re (E_list (List.map map_exp es)) | E_cons (e1,e2) -> re (E_cons (map_exp e1,map_exp e2)) | E_record fes -> re (E_record (List.map map_fexp fes)) | E_record_update (e,fes) -> re (E_record_update (map_exp e, List.map map_fexp fes)) | E_field (e,id) -> re (E_field (map_exp e,id)) | E_case (e,cases) -> re (E_case (map_exp e, List.concat (List.map map_pexp cases))) | E_let (lb,e) -> re (E_let (map_letbind lb, map_exp e)) | E_assign (le,e) -> re (E_assign (map_lexp le, map_exp e)) | E_exit e -> re (E_exit (map_exp e)) | E_throw e -> re (E_throw e) | E_try (e,cases) -> re (E_try (map_exp e, List.concat (List.map map_pexp cases))) | E_return e -> re (E_return (map_exp e)) | E_assert (e1,e2) -> re (E_assert (map_exp e1,map_exp e2)) | E_var (le,e1,e2) -> re (E_var (map_lexp le, map_exp e1, map_exp e2)) | E_internal_plet (p,e1,e2) -> re (E_internal_plet (check_single_pat p, map_exp e1, map_exp e2)) | E_internal_return e -> re (E_internal_return (map_exp e)) and map_fexp (FE_aux (FE_Fexp (id,e), annot)) = FE_aux (FE_Fexp (id,map_exp e),annot) and map_pexp = function | Pat_aux (Pat_exp (p,e),l) -> let nosplit = [Pat_aux (Pat_exp (p,map_exp e),l)] in (match map_pat p with | NoSplit -> nosplit | VarSplit patsubsts -> if check_split_size patsubsts (pat_loc p) then List.map (fun (pat',substs,pchoices,ksubsts) -> let ksubsts = kbindings_from_list ksubsts in let exp' = nexp_subst_exp ksubsts e in let exp' = subst_exp ref_vars substs ksubsts exp' in let exp' = apply_pat_choices pchoices exp' in let exp' = stop_at_false_assertions exp' in Pat_aux (Pat_exp (pat', map_exp exp'),l)) patsubsts else nosplit | ConstrSplit patnsubsts -> List.map (fun (pat',nsubst) -> let pat' = nexp_subst_pat nsubst pat' in let exp' = nexp_subst_exp nsubst e in Pat_aux (Pat_exp (pat', map_exp exp'),l) ) patnsubsts) | Pat_aux (Pat_when (p,e1,e2),l) -> let nosplit = [Pat_aux (Pat_when (p,map_exp e1,map_exp e2),l)] in (match map_pat p with | NoSplit -> nosplit | VarSplit patsubsts -> if check_split_size patsubsts (pat_loc p) then List.map (fun (pat',substs,pchoices,ksubsts) -> let ksubsts = kbindings_from_list ksubsts in let exp1' = nexp_subst_exp ksubsts e1 in let exp1' = subst_exp ref_vars substs ksubsts exp1' in let exp1' = apply_pat_choices pchoices exp1' in let exp2' = nexp_subst_exp ksubsts e2 in let exp2' = subst_exp ref_vars substs ksubsts exp2' in let exp2' = apply_pat_choices pchoices exp2' in let exp2' = stop_at_false_assertions exp2' in Pat_aux (Pat_when (pat', map_exp exp1', map_exp exp2'),l)) patsubsts else nosplit | ConstrSplit patnsubsts -> List.map (fun (pat',nsubst) -> let pat' = nexp_subst_pat nsubst pat' in let exp1' = nexp_subst_exp nsubst e1 in let exp2' = nexp_subst_exp nsubst e2 in Pat_aux (Pat_when (pat', map_exp exp1', map_exp exp2'),l) ) patnsubsts) and map_letbind (LB_aux (lb,annot)) = match lb with | LB_val (p,e) -> LB_aux (LB_val (check_single_pat p,map_exp e), annot) and map_lexp ((LEXP_aux (e,annot)) as le) = let re e = LEXP_aux (e,annot) in match e with | LEXP_id _ | LEXP_cast _ -> le | LEXP_memory (id,es) -> re (LEXP_memory (id,List.map map_exp es)) | LEXP_tup les -> re (LEXP_tup (List.map map_lexp les)) | LEXP_vector (le,e) -> re (LEXP_vector (map_lexp le, map_exp e)) | LEXP_vector_range (le,e1,e2) -> re (LEXP_vector_range (map_lexp le, map_exp e1, map_exp e2)) | LEXP_vector_concat les -> re (LEXP_vector_concat (List.map map_lexp les)) | LEXP_field (le,id) -> re (LEXP_field (map_lexp le, id)) | LEXP_deref e -> re (LEXP_deref (map_exp e)) in map_pexp, map_letbind in let map_pexp top_pexp = (* Construct the set of referenced variables so that we don't accidentally make false assumptions about them during constant propagation. Note that we assume there aren't any in the guard. *) let (_,_,body,_) = destruct_pexp top_pexp in let ref_vars = referenced_vars body in fst (map_fns ref_vars) top_pexp in let map_letbind (LB_aux (LB_val (_,e),_) as lb) = let ref_vars = referenced_vars e in snd (map_fns ref_vars) lb in let map_funcl (FCL_aux (FCL_Funcl (id,pexp),annot)) = List.map (fun pexp -> FCL_aux (FCL_Funcl (id,pexp),annot)) (map_pexp pexp) in let map_fundef (FD_aux (FD_function (r,t,e,fcls),annot)) = FD_aux (FD_function (r,t,e,List.concat (List.map map_funcl fcls)),annot) in let map_scattered_def sd = match sd with | SD_aux (SD_funcl fcl, annot) -> List.map (fun fcl' -> SD_aux (SD_funcl fcl', annot)) (map_funcl fcl) | _ -> [sd] in let map_def d = match d with | DEF_type _ | DEF_spec _ | DEF_default _ | DEF_reg_dec _ | DEF_overload _ | DEF_fixity _ | DEF_pragma _ | DEF_internal_mutrec _ -> [d] | DEF_fundef fd -> [DEF_fundef (map_fundef fd)] | DEF_mapdef (MD_aux (_, (l, _))) -> Reporting.unreachable l __POS__ "mappings should be gone by now" | DEF_val lb -> [DEF_val (map_letbind lb)] | DEF_scattered sd -> List.map (fun x -> DEF_scattered x) (map_scattered_def sd) in Defs (List.concat (List.map map_def defs)) in let defs'' = map_locs splits defs' in !no_errors_happened, defs'' (* The next section of code turns atom('n) types into itself('n) types, which survive into the Lem output, so can be used to parametrise functions over internal bitvector lengths (such as datasize and regsize in ARM specs *) module AtomToItself = struct let findi f = let rec aux n = function | [] -> None | h::t -> match f h with Some x -> Some (n,x) | _ -> aux (n+1) t in aux 0 let mapat f is xs = let rec aux n = function | [] -> [] | h::t when Util.IntSet.mem n is -> let h' = f h in let t' = aux (n+1) t in h'::t' | h::t -> let t' = aux (n+1) t in h::t' in aux 0 xs let mapat_extra f is xs = let rec aux n = function | [] -> [], [] | h::t when Util.IntSet.mem n is -> let h',x = f n h in let t',xs = aux (n+1) t in h'::t',x::xs | h::t -> let t',xs = aux (n+1) t in h::t',xs in aux 0 xs let tyvars_bound_in_pat pat = let rec tp_kids s (TP_aux (tp,_)) = match tp with | TP_wild -> s | TP_var kid -> KidSet.add kid s | TP_app (_,tps) -> List.fold_left tp_kids s tps in let open Rewriter in fst (fold_pat { (compute_pat_alg KidSet.empty KidSet.union) with p_var = (fun ((s,pat), tpat) -> tp_kids s tpat, P_var (pat, tpat)) } pat) let tyvars_bound_in_lb (LB_aux (LB_val (pat,_),_)) = tyvars_bound_in_pat pat let rec sizes_of_typ (Typ_aux (t,l)) = match t with | Typ_id _ | Typ_var _ -> KidSet.empty | Typ_fn _ -> raise (Reporting.err_general l "Function type on expression") | Typ_bidir _ -> raise (Reporting.err_general l "Mapping type on expression") | Typ_tup typs -> kidset_bigunion (List.map sizes_of_typ typs) | Typ_exist (kopts,_,typ) -> List.fold_left (fun s k -> KidSet.remove (kopt_kid k) s) (sizes_of_typ typ) kopts | Typ_app (Id_aux (Id "vector",_), [A_aux (A_nexp size,_); _;A_aux (A_typ (Typ_aux (Typ_id (Id_aux (Id "bit",_)),_)),_)]) -> KidSet.of_list (size_nvars_nexp size) | Typ_app (_,tas) -> kidset_bigunion (List.map sizes_of_typarg tas) | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and sizes_of_typarg (A_aux (ta,_)) = match ta with A_nexp _ | A_order _ -> KidSet.empty | A_typ typ -> sizes_of_typ typ let sizes_of_annot (l, tannot) = match destruct_tannot tannot with | None -> KidSet.empty | Some (env,typ,_) -> sizes_of_typ (Env.base_typ_of env typ) let change_parameter_pat i = function | P_aux (P_id var, (l,_)) | P_aux (P_typ (_,P_aux (P_id var, (l,_))),_) -> P_aux (P_id var, (l,empty_tannot)), ([var],[]) | P_aux (P_lit lit,(l,_)) -> let var = mk_id ("p#" ^ string_of_int i) in let annot = (Generated l, empty_tannot) in let test : tannot exp = E_aux (E_app_infix (E_aux (E_app (mk_id "size_itself_int",[E_aux (E_id var,annot)]),annot), mk_id "==", E_aux (E_lit lit,annot)), annot) in P_aux (P_id var, (l,empty_tannot)), ([],[test]) | P_aux (_,(l,_)) -> raise (Reporting.err_unreachable l __POS__ "Expected variable pattern") (* TODO: make more precise, preferably with a proper free variables function which deals with shadowing *) let var_maybe_used_in_exp exp var = let open Rewriter in fst (fold_exp { (compute_exp_alg false (||)) with e_id = fun id -> (Id.compare id var == 0, E_id id) } exp) (* We add code to change the itself('n) parameter into the corresponding integer. We always do this for the function body (otherwise we'd have to do something clever with E_sizeof to avoid making things more complex), but only for guards when they actually use the variable. *) let add_var_rebind unconditional exp var = if unconditional || var_maybe_used_in_exp exp var then let l = Generated Unknown in let annot = (l,empty_tannot) in E_aux (E_let (LB_aux (LB_val (P_aux (P_id var,annot), E_aux (E_app (mk_id "size_itself_int",[E_aux (E_id var,annot)]),annot)),annot),exp),annot) else exp (* atom('n) arguments to function calls need to be rewritten *) let replace_with_the_value bound_nexps (E_aux (_,(l,_)) as exp) = let env = env_of exp in let typ, wrap = match typ_of exp with | Typ_aux (Typ_exist (kids,nc,typ),l) -> typ, fun t -> Typ_aux (Typ_exist (kids,nc,t),l) | typ -> typ, fun x -> x in let typ = Env.expand_synonyms env typ in let replace_size size = (* TODO: pick simpler nexp when there's a choice (also in pretty printer) *) let is_equal nexp = prove __POS__ env (NC_aux (NC_equal (size,nexp), Parse_ast.Unknown)) in if is_nexp_constant size then size else match solve env size with | Some n -> nconstant n | None -> match List.find is_equal bound_nexps with | nexp -> nexp | exception Not_found -> size in let mk_exp nexp l l' = let nexp = replace_size nexp in E_aux (E_cast (wrap (Typ_aux (Typ_app (Id_aux (Id "itself",Generated Unknown), [A_aux (A_nexp nexp,l')]),Generated Unknown)), E_aux (E_app (Id_aux (Id "make_the_value",Generated Unknown),[exp]),(Generated l,empty_tannot))), (Generated l,empty_tannot)) in match destruct_numeric typ with | Some ([], nc, nexp) when prove __POS__ env nc -> mk_exp nexp l l | _ -> raise (Reporting.err_unreachable l __POS__ ("replace_with_the_value: Unsupported type " ^ string_of_typ typ)) let replace_type env typ = let Typ_aux (t,l) = Env.expand_synonyms env typ in match destruct_numeric typ with | Some ([], nc, nexp) when prove __POS__ env nc -> Typ_aux (Typ_app (mk_id "itself", [A_aux (A_nexp nexp, Generated l)]), Generated l) | _ -> raise (Reporting.err_unreachable l __POS__ ("replace_type: Unsupported type " ^ string_of_typ typ)) let rewrite_size_parameters env (Defs defs) = let open Rewriter in let open Util in let sizes_funcl fsizes (FCL_aux (FCL_Funcl (id,pexp),(l,ann))) = let pat,guard,exp,pannot = destruct_pexp pexp in let env = env_of_annot (l,ann) in let _, typ = Env.get_val_spec_orig id env in let types = match typ with | Typ_aux (Typ_fn (arg_typs,_,_),_) -> List.map (Env.expand_synonyms env) arg_typs | _ -> raise (Reporting.err_unreachable l __POS__ "Function clause does not have a function type") in let add_parameter (i,nmap) typ = let nmap = match Env.base_typ_of env typ with Typ_aux (Typ_app(Id_aux (Id "range",_), [A_aux (A_nexp nexp,_); A_aux (A_nexp nexp',_)]),_) when Nexp.compare nexp nexp' = 0 && not (NexpMap.mem nexp nmap) -> NexpMap.add nexp i nmap | Typ_aux (Typ_app(Id_aux (Id "atom", _), [A_aux (A_nexp nexp,_)]), _) when not (NexpMap.mem nexp nmap) -> NexpMap.add nexp i nmap | _ -> nmap in (i+1,nmap) in let (_,nexp_map) = List.fold_left add_parameter (0,NexpMap.empty) types in let nexp_list = NexpMap.bindings nexp_map in (* let () = print_endline ("Type of pattern for " ^ string_of_id id ^": " ^string_of_typ (typ_of_pat pat)); print_endline ("Types : " ^ String.concat ", " (List.map string_of_typ types)); print_endline ("Nexp map for " ^ string_of_id id); List.iter (fun (nexp, i) -> print_endline (" " ^ string_of_nexp nexp ^ " -> " ^ string_of_int i)) nexp_list in *) let parameters_for tannot = match destruct_tannot tannot with | Some (env,typ,_) -> begin match Env.base_typ_of env typ with | Typ_aux (Typ_app (Id_aux (Id "vector",_), [A_aux (A_nexp size,_);_;_]),_) when not (is_nexp_constant size) -> begin match NexpMap.find size nexp_map with | i -> IntSet.singleton i | exception Not_found -> (* Look for equivalent nexps, but only in consistent type env *) if prove __POS__ env (NC_aux (NC_false,Unknown)) then IntSet.empty else match List.find (fun (nexp,i) -> prove __POS__ env (NC_aux (NC_equal (nexp,size),Unknown))) nexp_list with | _, i -> IntSet.singleton i | exception Not_found -> IntSet.empty end | _ -> IntSet.empty end | None -> IntSet.empty in let parameters_to_rewrite = fst (fold_pexp { (compute_exp_alg IntSet.empty IntSet.union) with e_aux = (fun ((s,e),(l,annot)) -> IntSet.union s (parameters_for annot),E_aux (e,(l,annot))) } pexp) in let new_nexps = NexpSet.of_list (List.map fst (List.filter (fun (nexp,i) -> IntSet.mem i parameters_to_rewrite) nexp_list)) in match Bindings.find id fsizes with | old,old_nexps -> Bindings.add id (IntSet.union old parameters_to_rewrite, NexpSet.union old_nexps new_nexps) fsizes | exception Not_found -> Bindings.add id (parameters_to_rewrite, new_nexps) fsizes in let sizes_def fsizes = function | DEF_fundef (FD_aux (FD_function (_,_,_,funcls),_)) -> List.fold_left sizes_funcl fsizes funcls | _ -> fsizes in let fn_sizes = List.fold_left sizes_def Bindings.empty defs in let rewrite_funcl (FCL_aux (FCL_Funcl (id,pexp),(l,annot))) = let pat,guard,body,(pl,_) = destruct_pexp pexp in let pat,guard,body, nexps = (* Update pattern and add itself -> nat wrapper to body *) match Bindings.find id fn_sizes with | to_change,nexps -> let pat, vars, new_guards = match pat with P_aux (P_tup pats,(l,_)) -> let pats, vars_guards = mapat_extra change_parameter_pat to_change pats in let vars, new_guards = List.split vars_guards in P_aux (P_tup pats,(l,empty_tannot)), vars, new_guards | P_aux (_,(l,_)) -> begin if IntSet.is_empty to_change then pat, [], [] else let pat, (var, newguard) = change_parameter_pat 0 pat in pat, [var], [newguard] end in let vars, new_guards = List.concat vars, List.concat new_guards in let body = List.fold_left (add_var_rebind true) body vars in let merge_guards g1 g2 : tannot exp = E_aux (E_app_infix (g1, mk_id "&", g2),(Generated Unknown,empty_tannot)) in let guard = match guard, new_guards with | None, [] -> None | None, (h::t) -> Some (List.fold_left merge_guards h t) | Some exp, gs -> let exp' = List.fold_left (add_var_rebind false) exp vars in Some (List.fold_left merge_guards exp' gs) in pat,guard,body,nexps | exception Not_found -> pat,guard,body,NexpSet.empty in (* Update function applications *) let funcl_typ = typ_of_annot (l,annot) in let already_visible_nexps = NexpSet.union (Pretty_print_lem.lem_nexps_of_typ funcl_typ) (Pretty_print_lem.typeclass_nexps funcl_typ) in let bound_nexps = NexpSet.elements (NexpSet.union nexps already_visible_nexps) in let rewrite_e_app (id,args) = match Bindings.find id fn_sizes with | to_change,_ -> let args' = mapat (replace_with_the_value bound_nexps) to_change args in E_app (id,args') | exception Not_found -> E_app (id,args) in let body = fold_exp { id_exp_alg with e_app = rewrite_e_app } body in let guard = match guard with | None -> None | Some exp -> Some (fold_exp { id_exp_alg with e_app = rewrite_e_app } exp) in FCL_aux (FCL_Funcl (id,construct_pexp (pat,guard,body,(pl,empty_tannot))),(l,empty_tannot)) in let rewrite_e_app (id,args) = match Bindings.find id fn_sizes with | to_change,_ -> let args' = mapat (replace_with_the_value []) to_change args in E_app (id,args') | exception Not_found -> E_app (id,args) in let rewrite_letbind = fold_letbind { id_exp_alg with e_app = rewrite_e_app } in let rewrite_exp = fold_exp { id_exp_alg with e_app = rewrite_e_app } in let rewrite_def = function | DEF_fundef (FD_aux (FD_function (recopt,tannopt,effopt,funcls),(l,_))) -> (* TODO rewrite tannopt? *) DEF_fundef (FD_aux (FD_function (recopt,tannopt,effopt,List.map rewrite_funcl funcls),(l,empty_tannot))) | DEF_val lb -> DEF_val (rewrite_letbind lb) | DEF_spec (VS_aux (VS_val_spec (typschm,id,extern,cast),(l,annot))) as spec -> begin match Bindings.find id fn_sizes with | to_change,_ when not (IntSet.is_empty to_change) -> let typschm = match typschm with | TypSchm_aux (TypSchm_ts (tq,typ),l) -> let typ = match typ with | Typ_aux (Typ_fn (ts,t2,eff),l2) -> Typ_aux (Typ_fn (mapat (replace_type env) to_change ts,t2,eff),l2) | _ -> replace_type env typ in TypSchm_aux (TypSchm_ts (tq,typ),l) in DEF_spec (VS_aux (VS_val_spec (typschm,id,extern,cast),(l,empty_tannot))) | _ -> spec | exception Not_found -> spec end | DEF_reg_dec (DEC_aux (DEC_config (id, typ, exp), a)) -> DEF_reg_dec (DEC_aux (DEC_config (id, typ, rewrite_exp exp), a)) | def -> def in (* Bindings.iter (fun id args -> print_endline (string_of_id id ^ " needs " ^ String.concat ", " (List.map string_of_int args))) fn_sizes *) Defs (List.map rewrite_def defs) end let is_id env id = let ids = Env.get_overloads (Id_aux (id,Parse_ast.Unknown)) env in let ids = id :: List.map (fun (Id_aux (id,_)) -> id) ids in fun (Id_aux (x,_)) -> List.mem x ids (* Type-agnostic pattern comparison for merging below *) let lit_eq' (L_aux (l1,_)) (L_aux (l2,_)) = match l1, l2 with | L_num n1, L_num n2 -> Big_int.equal n1 n2 | _,_ -> l1 = l2 let forall2 p x y = try List.for_all2 p x y with Invalid_argument _ -> false let rec typ_pat_eq (TP_aux (tp1, _)) (TP_aux (tp2, _)) = match tp1, tp2 with | TP_wild, TP_wild -> true | TP_var kid1, TP_var kid2 -> Kid.compare kid1 kid2 = 0 | TP_app (f1, args1), TP_app (f2, args2) when List.length args1 = List.length args2 -> Id.compare f1 f2 = 0 && List.for_all2 typ_pat_eq args1 args2 | _, _ -> false let rec pat_eq (P_aux (p1,_)) (P_aux (p2,_)) = match p1, p2 with | P_lit lit1, P_lit lit2 -> lit_eq' lit1 lit2 | P_wild, P_wild -> true | P_or (p1, q1), P_or (p2, q2) -> (* ToDo: A case could be made for flattening trees of P_or nodes and * comparing the lists so that we treat P_or as associative *) pat_eq p1 p2 && pat_eq q1 q2 | P_not(p1), P_not(p2) -> pat_eq p1 p2 | P_as (p1',id1), P_as (p2',id2) -> Id.compare id1 id2 == 0 && pat_eq p1' p2' | P_typ (_,p1'), P_typ (_,p2') -> pat_eq p1' p2' | P_id id1, P_id id2 -> Id.compare id1 id2 == 0 | P_var (p1', tpat1), P_var (p2', tpat2) -> typ_pat_eq tpat1 tpat2 && pat_eq p1' p2' | P_app (id1,args1), P_app (id2,args2) -> Id.compare id1 id2 == 0 && forall2 pat_eq args1 args2 | P_record (fpats1, flag1), P_record (fpats2, flag2) -> flag1 == flag2 && forall2 fpat_eq fpats1 fpats2 | P_vector ps1, P_vector ps2 | P_vector_concat ps1, P_vector_concat ps2 | P_tup ps1, P_tup ps2 | P_list ps1, P_list ps2 -> List.for_all2 pat_eq ps1 ps2 | P_cons (p1',p1''), P_cons (p2',p2'') -> pat_eq p1' p2' && pat_eq p1'' p2'' | _,_ -> false and fpat_eq (FP_aux (FP_Fpat (id1,p1),_)) (FP_aux (FP_Fpat (id2,p2),_)) = Id.compare id1 id2 == 0 && pat_eq p1 p2 module Analysis = struct type loc = string * int (* filename, line *) let string_of_loc (s,l) = s ^ "." ^ string_of_int l let id_pair_compare (id,l) (id',l') = match Id.compare id id' with | 0 -> compare l l' | x -> x (* Usually we do a full case split on an argument, but sometimes we find a case expression in the function body that suggests a more compact case splitting. *) type match_detail = | Total | Partial of tannot pat list * Parse_ast.l (* Arguments that we might split on *) module ArgSplits = Map.Make (struct type t = id * loc let compare = id_pair_compare end) type arg_splits = match_detail ArgSplits.t (* Function id, funcl loc for adding splits on sizes in the body when there's no corresponding argument *) module ExtraSplits = Map.Make (struct type t = id * Parse_ast.l let compare (id,l) (id',l') = let x = Id.compare id id' in if x <> 0 then x else compare l l' end) type extra_splits = (match_detail KBindings.t) ExtraSplits.t (* Arguments that we should look at in callers *) module CallerArgSet = Set.Make (struct type t = id * int let compare = id_pair_compare end) (* Type variables that we should look at in callers *) module CallerKidSet = Set.Make (struct type t = id * kid let compare (id,kid) (id',kid') = match Id.compare id id' with | 0 -> Kid.compare kid kid' | x -> x end) (* Map from locations to string sets *) module Failures = Map.Make (struct type t = Parse_ast.l let compare = compare end) module StringSet = Set.Make (struct type t = string let compare = compare end) type dependencies = | Have of arg_splits * extra_splits | Unknown of Parse_ast.l * string let string_of_match_detail = function | Total -> "[total]" | Partial (pats,_) -> "[" ^ String.concat " | " (List.map string_of_pat pats) ^ "]" let string_of_argsplits s = String.concat ", " (List.map (fun ((id,l),detail) -> string_of_id id ^ "." ^ string_of_loc l ^ string_of_match_detail detail) (ArgSplits.bindings s)) let string_of_lx lx = let open Lexing in Printf.sprintf "%s,%d,%d,%d" lx.pos_fname lx.pos_lnum lx.pos_bol lx.pos_cnum let rec simple_string_of_loc = function | Parse_ast.Unknown -> "Unknown" | Parse_ast.Unique (n, l) -> "Unique(" ^ string_of_int n ^ ", " ^ simple_string_of_loc l ^ ")" | Parse_ast.Generated l -> "Generated(" ^ simple_string_of_loc l ^ ")" | Parse_ast.Range (lx1,lx2) -> "Range(" ^ string_of_lx lx1 ^ "->" ^ string_of_lx lx2 ^ ")" | Parse_ast.Documented (_,l) -> "Documented(_," ^ simple_string_of_loc l ^ ")" let string_of_extra_splits s = String.concat ", " (List.map (fun ((id,l),ks) -> string_of_id id ^ "." ^ simple_string_of_loc l ^ ":" ^ (String.concat "," (List.map (fun (kid,detail) -> string_of_kid kid ^ "." ^ string_of_match_detail detail) (KBindings.bindings ks)))) (ExtraSplits.bindings s)) let string_of_callerset s = String.concat ", " (List.map (fun (id,arg) -> string_of_id id ^ "." ^ string_of_int arg) (CallerArgSet.elements s)) let string_of_callerkidset s = String.concat ", " (List.map (fun (id,kid) -> string_of_id id ^ "." ^ string_of_kid kid) (CallerKidSet.elements s)) let string_of_dep = function | Have (args,extras) -> "Have (" ^ string_of_argsplits args ^ ";" ^ string_of_extra_splits extras ^ ")" | Unknown (l,msg) -> "Unknown " ^ msg ^ " at " ^ Reporting.loc_to_string l (* If a callee uses a type variable as a size, does it need to be split in the current function, or is it also a parameter? (Note that there may be multiple calls, so more than one parameter can be involved) *) type call_dep = | InFun of dependencies | Parents of CallerKidSet.t (* Result of analysing the body of a function. The split field gives the arguments to split based on the body alone, the extra_splits field where we want to case split on a size type variable but there's no corresponding argument so we introduce a case expression, and the failures field where we couldn't do anything. The other fields are used at the end for the interprocedural phase. *) type result = { split : arg_splits; extra_splits : extra_splits; failures : StringSet.t Failures.t; (* Dependencies for type variables of each fn called, so that if the fn uses one for a bitvector size we can track it back *) split_on_call : (call_dep KBindings.t) Bindings.t; (* kids per fn *) kid_in_caller : CallerKidSet.t } let empty = { split = ArgSplits.empty; extra_splits = ExtraSplits.empty; failures = Failures.empty; split_on_call = Bindings.empty; kid_in_caller = CallerKidSet.empty } let merge_detail _ x y = match x,y with | None, x -> x | x, None -> x | Some (Partial (ps1,l1)), Some (Partial (ps2,l2)) when l1 = l2 && forall2 pat_eq ps1 ps2 -> x | _ -> Some Total let opt_merge f _ x y = match x,y with | None, _ -> y | _, None -> x | Some x, Some y -> Some (f x y) let merge_extras = ExtraSplits.merge (opt_merge (KBindings.merge merge_detail)) let dmerge x y = match x,y with | Unknown (l,s), _ -> Unknown (l,s) | _, Unknown (l,s) -> Unknown (l,s) | Have (args,extras), Have (args',extras') -> Have (ArgSplits.merge merge_detail args args', merge_extras extras extras') let dempty = Have (ArgSplits.empty, ExtraSplits.empty) let dep_bindings_merge a1 a2 = Bindings.merge (opt_merge dmerge) a1 a2 let dep_kbindings_merge a1 a2 = KBindings.merge (opt_merge dmerge) a1 a2 let call_kid_merge k x y = match x, y with | None, x -> x | x, None -> x | Some (InFun deps), Some (Parents _) | Some (Parents _), Some (InFun deps) -> Some (InFun deps) | Some (InFun deps), Some (InFun deps') -> Some (InFun (dmerge deps deps')) | Some (Parents fns), Some (Parents fns') -> Some (Parents (CallerKidSet.union fns fns')) let call_arg_merge k args args' = match args, args' with | None, x -> x | x, None -> x | Some kdep, Some kdep' -> Some (KBindings.merge call_kid_merge kdep kdep') let failure_merge _ x y = match x, y with | None, x -> x | x, None -> x | Some x, Some y -> Some (StringSet.union x y) let merge rs rs' = { split = ArgSplits.merge merge_detail rs.split rs'.split; extra_splits = merge_extras rs.extra_splits rs'.extra_splits; failures = Failures.merge failure_merge rs.failures rs'.failures; split_on_call = Bindings.merge call_arg_merge rs.split_on_call rs'.split_on_call; kid_in_caller = CallerKidSet.union rs.kid_in_caller rs'.kid_in_caller } type env = { top_kids : kid list; (* Int kids bound by the function type *) var_deps : dependencies Bindings.t; kid_deps : dependencies KBindings.t; referenced_vars : IdSet.t } let rec split3 = function | [] -> [],[],[] | ((h1,h2,h3)::t) -> let t1,t2,t3 = split3 t in (h1::t1,h2::t2,h3::t3) let is_kid_in_env env kid = match Env.get_typ_var kid env with | _ -> true | exception _ -> false let rec kids_bound_by_typ_pat (TP_aux (tp,_)) = match tp with | TP_wild -> KidSet.empty | TP_var kid -> KidSet.singleton kid | TP_app (_,pats) -> kidset_bigunion (List.map kids_bound_by_typ_pat pats) (* We need both the explicitly bound kids from the AST, and any freshly generated kids from the typechecker. *) let kids_bound_by_pat pat = let open Rewriter in fst (fold_pat ({ (compute_pat_alg KidSet.empty KidSet.union) with p_aux = (function ((s,(P_var (P_aux (_, annot'),tpat) as p)), annot) when not (is_empty_tannot (snd annot')) -> let kids = tyvars_of_typ (typ_of_annot annot') in let new_kids = KidSet.filter (fun kid -> not (is_kid_in_env (env_of_annot annot) kid)) kids in let tpat_kids = kids_bound_by_typ_pat tpat in KidSet.union s (KidSet.union new_kids tpat_kids), P_aux (p, annot) | ((s,p),ann) -> s, P_aux (p,ann)) }) pat) (* Diff the type environment to find new type variables and record that they depend on deps *) let update_env_new_kids env deps typ_env_pre typ_env_post = let kbound = KBindings.merge (fun k x y -> match x,y with | Some k, None -> Some k | _ -> None) (Env.get_typ_vars typ_env_post) (Env.get_typ_vars typ_env_pre) in let kid_deps = KBindings.fold (fun v _ ds -> KBindings.add v deps ds) kbound env.kid_deps in { env with kid_deps = kid_deps } (* Add bound variables from a pattern to the environment with the given dependency, plus any new type variables. *) let update_env env deps pat typ_env_pre typ_env_post = let bound = bindings_from_pat pat in let var_deps = List.fold_left (fun ds v -> Bindings.add v deps ds) env.var_deps bound in update_env_new_kids { env with var_deps = var_deps } deps typ_env_pre typ_env_post let assigned_vars_exps es = List.fold_left (fun vs exp -> IdSet.union vs (assigned_vars exp)) IdSet.empty es (* For adding control dependencies to mutable variables *) let add_dep_to_assigned dep assigns es = let assigned = assigned_vars_exps es in Bindings.mapi (fun id d -> if IdSet.mem id assigned then dmerge dep d else d) assigns (* Functions to give dependencies for type variables in nexps, constraints, types and unification variables. For function calls we also supply a list of dependencies for arguments so that we can find dependencies for existentially bound sizes. *) let deps_of_tyvars l kid_deps arg_deps kids = let check kid deps = match KBindings.find kid kid_deps with | deps' -> dmerge deps deps' | exception Not_found -> match kid with | Kid_aux (Var kidstr, _) -> let unknown = Unknown (l, "Unknown type variable " ^ string_of_kid kid) in (* Tyvars from existentials in arguments have a special format *) if String.length kidstr > 5 && String.sub kidstr 0 4 = "'arg" then try let i = String.index kidstr '#' in let n = String.sub kidstr 4 (i-4) in let arg = int_of_string n in List.nth arg_deps arg with Not_found | Failure _ -> unknown else unknown in KidSet.fold check kids dempty let deps_of_nexp l kid_deps arg_deps nexp = let kids = nexp_frees nexp in deps_of_tyvars l kid_deps arg_deps kids let rec deps_of_nc kid_deps (NC_aux (nc,l)) = match nc with | NC_equal (nexp1,nexp2) | NC_bounded_ge (nexp1,nexp2) | NC_bounded_le (nexp1,nexp2) | NC_not_equal (nexp1,nexp2) -> dmerge (deps_of_nexp l kid_deps [] nexp1) (deps_of_nexp l kid_deps [] nexp2) | NC_set (kid,_) -> (match KBindings.find kid kid_deps with | deps -> deps | exception Not_found -> Unknown (l, "Unknown type variable in constraint " ^ string_of_kid kid)) | NC_or (nc1,nc2) | NC_and (nc1,nc2) -> dmerge (deps_of_nc kid_deps nc1) (deps_of_nc kid_deps nc2) | NC_true | NC_false -> dempty | NC_app (Id_aux (Id "mod", _), [A_aux (A_nexp nexp1, _); A_aux (A_nexp nexp2, _)]) -> dmerge (deps_of_nexp l kid_deps [] nexp1) (deps_of_nexp l kid_deps [] nexp2) | NC_var _ | NC_app _ -> dempty and deps_of_typ l kid_deps arg_deps typ = deps_of_tyvars l kid_deps arg_deps (tyvars_of_typ typ) and deps_of_typ_arg l fn_id env arg_deps (A_aux (aux, _)) = match aux with | A_nexp (Nexp_aux (Nexp_var kid,_)) when List.exists (fun k -> Kid.compare kid k == 0) env.top_kids -> Parents (CallerKidSet.singleton (fn_id,kid)) | A_nexp nexp -> InFun (deps_of_nexp l env.kid_deps arg_deps nexp) | A_order _ -> InFun dempty | A_typ typ -> InFun (deps_of_typ l env.kid_deps arg_deps typ) | A_bool nc -> InFun (deps_of_nc env.kid_deps nc) let mk_subrange_pattern vannot vstart vend = let (len,ord,typ) = vector_typ_args_of (Env.base_typ_of (env_of_annot vannot) (typ_of_annot vannot)) in match ord with | Ord_aux (Ord_var _,_) -> None | Ord_aux (ord',_) -> let vstart,vend = if ord' = Ord_inc then vstart,vend else vend,vstart in let dummyl = Generated Unknown in match len with | Nexp_aux (Nexp_constant len,_) -> Some (fun pat -> let end_len = Big_int.pred (Big_int.sub len vend) in (* Wrap pat in its type; in particular the type checker won't manage P_wild in the middle of a P_vector_concat *) let pat = P_aux (P_typ (typ_of_pat pat, pat),(Generated (pat_loc pat),empty_tannot)) in let pats = if Big_int.greater end_len Big_int.zero then [pat;P_aux (P_typ (vector_typ (nconstant end_len) ord typ, P_aux (P_wild,(dummyl,empty_tannot))),(dummyl,empty_tannot))] else [pat] in let pats = if Big_int.greater vstart Big_int.zero then (P_aux (P_typ (vector_typ (nconstant vstart) ord typ, P_aux (P_wild,(dummyl,empty_tannot))),(dummyl,empty_tannot)))::pats else pats in let pats = if ord' = Ord_inc then pats else List.rev pats in P_aux (P_vector_concat pats,(Generated (fst vannot),empty_tannot))) | _ -> None (* If the expression matched on in a case expression is a function argument, and has no other dependencies, we can try to use the pattern match directly rather than doing a full case split. *) let refine_dependency env (E_aux (e,(l,annot)) as exp) pexps = let check_dep id ctx = match Bindings.find id env.var_deps with | Have (args,extras) -> begin match ArgSplits.bindings args, ExtraSplits.bindings extras with | [(id',loc),Total], [] when Id.compare id id' == 0 -> (match Util.map_all (function | Pat_aux (Pat_exp (pat,_),_) -> Some (ctx pat) | Pat_aux (Pat_when (_,_,_),_) -> None) pexps with | Some pats -> if l = Parse_ast.Unknown then (Reporting.print_error (Reporting.Err_general (l, "No location for pattern match: " ^ string_of_exp exp)); None) else Some (Have (ArgSplits.singleton (id,loc) (Partial (pats,l)), ExtraSplits.empty)) | None -> None) | _ -> None end | Unknown _ -> None | exception Not_found -> None in match e with | E_id id -> check_dep id (fun x -> x) | E_app (fn_id, [E_aux (E_id id,vannot); E_aux (E_lit (L_aux (L_num vstart,_)),_); E_aux (E_lit (L_aux (L_num vend,_)),_)]) when is_id (env_of exp) (Id "vector_subrange") fn_id -> (match mk_subrange_pattern vannot vstart vend with | Some mk_pat -> check_dep id mk_pat | None -> None) | _ -> None let simplify_size_nexp env typ_env (Nexp_aux (ne,l) as nexp) = match solve typ_env nexp with | Some n -> nconstant n | None -> let is_equal kid = try prove __POS__ typ_env (NC_aux (NC_equal (Nexp_aux (Nexp_var kid,Unknown), nexp),Unknown)) with _ -> false in match ne with | Nexp_var _ | Nexp_constant _ -> nexp | _ -> match List.find is_equal env.top_kids with | kid -> Nexp_aux (Nexp_var kid,Generated l) | exception Not_found -> nexp let simplify_size_typ_arg env typ_env = function | A_aux (A_nexp nexp, l) -> A_aux (A_nexp (simplify_size_nexp env typ_env nexp), l) | x -> x (* Takes an environment of dependencies on vars, type vars, and flow control, and dependencies on mutable variables. The latter are quite conservative, we currently drop variables assigned inside loops, for example. *) let rec analyse_exp fn_id env assigns (E_aux (e,(l,annot)) as exp) = let remove_assigns es message = let assigned = assigned_vars_exps es in IdSet.fold (fun id asn -> Bindings.add id (Unknown (l, string_of_id id ^ message)) asn) assigned assigns in let non_det es = let assigns = remove_assigns es " assigned in non-deterministic expressions" in let deps, _, rs = split3 (List.map (analyse_exp fn_id env assigns) es) in (deps, assigns, List.fold_left merge empty rs) in (* We allow for arguments to functions being executed non-deterministically, but follow the type checker in processing them in-order to detect the automatic unpacking of existentials. When we spot a new type variable (using update_env_new_kids) we set them to depend on the previous argument. *) let non_det_args es = let assigns = remove_assigns es " assigned in non-deterministic expressions" in let rec aux prev_typ_env prev_deps env = function | [] -> [], empty | h::t -> let typ_env = env_of h in let env = update_env_new_kids env prev_deps prev_typ_env typ_env in let new_deps, _, new_r = analyse_exp fn_id env assigns h in let t_deps, t_r = aux typ_env new_deps env t in new_deps::t_deps, merge new_r t_r in let deps, r = match es with | [] -> [], empty | h::t -> let new_deps, _, new_r = analyse_exp fn_id env assigns h in let t_deps, t_r = aux (env_of h) new_deps env t in new_deps::t_deps, merge new_r t_r in (deps, assigns, r) in let merge_deps deps = List.fold_left dmerge dempty deps in let deps, assigns, r = match e with | E_block es -> let rec aux assigns = function | [] -> (dempty, assigns, empty) | [e] -> analyse_exp fn_id env assigns e | e::es -> let _, assigns, r' = analyse_exp fn_id env assigns e in let d, assigns, r = aux assigns es in d, assigns, merge r r' in aux assigns es | E_nondet es -> let _, assigns, r = non_det es in (dempty, assigns, r) | E_id id -> begin match Bindings.find id env.var_deps with | args -> (args,assigns,empty) | exception Not_found -> match Bindings.find id assigns with | args -> (args,assigns,empty) | exception Not_found -> match Env.lookup_id id (Type_check.env_of_annot (l,annot)) with | Enum _ -> dempty,assigns,empty | Register _ -> Unknown (l, string_of_id id ^ " is a register"),assigns,empty | _ -> if IdSet.mem id env.referenced_vars then Unknown (l, string_of_id id ^ " may be modified via a reference"),assigns,empty else Unknown (l, string_of_id id ^ " is not in the environment"),assigns,empty end | E_lit _ -> (dempty,assigns,empty) | E_cast (_,e) -> analyse_exp fn_id env assigns e | E_app (id,args) -> let deps, assigns, r = non_det_args args in let typ_env = env_of_annot (l,annot) in let (_,fn_typ) = Env.get_val_spec id typ_env in let fn_effect = match fn_typ with | Typ_aux (Typ_fn (_,_,eff),_) -> eff | _ -> Effect_aux (Effect_set [],Unknown) in let eff_dep = match fn_effect with | Effect_aux (Effect_set ([] | [BE_aux (BE_undef,_)]),_) -> dempty | _ -> Unknown (l, "Effects from function application") in let kid_inst = instantiation_of exp in let kid_inst = KBindings.map (simplify_size_typ_arg env typ_env) kid_inst in (* Change kids in instantiation to the canonical ones from the type signature *) let kid_inst = KBindings.fold (fun kid -> KBindings.add (orig_kid kid)) kid_inst KBindings.empty in let kid_deps = KBindings.map (deps_of_typ_arg l fn_id env deps) kid_inst in let rdep,r' = if Id.compare fn_id id == 0 then let bad = Unknown (l,"Recursive call of " ^ string_of_id id) in let kid_deps = KBindings.map (fun _ -> InFun bad) kid_deps in bad, { empty with split_on_call = Bindings.singleton id kid_deps } else dempty, { empty with split_on_call = Bindings.singleton id kid_deps } in (merge_deps (rdep::eff_dep::deps), assigns, merge r r') | E_tuple es | E_list es -> let deps, assigns, r = non_det es in (merge_deps deps, assigns, r) | E_if (e1,e2,e3) -> let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let d2,a2,r2 = analyse_exp fn_id env assigns e2 in let d3,a3,r3 = analyse_exp fn_id env assigns e3 in let assigns = add_dep_to_assigned d1 (dep_bindings_merge a2 a3) [e2;e3] in (dmerge d1 (dmerge d2 d3), assigns, merge r1 (merge r2 r3)) | E_loop (_,e1,e2) -> (* We remove all of the variables assigned in the loop, so we don't need to add control dependencies *) let assigns = remove_assigns [e1;e2] " assigned in a loop" in let d1,a1,r1 = analyse_exp fn_id env assigns e1 in let d2,a2,r2 = analyse_exp fn_id env assigns e2 in (dempty, assigns, merge r1 r2) | E_for (var,efrom,eto,eby,ord,body) -> let d1,assigns,r1 = non_det [efrom;eto;eby] in let assigns = remove_assigns [body] " assigned in a loop" in let d = merge_deps d1 in let loop_kid = mk_kid ("loop_" ^ string_of_id var) in let env' = { env with kid_deps = KBindings.add loop_kid d env.kid_deps} in let d2,a2,r2 = analyse_exp fn_id env' assigns body in (dempty, assigns, merge r1 r2) | E_vector es -> let ds, assigns, r = non_det es in (merge_deps ds, assigns, r) | E_vector_access (e1,e2) | E_vector_append (e1,e2) | E_cons (e1,e2) -> let ds, assigns, r = non_det [e1;e2] in (merge_deps ds, assigns, r) | E_vector_subrange (e1,e2,e3) | E_vector_update (e1,e2,e3) -> let ds, assigns, r = non_det [e1;e2;e3] in (merge_deps ds, assigns, r) | E_vector_update_subrange (e1,e2,e3,e4) -> let ds, assigns, r = non_det [e1;e2;e3;e4] in (merge_deps ds, assigns, r) | E_record fexps -> let es = List.map (function (FE_aux (FE_Fexp (_,e),_)) -> e) fexps in let ds, assigns, r = non_det es in (merge_deps ds, assigns, r) | E_record_update (e,fexps) -> let es = List.map (function (FE_aux (FE_Fexp (_,e),_)) -> e) fexps in let ds, assigns, r = non_det (e::es) in (merge_deps ds, assigns, r) | E_field (e,_) -> analyse_exp fn_id env assigns e | E_case (e,cases) -> let deps,assigns,r = analyse_exp fn_id env assigns e in let deps = match refine_dependency env e cases with | Some deps -> deps | None -> deps in let analyse_case (Pat_aux (pexp,_)) = match pexp with | Pat_exp (pat,e1) -> let env = update_env env deps pat (env_of_annot (l,annot)) (env_of e1) in let d,assigns,r = analyse_exp fn_id env assigns e1 in let assigns = add_dep_to_assigned deps assigns [e1] in (d,assigns,r) | Pat_when (pat,e1,e2) -> let env = update_env env deps pat (env_of_annot (l,annot)) (env_of e2) in let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in let assigns = add_dep_to_assigned deps assigns [e1;e2] in (dmerge d1 d2, assigns, merge r1 r2) in let ds,assigns,rs = split3 (List.map analyse_case cases) in (merge_deps (deps::ds), List.fold_left dep_bindings_merge Bindings.empty assigns, List.fold_left merge r rs) | E_let (LB_aux (LB_val (pat,e1),_),e2) -> let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let env = update_env env d1 pat (env_of_annot (l,annot)) (env_of e2) in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in (d2,assigns,merge r1 r2) | E_assign (lexp,e1) -> let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let assigns,r2 = analyse_lexp fn_id env assigns d1 lexp in (dempty, assigns, merge r1 r2) | E_sizeof nexp -> (deps_of_nexp l env.kid_deps [] nexp, assigns, empty) | E_return e | E_exit e | E_throw e -> let _, _, r = analyse_exp fn_id env assigns e in (dempty, Bindings.empty, r) | E_ref id -> (Unknown (l, "May be mutated via reference to " ^ string_of_id id), assigns, empty) | E_try (e,cases) -> let deps,_,r = analyse_exp fn_id env assigns e in let assigns = remove_assigns [e] " assigned in try expression" in let analyse_handler (Pat_aux (pexp,_)) = match pexp with | Pat_exp (pat,e1) -> let env = update_env env (Unknown (l,"Exception")) pat (env_of_annot (l,annot)) (env_of e1) in let d,assigns,r = analyse_exp fn_id env assigns e1 in let assigns = add_dep_to_assigned deps assigns [e1] in (d,assigns,r) | Pat_when (pat,e1,e2) -> let env = update_env env (Unknown (l,"Exception")) pat (env_of_annot (l,annot)) (env_of e2) in let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in let assigns = add_dep_to_assigned deps assigns [e1;e2] in (dmerge d1 d2, assigns, merge r1 r2) in let ds,assigns,rs = split3 (List.map analyse_handler cases) in (merge_deps (deps::ds), List.fold_left dep_bindings_merge Bindings.empty assigns, List.fold_left merge r rs) | E_assert (e1,_) -> analyse_exp fn_id env assigns e1 | E_app_infix _ | E_internal_plet _ | E_internal_return _ | E_internal_value _ -> raise (Reporting.err_unreachable l __POS__ ("Unexpected expression encountered in monomorphisation: " ^ string_of_exp exp)) | E_var (lexp,e1,e2) -> (* Really we ought to remove the assignment after e2 *) let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let assigns,r' = analyse_lexp fn_id env assigns d1 lexp in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in (dempty, assigns, merge r1 (merge r' r2)) | E_constraint nc -> (deps_of_nc env.kid_deps nc, assigns, empty) in let r = (* Check for bitvector types with parametrised sizes *) match destruct_tannot annot with | None -> r | Some (tenv,typ,_) -> let typ = Env.base_typ_of tenv typ in let env, tenv, typ = match destruct_exist (Env.expand_synonyms tenv typ) with | None -> env, tenv, typ | Some (kopts, nc, typ) -> { env with kid_deps = List.fold_left (fun kds kopt -> KBindings.add (kopt_kid kopt) deps kds) env.kid_deps kopts }, Env.add_constraint nc (List.fold_left (fun tenv kopt -> Env.add_typ_var l kopt tenv) tenv kopts), typ in if is_bitvector_typ typ then let size,_,_ = vector_typ_args_of typ in let Nexp_aux (size,_) as size_nexp = simplify_size_nexp env tenv size in let is_tyvar_parameter v = List.exists (fun k -> Kid.compare k v == 0) env.top_kids in match size with | Nexp_constant _ -> r | Nexp_var v when is_tyvar_parameter v -> { r with kid_in_caller = CallerKidSet.add (fn_id,v) r.kid_in_caller } | _ -> match deps_of_nexp l env.kid_deps [] size_nexp with | Have (args,extras) -> { r with split = ArgSplits.merge merge_detail r.split args; extra_splits = merge_extras r.extra_splits extras } | Unknown (l,msg) -> { r with failures = Failures.add l (StringSet.singleton ("Unable to monomorphise " ^ string_of_nexp size_nexp ^ ": " ^ msg)) r.failures } else r in (deps, assigns, r) and analyse_lexp fn_id env assigns deps (LEXP_aux (lexp,(l,_))) = (* TODO: maybe subexps and sublexps should be non-det (and in const_prop_lexp, too?) *) match lexp with | LEXP_id id | LEXP_cast (_,id) -> if IdSet.mem id env.referenced_vars then assigns, empty else Bindings.add id deps assigns, empty | LEXP_memory (id,es) -> let _, assigns, r = analyse_exp fn_id env assigns (E_aux (E_tuple es,(Unknown,empty_tannot))) in assigns, r | LEXP_tup lexps | LEXP_vector_concat lexps -> List.fold_left (fun (assigns,r) lexp -> let assigns,r' = analyse_lexp fn_id env assigns deps lexp in assigns,merge r r') (assigns,empty) lexps | LEXP_vector (lexp,e) -> let _, assigns, r1 = analyse_exp fn_id env assigns e in let assigns, r2 = analyse_lexp fn_id env assigns deps lexp in assigns, merge r1 r2 | LEXP_vector_range (lexp,e1,e2) -> let _, assigns, r1 = analyse_exp fn_id env assigns e1 in let _, assigns, r2 = analyse_exp fn_id env assigns e2 in let assigns, r3 = analyse_lexp fn_id env assigns deps lexp in assigns, merge r3 (merge r1 r2) | LEXP_field (lexp,_) -> analyse_lexp fn_id env assigns deps lexp | LEXP_deref e -> let _, assigns, r = analyse_exp fn_id env assigns e in assigns, r let rec translate_loc l = match l with | Range (pos,_) -> Some (pos.Lexing.pos_fname,pos.Lexing.pos_lnum) | Generated l -> translate_loc l | _ -> None let initial_env fn_id fn_l (TypQ_aux (tq,_)) pat body set_assertions = let pats = match pat with | P_aux (P_tup pats,_) -> pats | _ -> [pat] in (* For the type in an annotation, produce the corresponding tyvar (if any), and a default case split (a set if there's one, a full case split if not). *) let kids_of_annot annot = let env = env_of_annot annot in let Typ_aux (typ,_) = Env.base_typ_of env (typ_of_annot annot) in match typ with | Typ_app (Id_aux (Id "atom",_),[A_aux (A_nexp (Nexp_aux (Nexp_var kid,_)),_)]) -> equal_kids env kid | _ -> KidSet.empty in let default_split annot kids = let kids = KidSet.elements kids in let try_kid kid = try Some (KBindings.find kid set_assertions) with Not_found -> None in match Util.option_first try_kid kids with | Some (l,is) -> let l' = Generated l in let pats = List.map (fun n -> P_aux (P_lit (L_aux (L_num n,l')),(l',annot))) is in let pats = pats @ [P_aux (P_wild,(l',annot))] in Partial (pats,l) | None -> Total in let qs = match tq with | TypQ_no_forall -> [] | TypQ_tq qs -> qs in let eqn_instantiations = Type_check.instantiate_simple_equations qs in let eqn_kid_deps = KBindings.map (function | A_aux (A_nexp nexp, _) -> Some (nexp_frees nexp) | _ -> None) eqn_instantiations in let arg i pat = let rec aux (P_aux (p,(l,annot))) = let of_list pats = let ss,vs,ks = split3 (List.map aux pats) in let s = List.fold_left (ArgSplits.merge merge_detail) ArgSplits.empty ss in let v = List.fold_left dep_bindings_merge Bindings.empty vs in let k = List.fold_left dep_kbindings_merge KBindings.empty ks in s,v,k in match p with | P_lit _ | P_wild -> ArgSplits.empty,Bindings.empty,KBindings.empty | P_or (p1, p2) -> let (s1, v1, k1) = aux p1 in let (s2, v2, k2) = aux p2 in (ArgSplits.merge merge_detail s1 s2, dep_bindings_merge v1 v2, dep_kbindings_merge k1 k2) | P_not p -> aux p | P_as (pat,id) -> begin let s,v,k = aux pat in match translate_loc (id_loc id) with | Some loc -> ArgSplits.add (id,loc) Total s, Bindings.add id (Have (ArgSplits.singleton (id,loc) Total, ExtraSplits.empty)) v, k | None -> s, Bindings.add id (Unknown (l, ("Unable to give location for " ^ string_of_id id))) v, k end | P_typ (_,pat) -> aux pat | P_id id -> begin match translate_loc (id_loc id) with | Some loc -> let kids = kids_of_annot (l,annot) in let split = default_split annot kids in let s = ArgSplits.singleton (id,loc) split in s, Bindings.singleton id (Have (s, ExtraSplits.empty)), KidSet.fold (fun kid k -> KBindings.add kid (Have (s, ExtraSplits.empty)) k) kids KBindings.empty | None -> ArgSplits.empty, Bindings.singleton id (Unknown (l, ("Unable to give location for " ^ string_of_id id))), KBindings.empty end | P_var (pat, tpat) -> let s,v,k = aux pat in let kids = kids_bound_by_typ_pat tpat in let kids = KidSet.fold (fun kid s -> KidSet.union s (equal_kids (env_of_annot (l,annot)) kid)) kids kids in s,v,KidSet.fold (fun kid k -> KBindings.add kid (Have (s, ExtraSplits.empty)) k) kids k | P_app (_,pats) -> of_list pats | P_record (fpats,_) -> of_list (List.map (fun (FP_aux (FP_Fpat (_,p),_)) -> p) fpats) | P_vector pats | P_vector_concat pats | P_string_append pats | P_tup pats | P_list pats -> of_list pats | P_cons (p1,p2) -> of_list [p1;p2] in aux pat in let int_quant = function | QI_aux (QI_id (KOpt_aux (KOpt_kind (K_aux (K_int,_),kid),_)),_) -> Some kid | _ -> None in let top_kids = Util.map_filter int_quant qs in let _,var_deps,kid_deps = split3 (List.mapi arg pats) in let var_deps = List.fold_left dep_bindings_merge Bindings.empty var_deps in let kid_deps = List.fold_left dep_kbindings_merge KBindings.empty kid_deps in let note_no_arg kid_deps kid = if KBindings.mem kid kid_deps then kid_deps else (* When there's no argument to case split on for a kid, we'll add a case expression instead *) let env = env_of_pat pat in let split = default_split (mk_tannot env int_typ no_effect) (KidSet.singleton kid) in let extra_splits = ExtraSplits.singleton (fn_id, fn_l) (KBindings.singleton kid split) in KBindings.add kid (Have (ArgSplits.empty, extra_splits)) kid_deps in let kid_deps = List.fold_left note_no_arg kid_deps top_kids in let merge_kid_deps_eqns k kdeps eqn_kids = match kdeps, eqn_kids with | _, Some (Some kids) -> Some (KidSet.fold (fun kid deps -> dmerge deps (KBindings.find kid kid_deps)) kids dempty) | Some deps, _ -> Some deps | _, _ -> None in let kid_deps = KBindings.merge merge_kid_deps_eqns kid_deps eqn_kid_deps in let referenced_vars = referenced_vars body in { top_kids; var_deps; kid_deps; referenced_vars } (* When there's more than one pick the first *) let merge_set_asserts _ x y = match x, y with | None, _ -> y | _, _ -> x let merge_set_asserts_by_kid sets1 sets2 = KBindings.merge merge_set_asserts sets1 sets2 (* Set constraints in assertions don't always use the set syntax, so we also handle assert('N == 1 | ...) style set constraints *) let rec sets_from_assert e = let set_from_or_exps (E_aux (_,(l,_)) as e) = let mykid = ref None in let check_kid kid = match !mykid with | None -> mykid := Some kid | Some kid' -> if Kid.compare kid kid' == 0 then () else raise Not_found in let rec aux (E_aux (e,_)) = match e with | E_app (Id_aux (Id "or_bool",_),[e1;e2]) -> aux e1 @ aux e2 | E_app (Id_aux (Id "eq_int",_), [E_aux (E_sizeof (Nexp_aux (Nexp_var kid,_)),_); E_aux (E_lit (L_aux (L_num i,_)),_)]) -> (check_kid kid; [i]) (* TODO: Now that E_constraint is re-written by the typechecker, we'll end up with the following for the above - some of this function is probably redundant now *) | E_app (Id_aux (Id "eq_int",_), [E_aux (E_app (Id_aux (Id "__id", _), [E_aux (E_id id, annot)]), _); E_aux (E_lit (L_aux (L_num i,_)),_)]) -> begin match typ_of_annot annot with | Typ_aux (Typ_app (Id_aux (Id "atom", _), [A_aux (A_nexp (Nexp_aux (Nexp_var kid, _)), _)]), _) -> check_kid kid; [i] | _ -> raise Not_found end | _ -> raise Not_found in try let is = aux e in match !mykid with | None -> KBindings.empty | Some kid -> KBindings.singleton kid (l,is) with Not_found -> KBindings.empty in let rec set_from_nc_or (NC_aux (nc,_)) = match nc with | NC_equal (Nexp_aux (Nexp_var kid,_), Nexp_aux (Nexp_constant n,_)) -> Some (kid,[n]) | NC_or (nc1, nc2) -> (match set_from_nc_or nc1, set_from_nc_or nc2 with | Some (kid1,l1), Some (kid2,l2) when Kid.compare kid1 kid2 == 0 -> Some (kid1,l1 @ l2) | _ -> None) | _ -> None in let rec sets_from_nc (NC_aux (nc,l) as nc_full) = match nc with | NC_and (nc1,nc2) -> merge_set_asserts_by_kid (sets_from_nc nc1) (sets_from_nc nc2) | NC_set (kid,is) -> KBindings.singleton kid (l,is) | NC_or _ -> (match set_from_nc_or nc_full with | Some (kid, is) -> KBindings.singleton kid (l,is) | None -> KBindings.empty) | _ -> KBindings.empty in match e with | E_aux (E_app (Id_aux (Id "and_bool",_),[e1;e2]),_) -> merge_set_asserts_by_kid (sets_from_assert e1) (sets_from_assert e2) | E_aux (E_constraint nc,_) -> sets_from_nc nc | _ -> set_from_or_exps e (* Find all the easily reached set assertions in a function body, to use as case splits. Note that this should be mirrored in stop_at_false_assertions, above. *) let rec find_set_assertions (E_aux (e,_)) = match e with | E_block es | E_nondet es -> List.fold_left merge_set_asserts_by_kid KBindings.empty (List.map find_set_assertions es) | E_cast (_,e) -> find_set_assertions e | E_let (LB_aux (LB_val (p,e1),_),e2) -> let sets1 = find_set_assertions e1 in let sets2 = find_set_assertions e2 in let kbound = kids_bound_by_pat p in let sets2 = KBindings.filter (fun kid _ -> not (KidSet.mem kid kbound)) sets2 in merge_set_asserts_by_kid sets1 sets2 | E_assert (exp1,_) -> sets_from_assert exp1 | _ -> KBindings.empty let print_set_assertions set_assertions = if KBindings.is_empty set_assertions then print_endline "No top-level set assertions found." else begin print_endline "Top-level set assertions found:"; KBindings.iter (fun k (l,is) -> print_endline (string_of_kid k ^ " " ^ String.concat "," (List.map Big_int.to_string is))) set_assertions end let print_result r = let _ = print_endline (" splits: " ^ string_of_argsplits r.split) in let print_kbinding kid dep = let s = match dep with | InFun dep -> "InFun " ^ string_of_dep dep | Parents cks -> string_of_callerkidset cks in let _ = print_endline (" " ^ string_of_kid kid ^ ": " ^ s) in () in let print_binding id kdep = let _ = print_endline (" " ^ string_of_id id ^ ":") in let _ = KBindings.iter print_kbinding kdep in () in let _ = print_endline " split_on_call: " in let _ = Bindings.iter print_binding r.split_on_call in let _ = print_endline (" kid_in_caller: " ^ string_of_callerkidset r.kid_in_caller) in let _ = print_endline (" failures: \n " ^ (String.concat "\n " (List.map (fun (l,s) -> Reporting.loc_to_string l ^ ":\n " ^ String.concat "\n " (StringSet.elements s)) (Failures.bindings r.failures)))) in () let analyse_funcl debug tenv (FCL_aux (FCL_Funcl (id,pexp),(l,_))) = let _ = if debug > 2 then print_endline (string_of_id id) else () in let pat,guard,body,_ = destruct_pexp pexp in let (tq,_) = Env.get_val_spec id tenv in let set_assertions = find_set_assertions body in let _ = if debug > 2 then print_set_assertions set_assertions in let aenv = initial_env id l tq pat body set_assertions in let _,_,r = analyse_exp id aenv Bindings.empty body in let r = match guard with | None -> r | Some exp -> let _,_,r' = analyse_exp id aenv Bindings.empty exp in let r' = if ExtraSplits.is_empty r'.extra_splits then r' else merge r' { empty with failures = Failures.singleton l (StringSet.singleton "Case splitting size tyvars in guards not supported") } in merge r r' in let _ = if debug > 2 then print_result r else () in r let analyse_def debug env = function | DEF_fundef (FD_aux (FD_function (_,_,_,funcls),_)) -> List.fold_left (fun r f -> merge r (analyse_funcl debug env f)) empty funcls | _ -> empty let detail_to_split = function | Total -> None | Partial (pats,l) -> Some (pats,l) let argset_to_list splits = let l = ArgSplits.bindings splits in let argelt = function | ((id,(file,loc)),detail) -> ((file,loc),string_of_id id,detail_to_split detail) in List.map argelt l let analyse_defs debug env (Defs defs) = let r = List.fold_left (fun r d -> merge r (analyse_def debug env d)) empty defs in (* Resolve the interprocedural dependencies *) let rec separate_deps = function | Have (splits, extras) -> splits, extras, Failures.empty | Unknown (l,msg) -> ArgSplits.empty, ExtraSplits.empty, Failures.singleton l (StringSet.singleton ("Unable to monomorphise dependency: " ^ msg)) and chase_kid_caller (id,kid) = match Bindings.find id r.split_on_call with | kid_deps -> begin match KBindings.find kid kid_deps with | InFun deps -> separate_deps deps | Parents fns -> CallerKidSet.fold add_kid fns (ArgSplits.empty, ExtraSplits.empty, Failures.empty) | exception Not_found -> ArgSplits.empty,ExtraSplits.empty,Failures.empty end | exception Not_found -> ArgSplits.empty,ExtraSplits.empty,Failures.empty and add_kid k (splits,extras,fails) = let splits',extras',fails' = chase_kid_caller k in ArgSplits.merge merge_detail splits splits', merge_extras extras extras', Failures.merge failure_merge fails fails' in let _ = if debug > 1 then print_result r else () in let splits,extras,fails = CallerKidSet.fold add_kid r.kid_in_caller (r.split,r.extra_splits,r.failures) in let _ = if debug > 0 then (print_endline "Final splits:"; print_endline (string_of_argsplits splits); print_endline (string_of_extra_splits extras)) else () in let splits = argset_to_list splits in if Failures.is_empty fails then (true,splits,extras) else begin Failures.iter (fun l msgs -> Reporting.print_err l "Monomorphisation" (String.concat "\n" (StringSet.elements msgs))) fails; (false, splits,extras) end end let fresh_sz_var = let counter = ref 0 in fun () -> let n = !counter in let () = counter := n+1 in mk_id ("sz#" ^ string_of_int n) let add_extra_splits extras (Defs defs) = let success = ref true in let add_to_body extras (E_aux (_,(l,annot)) as e) = let l' = Generated l in KBindings.fold (fun kid detail (exp,split_list) -> let nexp = Nexp_aux (Nexp_var kid,l) in let var = fresh_sz_var () in let size_annot = mk_tannot (env_of e) (atom_typ nexp) no_effect in let loc = match Analysis.translate_loc l with | Some l -> l | None -> (Reporting.print_err l "Monomorphisation" "Internal error: bad location for added case"; ("",0)) in let pexps = [Pat_aux (Pat_exp (P_aux (P_id var,(l,size_annot)),exp),(l',annot))] in E_aux (E_case (E_aux (E_sizeof nexp, (l',size_annot)), pexps),(l',annot)), ((loc, string_of_id var, Analysis.detail_to_split detail)::split_list) ) extras (e,[]) in let add_to_funcl (FCL_aux (FCL_Funcl (id,Pat_aux (pexp,peannot)),(l,annot))) = let pexp, splits = match Analysis.ExtraSplits.find (id,l) extras with | extras -> (match pexp with | Pat_exp (p,e) -> let e',sp = add_to_body extras e in Pat_exp (p,e'), sp | Pat_when (p,g,e) -> let e',sp = add_to_body extras e in Pat_when (p,g,e'), sp) | exception Not_found -> pexp, [] in FCL_aux (FCL_Funcl (id,Pat_aux (pexp,peannot)),(l,annot)), splits in let add_to_def = function | DEF_fundef (FD_aux (FD_function (re,ta,ef,funcls),annot)) -> let funcls,splits = List.split (List.map add_to_funcl funcls) in DEF_fundef (FD_aux (FD_function (re,ta,ef,funcls),annot)), List.concat splits | d -> d, [] in let defs, splits = List.split (List.map add_to_def defs) in !success, Defs defs, List.concat splits module MonoRewrites = struct let is_constant_range = function | E_aux (E_lit _,_), E_aux (E_lit _,_) -> true | _ -> false let is_constant = function | E_aux (E_lit _,_) -> true | _ -> false let is_constant_vec_typ env typ = let typ = Env.base_typ_of env typ in match destruct_vector env typ with | Some (size,_,_) -> (match nexp_simp size with | Nexp_aux (Nexp_constant _,_) -> true | _ -> false) | _ -> false (* We have to add casts in here with appropriate length information so that the type checker knows the expected return types. *) let rec rewrite_app env typ (id,args) = let is_append = is_id env (Id "append") in let is_subrange = is_id env (Id "vector_subrange") in let is_slice = is_id env (Id "slice") in let is_zeros = is_id env (Id "Zeros") in let is_zero_extend = is_id env (Id "ZeroExtend") id || is_id env (Id "zero_extend") id || is_id env (Id "sail_zero_extend") id || is_id env (Id "mips_zero_extend") id in let mk_exp e = E_aux (e, (Unknown, empty_tannot)) in let try_cast_to_typ (E_aux (e,(l, _)) as exp) = let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in match size with | Nexp_aux (Nexp_constant _,_) -> E_cast (typ,exp) | _ -> match solve env size with | Some c -> E_cast (vector_typ (nconstant c) order bittyp, exp) | None -> e in let rewrap e = E_aux (e, (Unknown, empty_tannot)) in if is_append id then match args with (* (known-size-vector @ variable-vector) @ variable-vector *) | [E_aux (E_app (append, [e1; E_aux (E_app (subrange1, [vector1; start1; end1]),_)]),_); E_aux (E_app (subrange2, [vector2; start2; end2]),_)] when is_append append && is_subrange subrange1 && is_subrange subrange2 && is_constant_vec_typ env (typ_of e1) && not (is_constant_range (start1, end1) || is_constant_range (start2, end2)) -> let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in let (size1,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of e1)) in let midsize = nminus size size1 in begin match solve env midsize with | Some c -> let midtyp = vector_typ (nconstant c) order bittyp in E_app (append, [e1; E_aux (E_cast (midtyp, E_aux (E_app (mk_id "subrange_subrange_concat", [vector1; start1; end1; vector2; start2; end2]), (Unknown,empty_tannot))),(Unknown,empty_tannot))]) | _ -> E_app (append, [e1; E_aux (E_app (mk_id "subrange_subrange_concat", [vector1; start1; end1; vector2; start2; end2]), (Unknown,empty_tannot))]) end | [E_aux (E_app (append, [e1; E_aux (E_app (slice1, [vector1; start1; length1]),_)]),_); E_aux (E_app (slice2, [vector2; start2; length2]),_)] when is_append append && is_slice slice1 && is_slice slice2 && is_constant_vec_typ env (typ_of e1) && not (is_constant length1 || is_constant length2) -> let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in let (size1,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of e1)) in let midsize = nminus size size1 in begin match solve env midsize with | Some c -> let midtyp = vector_typ (nconstant c) order bittyp in E_app (append, [e1; E_aux (E_cast (midtyp, E_aux (E_app (mk_id "slice_slice_concat", [vector1; start1; length1; vector2; start2; length2]), (Unknown,empty_tannot))),(Unknown,empty_tannot))]) | _ -> E_app (append, [e1; E_aux (E_app (mk_id "slice_slice_concat", [vector1; start1; length1; vector2; start2; length2]), (Unknown,empty_tannot))]) end (* variable-slice @ zeros *) | [E_aux (E_app (slice1, [vector1; start1; len1]),_); E_aux (E_app (zeros2, [len2]),_)] when is_slice slice1 && is_zeros zeros2 && not (is_constant start1 && is_constant len1 && is_constant len2) -> try_cast_to_typ (mk_exp (E_app (mk_id "place_slice", [vector1; start1; len1; len2]))) (* variable-range @ variable-range *) | [E_aux (E_app (subrange1, [vector1; start1; end1]),_); E_aux (E_app (subrange2, [vector2; start2; end2]),_)] when is_subrange subrange1 && is_subrange subrange2 && not (is_constant_range (start1, end1) || is_constant_range (start2, end2)) -> try_cast_to_typ (E_aux (E_app (mk_id "subrange_subrange_concat", [vector1; start1; end1; vector2; start2; end2]), (Unknown,empty_tannot))) (* variable-slice @ variable-slice *) | [E_aux (E_app (slice1, [vector1; start1; length1]),_); E_aux (E_app (slice2, [vector2; start2; length2]),_)] when is_slice slice1 && is_slice slice2 && not (is_constant length1 || is_constant length2) -> try_cast_to_typ (E_aux (E_app (mk_id "slice_slice_concat", [vector1; start1; length1; vector2; start2; length2]),(Unknown,empty_tannot))) | [E_aux (E_app (append1, [e1; E_aux (E_app (slice1, [vector1; start1; length1]),_)]),_); E_aux (E_app (zeros1, [length2]),_)] when is_append append1 && is_slice slice1 && is_zeros zeros1 && is_constant_vec_typ env (typ_of e1) && not (is_constant length1 || is_constant length2) -> let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in let (size1,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of e1)) in let midsize = nminus size size1 in begin match solve env midsize with | Some c -> let midtyp = vector_typ (nconstant c) order bittyp in try_cast_to_typ (E_aux (E_app (mk_id "append", [e1; E_aux (E_cast (midtyp, E_aux (E_app (mk_id "slice_zeros_concat", [vector1; start1; length1; length2]),(Unknown,empty_tannot))),(Unknown,empty_tannot))]), (Unknown,empty_tannot))) | _ -> try_cast_to_typ (E_aux (E_app (mk_id "append", [e1; E_aux (E_app (mk_id "slice_zeros_concat", [vector1; start1; length1; length2]),(Unknown,empty_tannot))]), (Unknown,empty_tannot))) end | _ -> E_app (id,args) else if is_id env (Id "eq_vec") id || is_id env (Id "neq_vec") id then (* variable-range == variable_range *) let is_subrange = is_id env (Id "vector_subrange") in let wrap e = if is_id env (Id "neq_vec") id then E_app (mk_id "not_bool", [mk_exp e]) else e in match args with | [E_aux (E_app (subrange1, [vector1; start1; end1]),_); E_aux (E_app (subrange2, [vector2; start2; end2]),_)] when is_subrange subrange1 && is_subrange subrange2 && not (is_constant_range (start1, end1) || is_constant_range (start2, end2)) -> wrap (E_app (mk_id "subrange_subrange_eq", [vector1; start1; end1; vector2; start2; end2])) | [E_aux (E_app (slice1, [vector1; len1; start1]),_); E_aux (E_app (slice2, [vector2; len2; start2]),_)] when is_slice slice1 && is_slice slice2 && not (is_constant len1 && is_constant start1 && is_constant len2 && is_constant start2) -> let upper start len = mk_exp (E_app_infix (start, mk_id "+", mk_exp (E_app_infix (len, mk_id "-", mk_exp (E_lit (mk_lit (L_num (Big_int.of_int 1)))))))) in wrap (E_app (mk_id "subrange_subrange_eq", [vector1; upper start1 len1; start1; vector2; upper start2 len2; start2])) | [E_aux (E_app (slice1, [vector1; start1; len1]), _); E_aux (E_app (zeros2, _), _)] when is_slice slice1 && is_zeros zeros2 && not (is_constant len1) -> wrap (E_app (mk_id "is_zeros_slice", [vector1; start1; len1])) | _ -> E_app (id,args) else if is_id env (Id "IsZero") id then match args with | [E_aux (E_app (subrange1, [vector1; start1; end1]),_)] when (is_id env (Id "vector_subrange") subrange1) && not (is_constant_range (start1,end1)) -> E_app (mk_id "is_zero_subrange", [vector1; start1; end1]) | [E_aux (E_app (slice1, [vector1; start1; len1]),_)] when (is_slice slice1) && not (is_constant len1) -> E_app (mk_id "is_zeros_slice", [vector1; start1; len1]) | _ -> E_app (id,args) else if is_id env (Id "IsOnes") id then match args with | [E_aux (E_app (subrange1, [vector1; start1; end1]),_)] when is_id env (Id "vector_subrange") subrange1 && not (is_constant_range (start1,end1)) -> E_app (mk_id "is_ones_subrange", [vector1; start1; end1]) | [E_aux (E_app (slice1, [vector1; start1; len1]),_)] when is_slice slice1 && not (is_constant len1) -> E_app (mk_id "is_ones_slice", [vector1; start1; len1]) | _ -> E_app (id,args) else if is_zero_extend then let is_subrange = is_id env (Id "vector_subrange") in let is_slice = is_id env (Id "slice") in let is_zeros = is_id env (Id "Zeros") in let is_ones = is_id env (Id "Ones") in let length_arg = List.filter (fun arg -> is_number (typ_of arg)) args in match List.filter (fun arg -> not (is_number (typ_of arg))) args with | [E_aux (E_app (append1, [E_aux (E_app (subrange1, [vector1; start1; end1]), _); E_aux (E_app (zeros1, [len1]),_)]),_)] when is_subrange subrange1 && is_zeros zeros1 && is_append append1 -> try_cast_to_typ (rewrap (E_app (mk_id "place_subrange", length_arg @ [vector1; start1; end1; len1]))) | [E_aux (E_app (append1, [E_aux (E_app (slice1, [vector1; start1; length1]), _); E_aux (E_app (zeros1, [length2]),_)]),_)] when is_slice slice1 && is_zeros zeros1 && is_append append1 -> try_cast_to_typ (rewrap (E_app (mk_id "place_slice", length_arg @ [vector1; start1; length1; length2]))) (* If we've already rewritten to slice_slice_concat or subrange_subrange_concat, we can just drop the zero extension because those functions can do it themselves *) | [E_aux (E_cast (_, (E_aux (E_app (Id_aux ((Id "slice_slice_concat" | Id "subrange_subrange_concat" | Id "place_slice"),_) as op, args),_))),_)] -> try_cast_to_typ (rewrap (E_app (op, length_arg @ args))) | [E_aux (E_app (Id_aux ((Id "slice_slice_concat" | Id "subrange_subrange_concat" | Id "place_slice"),_) as op, args),_)] -> try_cast_to_typ (rewrap (E_app (op, length_arg @ args))) | [E_aux (E_app (slice1, [vector1; start1; length1]),_)] when is_slice slice1 && not (is_constant length1) -> try_cast_to_typ (rewrap (E_app (mk_id "zext_slice", length_arg @ [vector1; start1; length1]))) | [E_aux (E_app (ones, [len1]),_)] when is_ones ones -> try_cast_to_typ (rewrap (E_app (mk_id "zext_ones", length_arg @ [len1]))) | _ -> E_app (id,args) else if is_id env (Id "SignExtend") id || is_id env (Id "sign_extend") id then let is_slice = is_id env (Id "slice") in let length_arg = List.filter (fun arg -> is_number (typ_of arg)) args in match List.filter (fun arg -> not (is_number (typ_of arg))) args with | [E_aux (E_app (slice1, [vector1; start1; length1]),_)] when is_slice slice1 && not (is_constant length1) -> try_cast_to_typ (rewrap (E_app (mk_id "sext_slice", length_arg @ [vector1; start1; length1]))) | [E_aux (E_app (append, [E_aux (E_app (slice1, [vector1; start1; len1]), _); E_aux (E_app (zeros2, [len2]), _)]), _)] when is_append append && is_slice slice1 && is_zeros zeros2 && not (is_constant len1 && is_constant len2) -> E_app (mk_id "place_slice_signed", length_arg @ [vector1; start1; len1; len2]) | [E_aux (E_cast (_, (E_aux (E_app (Id_aux ((Id "place_slice"),_), args),_))),_)] | [E_aux (E_app (Id_aux ((Id "place_slice"),_), args),_)] -> try_cast_to_typ (rewrap (E_app (mk_id "place_slice_signed", length_arg @ args))) (* If the original had a length, keep it *) (* | [E_aux (E_app (slice1, [vector1; start1; length1]),_);length2] when is_slice slice1 && not (is_constant length1) -> begin match Type_check.destruct_atom_nexp (env_of length2) (typ_of length2) with | None -> E_app (mk_id "sext_slice", [vector1; start1; length1]) | Some nlen -> let (_,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in E_cast (vector_typ nlen order bittyp, E_aux (E_app (mk_id "sext_slice", [vector1; start1; length1]), (Unknown,empty_tannot))) end *) | _ -> E_app (id,args) else if is_id env (Id "Extend") id then match args with | [vector; len; unsigned] -> let extz = mk_exp (rewrite_app env typ (mk_id "ZeroExtend", [vector; len])) in let exts = mk_exp (rewrite_app env typ (mk_id "SignExtend", [vector; len])) in E_if (unsigned, extz, exts) | _ -> E_app (id, args) else if is_id env (Id "UInt") id || is_id env (Id "unsigned") id then let is_slice = is_id env (Id "slice") in let is_subrange = is_id env (Id "vector_subrange") in match args with | [E_aux (E_app (slice1, [vector1; start1; length1]),_)] when is_slice slice1 && not (is_constant length1) -> E_app (mk_id "unsigned_slice", [vector1; start1; length1]) | [E_aux (E_app (subrange1, [vector1; start1; end1]),_)] when is_subrange subrange1 && not (is_constant_range (start1,end1)) -> E_app (mk_id "unsigned_subrange", [vector1; start1; end1]) | _ -> E_app (id,args) else if is_id env (Id "__SetSlice_bits") id then match args with | [len; slice_len; vector; pos; E_aux (E_app (zeros, _), _)] when is_zeros zeros -> E_app (mk_id "set_slice_zeros", [len; slice_len; vector; pos]) | _ -> E_app (id, args) else E_app (id,args) let rewrite_aux = function | E_app (id,args), (l, tannot) -> begin match destruct_tannot tannot with | Some (env, ty, _) -> E_aux (rewrite_app env ty (id,args), (l, tannot)) | None -> E_aux (E_app (id, args), (l, tannot)) end | exp,annot -> E_aux (exp,annot) let mono_rewrite defs = let open Rewriter in rewrite_defs_base { rewriters_base with rewrite_exp = fun _ -> fold_exp { id_exp_alg with e_aux = rewrite_aux } } defs end module BitvectorSizeCasts = struct let simplify_size_nexp env quant_kids nexp = let rec aux (Nexp_aux (ne,l) as nexp) = match solve env nexp with | Some n -> Some (nconstant n) | None -> let is_equal kid = prove __POS__ env (NC_aux (NC_equal (Nexp_aux (Nexp_var kid,Unknown), nexp),Unknown)) in match List.find is_equal quant_kids with | kid -> Some (Nexp_aux (Nexp_var kid,Generated l)) | exception Not_found -> (* Normally rewriting of complex nexps in function signatures will produce a simple constant or variable above, but occasionally it's useful to work when that rewriting hasn't been applied. In particular, that rewriting isn't fully working with RISC-V at the moment. *) let re f = function | Some n1, Some n2 -> Some (Nexp_aux (f n1 n2,l)) | _ -> None in match ne with | Nexp_times(n1,n2) -> re (fun n1 n2 -> Nexp_times(n1,n2)) (aux n1, aux n2) | Nexp_sum(n1,n2) -> re (fun n1 n2 -> Nexp_sum(n1,n2)) (aux n1, aux n2) | Nexp_minus(n1,n2) -> re (fun n1 n2 -> Nexp_times(n1,n2)) (aux n1, aux n2) | Nexp_exp n -> Util.option_map (fun n -> Nexp_aux (Nexp_exp n,l)) (aux n) | Nexp_neg n -> Util.option_map (fun n -> Nexp_aux (Nexp_neg n,l)) (aux n) | _ -> None in aux nexp let specs_required = ref IdSet.empty let check_for_spec env name = let id = mk_id name in match Env.get_val_spec id env with | _ -> () | exception _ -> specs_required := IdSet.add id !specs_required (* These functions add cast functions across case splits, so that when a bitvector size becomes known in sail, the generated Lem code contains a function call to change mword 'n to (say) mword ty16, and vice versa. *) let make_bitvector_cast_fns cast_name env quant_kids src_typ target_typ = let genunk = Generated Unknown in let fresh = let counter = ref 0 in fun () -> let n = !counter in let () = counter := n+1 in mk_id ("cast#" ^ string_of_int n) in let at_least_one = ref None in let rec aux (Typ_aux (src_t,src_l) as src_typ) (Typ_aux (tar_t,tar_l) as tar_typ) = let src_ann = mk_tannot env src_typ no_effect in let tar_ann = mk_tannot env tar_typ no_effect in match src_t, tar_t with | Typ_tup typs, Typ_tup typs' -> let ps,es = List.split (List.map2 aux typs typs') in P_aux (P_typ (src_typ, P_aux (P_tup ps,(Generated src_l, src_ann))),(Generated src_l, src_ann)), E_aux (E_tuple es,(Generated tar_l, tar_ann)) | Typ_app (Id_aux (Id "vector",_), [A_aux (A_nexp size,_); _; A_aux (A_typ (Typ_aux (Typ_id (Id_aux (Id "bit",_)),_)),_)]), Typ_app (Id_aux (Id "vector",_) as t_id, [A_aux (A_nexp size',l_size'); t_ord; A_aux (A_typ (Typ_aux (Typ_id (Id_aux (Id "bit",_)),_)),_) as t_bit]) -> begin match simplify_size_nexp env quant_kids size, simplify_size_nexp env quant_kids size' with | Some size, Some size' when Nexp.compare size size' <> 0 -> let var = fresh () in let tar_typ' = Typ_aux (Typ_app (t_id, [A_aux (A_nexp size',l_size');t_ord;t_bit]), tar_l) in let () = at_least_one := Some tar_typ' in P_aux (P_id var,(Generated src_l,src_ann)), E_aux (E_cast (tar_typ', E_aux (E_app (Id_aux (Id cast_name, genunk), [E_aux (E_id var, (genunk, src_ann))]), (genunk, tar_ann))), (genunk, tar_ann)) | _ -> let var = fresh () in P_aux (P_id var,(Generated src_l,src_ann)), E_aux (E_id var,(Generated src_l,tar_ann)) end | _ -> let var = fresh () in P_aux (P_id var,(Generated src_l,src_ann)), E_aux (E_id var,(Generated src_l,tar_ann)) in let src_typ' = Env.base_typ_of env src_typ in let target_typ' = Env.base_typ_of env target_typ in let pat, e' = aux src_typ' target_typ' in match !at_least_one with | Some one_target_typ -> begin check_for_spec env cast_name; let src_ann = mk_tannot env src_typ no_effect in let tar_ann = mk_tannot env target_typ no_effect in match src_typ' with (* Simple case with just the bitvector; don't need to pull apart value *) | Typ_aux (Typ_app _,_) -> (fun var exp -> let exp_ann = mk_tannot env (typ_of exp) (effect_of exp) in E_aux (E_let (LB_aux (LB_val (P_aux (P_typ (one_target_typ, P_aux (P_id var,(genunk,tar_ann))),(genunk,tar_ann)), E_aux (E_app (Id_aux (Id cast_name,genunk), [E_aux (E_id var,(genunk,src_ann))]),(genunk,tar_ann))),(genunk,tar_ann)), exp),(genunk,exp_ann))), (fun (E_aux (_,(exp_l,exp_ann)) as exp) -> E_aux (E_cast (one_target_typ, E_aux (E_app (Id_aux (Id cast_name, genunk), [exp]), (Generated exp_l,tar_ann))), (Generated exp_l,tar_ann))) | _ -> (fun var exp -> let exp_ann = mk_tannot env (typ_of exp) (effect_of exp) in E_aux (E_let (LB_aux (LB_val (pat, E_aux (E_id var,(genunk,src_ann))),(genunk,src_ann)), E_aux (E_let (LB_aux (LB_val (P_aux (P_id var,(genunk,tar_ann)),e'),(genunk,tar_ann)), exp),(genunk,exp_ann))),(genunk,exp_ann))), (fun (E_aux (_,(exp_l,exp_ann)) as exp) -> E_aux (E_let (LB_aux (LB_val (pat, exp),(Generated exp_l,exp_ann)), e'),(Generated exp_l,tar_ann))) end | None -> (fun _ e -> e),(fun e -> e) (* TODO: bound vars *) let make_bitvector_env_casts env quant_kids (kid,i) exp = let mk_cast var typ exp = (fst (make_bitvector_cast_fns "bitvector_cast_in" env quant_kids typ (subst_src_typ (KBindings.singleton kid (nconstant i)) typ))) var exp in let locals = Env.get_locals env in Bindings.fold (fun var (mut,typ) exp -> if mut = Immutable then mk_cast var typ exp else exp) locals exp let make_bitvector_cast_exp cast_name cast_env quant_kids typ target_typ exp = let infer_arg_typ env f l typ = let (typq, ctor_typ) = Env.get_union_id f env in let quants = quant_items typq in match Env.expand_synonyms env ctor_typ with | Typ_aux (Typ_fn ([arg_typ], ret_typ, _), _) -> begin let goals = quant_kopts typq |> List.map kopt_kid |> KidSet.of_list in let unifiers = unify l env goals ret_typ typ in let arg_typ' = subst_unifiers unifiers arg_typ in arg_typ' end | _ -> typ_error env l ("Malformed constructor " ^ string_of_id f ^ " with type " ^ string_of_typ ctor_typ) in (* Push the cast down, including through constructors *) let rec aux exp (typ, target_typ) = let exp_env = env_of exp in match exp with | E_aux (E_let (lb,exp'),ann) -> E_aux (E_let (lb,aux exp' (typ, target_typ)),ann) | E_aux (E_block exps,ann) -> let exps' = match List.rev exps with | [] -> [] | final::l -> aux final (typ, target_typ)::l in E_aux (E_block (List.rev exps'),ann) | E_aux (E_tuple exps,(l,ann)) -> begin match Env.expand_synonyms exp_env typ, Env.expand_synonyms exp_env target_typ with | Typ_aux (Typ_tup src_typs,_), Typ_aux (Typ_tup tgt_typs,_) -> E_aux (E_tuple (List.map2 aux exps (List.combine src_typs tgt_typs)),(l,ann)) | _ -> raise (Reporting.err_unreachable l __POS__ ("Attempted to insert cast on tuple on non-tuple type: " ^ string_of_typ typ ^ " to " ^ string_of_typ target_typ)) end | E_aux (E_app (f,args),(l,ann)) when Env.is_union_constructor f (env_of exp) -> let arg = match args with [arg] -> arg | _ -> E_aux (E_tuple args, (l,empty_tannot)) in let src_arg_typ = infer_arg_typ (env_of exp) f l typ in let tgt_arg_typ = infer_arg_typ (env_of exp) f l target_typ in E_aux (E_app (f,[aux arg (src_arg_typ, tgt_arg_typ)]),(l,ann)) | _ -> (snd (make_bitvector_cast_fns cast_name cast_env quant_kids typ target_typ)) exp in aux exp (typ, target_typ) let rec extract_value_from_guard var (E_aux (e,_)) = match e with | E_app (op, ([E_aux (E_id var',_); E_aux (E_lit (L_aux (L_num i,_)),_)] | [E_aux (E_lit (L_aux (L_num i,_)),_); E_aux (E_id var',_)])) when string_of_id op = "eq_int" && Id.compare var var' == 0 -> Some i | E_app (op, [e1;e2]) when string_of_id op = "and_bool" -> (match extract_value_from_guard var e1 with | Some i -> Some i | None -> extract_value_from_guard var e2) | _ -> None let fill_in_type env typ = let tyvars = tyvars_of_typ typ in let subst = KidSet.fold (fun kid subst -> match Env.get_typ_var kid env with | K_type | K_order | K_bool -> subst | K_int -> (match solve env (nvar kid) with | None -> subst | Some n -> KBindings.add kid (nconstant n) subst)) tyvars KBindings.empty in subst_src_typ subst typ (* TODO: top-level patterns *) (* TODO: proper environment tracking for variables. Currently we pretend that we can print the type of a variable in the top-level environment, but in practice they might be below a case split. Note that we'd also need to provide some way for the Lem pretty printer to know what to use; currently we just use two names for the cast, bitvector_cast_in and bitvector_cast_out, to let the pretty printer know whether to use the top-level environment. *) let add_bitvector_casts (Defs defs) = let rewrite_body id quant_kids top_env ret_typ exp = let rewrite_aux (e,ann) = match e with | E_case (E_aux (e',ann') as exp',cases) -> begin let env = env_of_annot ann in let result_typ = Env.base_typ_of env (typ_of_annot ann) in let matched_typ = Env.base_typ_of env (typ_of_annot ann') in match e',matched_typ with | E_sizeof (Nexp_aux (Nexp_var kid,_)), _ | _, Typ_aux (Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (Nexp_var kid,_)),_)]),_) -> let map_case pexp = let pat,guard,body,ann = destruct_pexp pexp in let body = match pat, guard with | P_aux (P_lit (L_aux (L_num i,_)),_), _ -> (* We used to just substitute kid, but fill_in_type also catches other kids defined by it *) let src_typ = fill_in_type (Env.add_constraint (nc_eq (nvar kid) (nconstant i)) env) result_typ in make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ result_typ (make_bitvector_env_casts env quant_kids (kid,i) body) | P_aux (P_id var,_), Some guard -> (match extract_value_from_guard var guard with | Some i -> let src_typ = fill_in_type (Env.add_constraint (nc_eq (nvar kid) (nconstant i)) env) result_typ in make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ result_typ (make_bitvector_env_casts env quant_kids (kid,i) body) | None -> body) | _ -> body in construct_pexp (pat, guard, body, ann) in E_aux (E_case (exp', List.map map_case cases),ann) | _ -> E_aux (e,ann) end | E_if (e1,e2,e3) -> let env = env_of_annot ann in let result_typ = Env.base_typ_of env (typ_of_annot ann) in let rec extract (E_aux (e,_)) = match e with | E_app (op, ([E_aux (E_sizeof (Nexp_aux (Nexp_var kid,_)),_); y] | [y; E_aux (E_sizeof (Nexp_aux (Nexp_var kid,_)),_)])) when string_of_id op = "eq_int" -> (match destruct_atom_nexp (env_of y) (typ_of y) with | Some (Nexp_aux (Nexp_constant i,_)) -> [(kid,i)] | _ -> []) | E_app (op,[x;y]) when string_of_id op = "eq_int" -> (match destruct_atom_nexp (env_of x) (typ_of x), destruct_atom_nexp (env_of y) (typ_of y) with | Some (Nexp_aux (Nexp_var kid,_)), Some (Nexp_aux (Nexp_constant i,_)) | Some (Nexp_aux (Nexp_constant i,_)), Some (Nexp_aux (Nexp_var kid,_)) -> [(kid,i)] | _ -> []) | E_app (op, [x;y]) when string_of_id op = "and_bool" -> extract x @ extract y | _ -> [] in let insts = extract e1 in let e2' = List.fold_left (fun body inst -> make_bitvector_env_casts env quant_kids inst body) e2 insts in let insts = List.fold_left (fun insts (kid,i) -> KBindings.add kid (nconstant i) insts) KBindings.empty insts in let src_typ = subst_src_typ insts result_typ in let e2' = make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ result_typ e2' in E_aux (E_if (e1,e2',e3), ann) | E_return e' -> E_aux (E_return (make_bitvector_cast_exp "bitvector_cast_out" top_env quant_kids (fill_in_type (env_of e') (typ_of e')) ret_typ e'),ann) | E_assign (LEXP_aux (_,lexp_annot) as lexp,e') -> begin (* The type in the lexp_annot might come from e' rather than being the type of the storage, so ask the type checker what it really is. *) match infer_lexp (env_of_annot lexp_annot) (strip_lexp lexp) with | LEXP_aux (_,lexp_annot') -> E_aux (E_assign (lexp, make_bitvector_cast_exp "bitvector_cast_out" top_env quant_kids (fill_in_type (env_of e') (typ_of e')) (typ_of_annot lexp_annot') e'),ann) | exception _ -> E_aux (e,ann) end | E_id id -> begin let env = env_of_annot ann in match Env.lookup_id id env with | Local (Mutable, vtyp) -> make_bitvector_cast_exp "bitvector_cast_in" top_env quant_kids (fill_in_type (env_of_annot ann) (typ_of_annot ann)) vtyp (E_aux (e,ann)) | _ -> E_aux (e,ann) end | _ -> E_aux (e,ann) in let open Rewriter in fold_exp { id_exp_alg with e_aux = rewrite_aux } exp in let rewrite_funcl (FCL_aux (FCL_Funcl (id,pexp),fcl_ann)) = let fcl_env = env_of_annot fcl_ann in let (tq,typ) = Env.get_val_spec_orig id fcl_env in let quant_kids = List.map kopt_kid (List.filter is_nat_kopt (quant_kopts tq)) in let ret_typ = match typ with | Typ_aux (Typ_fn (_,ret,_),_) -> ret | Typ_aux (_,l) as typ -> raise (Reporting.err_unreachable l __POS__ ("Function clause must have function type: " ^ string_of_typ typ ^ " is not a function type")) in let pat,guard,body,annot = destruct_pexp pexp in let body_env = env_of body in let body = rewrite_body id quant_kids body_env ret_typ body in (* Also add a cast around the entire function clause body, if necessary *) let body = make_bitvector_cast_exp "bitvector_cast_out" fcl_env quant_kids (fill_in_type body_env (typ_of body)) ret_typ body in let pexp = construct_pexp (pat,guard,body,annot) in FCL_aux (FCL_Funcl (id,pexp),fcl_ann) in let rewrite_def = function | DEF_fundef (FD_aux (FD_function (r,t,e,fcls),fd_ann)) -> DEF_fundef (FD_aux (FD_function (r,t,e,List.map rewrite_funcl fcls),fd_ann)) | d -> d in specs_required := IdSet.empty; let defs = List.map rewrite_def defs in let l = Generated Unknown in let Defs cast_specs,_ = (* TODO: use default/relevant order *) let kid = mk_kid "n" in let bitsn = vector_typ (nvar kid) dec_ord bit_typ in let ts = mk_typschm (mk_typquant [mk_qi_id K_int kid]) (function_typ [bitsn] bitsn no_effect) in let extfn _ = Some "zeroExtend" in let mkfn name = mk_val_spec (VS_val_spec (ts,name,extfn,false)) in let defs = List.map mkfn (IdSet.elements !specs_required) in check Env.empty (Defs defs) in Defs (cast_specs @ defs) end let replace_nexp_in_typ env typ orig new_nexp = let rec aux (Typ_aux (t,l) as typ) = match t with | Typ_id _ | Typ_var _ -> false, typ | Typ_fn (arg,res,eff) -> let arg' = List.map aux arg in let f1 = List.exists fst arg' in let f2, res = aux res in f1 || f2, Typ_aux (Typ_fn (List.map snd arg', res, eff),l) | Typ_bidir (t1, t2) -> let f1, t1 = aux t1 in let f2, t2 = aux t2 in f1 || f2, Typ_aux (Typ_bidir (t1, t2), l) | Typ_tup typs -> let fs, typs = List.split (List.map aux typs) in List.exists (fun x -> x) fs, Typ_aux (Typ_tup typs,l) | Typ_exist (kids,nc,typ') -> (* TODO avoid capture *) let f, typ' = aux typ' in f, Typ_aux (Typ_exist (kids,nc,typ'),l) | Typ_app (id, targs) -> let fs, targs = List.split (List.map aux_targ targs) in List.exists (fun x -> x) fs, Typ_aux (Typ_app (id, targs),l) | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and aux_targ (A_aux (ta,l) as typ_arg) = match ta with | A_nexp nexp -> if prove __POS__ env (nc_eq nexp orig) then true, A_aux (A_nexp new_nexp,l) else false, typ_arg | A_typ typ -> let f, typ = aux typ in f, A_aux (A_typ typ,l) | A_order _ -> false, typ_arg in aux typ let fresh_nexp_kid nexp = let rec mangle_nexp (Nexp_aux (nexp, _)) = match nexp with | Nexp_id id -> string_of_id id | Nexp_var kid -> string_of_id (id_of_kid kid) | Nexp_constant i -> (if Big_int.greater_equal i Big_int.zero then "p" else "m") ^ Big_int.to_string (Big_int.abs i) | Nexp_times (n1, n2) -> mangle_nexp n1 ^ "_times_" ^ mangle_nexp n2 | Nexp_sum (n1, n2) -> mangle_nexp n1 ^ "_plus_" ^ mangle_nexp n2 | Nexp_minus (n1, n2) -> mangle_nexp n1 ^ "_minus_" ^ mangle_nexp n2 | Nexp_exp n -> "exp_" ^ mangle_nexp n | Nexp_neg n -> "neg_" ^ mangle_nexp n | Nexp_app (id,args) -> string_of_id id ^ "_" ^ String.concat "_" (List.map mangle_nexp args) in mk_kid (mangle_nexp nexp ^ "#") let rewrite_toplevel_nexps (Defs defs) = let find_nexp env nexp_map nexp = let is_equal (kid,nexp') = prove __POS__ env (nc_eq nexp nexp') in List.find is_equal nexp_map in let rec rewrite_typ_in_spec env nexp_map (Typ_aux (t,ann) as typ_full) = match t with | Typ_fn (args,res,eff) -> let args' = List.map (rewrite_typ_in_spec env nexp_map) args in let nexp_map = List.concat (List.map fst args') in let nexp_map, res = rewrite_typ_in_spec env nexp_map res in nexp_map, Typ_aux (Typ_fn (List.map snd args',res,eff),ann) | Typ_tup typs -> let nexp_map, typs = List.fold_right (fun typ (nexp_map,t) -> let nexp_map, typ = rewrite_typ_in_spec env nexp_map typ in (nexp_map, typ::t)) typs (nexp_map,[]) in nexp_map, Typ_aux (Typ_tup typs,ann) | _ when is_number typ_full || is_bitvector_typ typ_full -> begin let nexp_opt = match destruct_atom_nexp env typ_full with | Some nexp -> Some nexp | None -> if is_bitvector_typ typ_full then let (size,_,_) = vector_typ_args_of typ_full in Some size else None in match nexp_opt with | None -> nexp_map, typ_full | Some (Nexp_aux (Nexp_constant _,_)) | Some (Nexp_aux (Nexp_var _,_)) -> nexp_map, typ_full | Some nexp -> let nexp_map, kid = match find_nexp env nexp_map nexp with | (kid,_) -> nexp_map, kid | exception Not_found -> let kid = fresh_nexp_kid nexp in (kid, nexp)::nexp_map, kid in let new_nexp = nvar kid in nexp_map, snd (replace_nexp_in_typ env typ_full nexp new_nexp) end | _ -> let typ' = Env.base_typ_of env typ_full in if Typ.compare typ_full typ' == 0 then match t with | Typ_app (f,args) -> let in_arg nexp_map (A_aux (arg,l) as arg_full) = match arg with | A_typ typ -> let nexp_map, typ' = rewrite_typ_in_spec env nexp_map typ in nexp_map, A_aux (A_typ typ',l) | A_bool _ | A_nexp _ | A_order _ -> nexp_map, arg_full in let nexp_map, args = List.fold_right (fun arg (nexp_map,args) -> let nexp_map, arg = in_arg nexp_map arg in (nexp_map, arg::args)) args (nexp_map,[]) in nexp_map, Typ_aux (Typ_app (f,args),ann) | _ -> nexp_map, typ_full else rewrite_typ_in_spec env nexp_map typ' in let rewrite_valspec (VS_aux (VS_val_spec (TypSchm_aux (TypSchm_ts (tqs,typ),ts_l),id,ext_opt,is_cast),ann)) = match tqs with | TypQ_aux (TypQ_no_forall,_) -> None | TypQ_aux (TypQ_tq qs, tq_l) -> let env = env_of_annot ann in let env = add_typquant tq_l tqs env in let nexp_map, typ = rewrite_typ_in_spec env [] typ in match nexp_map with | [] -> None | _ -> let new_vars = List.map (fun (kid,nexp) -> QI_aux (QI_id (mk_kopt K_int kid), Generated tq_l)) nexp_map in let new_constraints = List.map (fun (kid,nexp) -> QI_aux (QI_const (nc_eq (nvar kid) nexp), Generated tq_l)) nexp_map in let tqs = TypQ_aux (TypQ_tq (qs @ new_vars @ new_constraints),tq_l) in let vs = VS_aux (VS_val_spec (TypSchm_aux (TypSchm_ts (tqs,typ),ts_l),id,ext_opt,is_cast),ann) in Some (id, nexp_map, vs) in (* Changing types in the body confuses simple sizeof rewriting, so turn it off for now *) (* let rewrite_typ_in_body env nexp_map typ = let rec aux (Typ_aux (t,l) as typ_full) = match t with | Typ_tup typs -> Typ_aux (Typ_tup (List.map aux typs),l) | Typ_exist (kids,nc,typ') -> (* TODO: avoid shadowing *) Typ_aux (Typ_exist (kids,(* TODO? *) nc, aux typ'),l) | Typ_app (id,targs) -> Typ_aux (Typ_app (id,List.map aux_targ targs),l) | _ -> typ_full and aux_targ (A_aux (ta,l) as ta_full) = match ta with | A_typ typ -> A_aux (A_typ (aux typ),l) | A_order _ -> ta_full | A_nexp nexp -> A_aux (A_nexp (aux_nexp nexp), l) | A_bool nc -> A_aux (A_bool (aux_nconstraint nc), l) and aux_nexp nexp = match find_nexp env nexp_map nexp with | (kid,_) -> nvar kid | exception Not_found -> nexp and aux_nconstraint (NC_aux (nc, l)) = let rewrap nc = NC_aux (nc, l) in match nc with | NC_equal (n1, n2) -> rewrap (NC_equal (aux_nexp n1, aux_nexp n2)) | NC_bounded_ge (n1, n2) -> rewrap (NC_bounded_ge (aux_nexp n1, aux_nexp n2)) | NC_bounded_le (n1, n2) -> rewrap (NC_bounded_le (aux_nexp n1, aux_nexp n2)) | NC_not_equal (n1, n2) -> rewrap (NC_not_equal (aux_nexp n1, aux_nexp n2)) | NC_or (nc1, nc2) -> rewrap (NC_or (aux_nconstraint nc1, aux_nconstraint nc2)) | NC_and (nc1, nc2) -> rewrap (NC_and (aux_nconstraint nc1, aux_nconstraint nc2)) | NC_app (id, args) -> rewrap (NC_app (id, List.map aux_targ args)) | _ -> rewrap nc in aux typ in let rewrite_one_exp nexp_map (e,ann) = match e with | E_cast (typ,e') -> E_aux (E_cast (rewrite_typ_in_body (env_of_annot ann) nexp_map typ,e'),ann) | E_sizeof nexp -> (match find_nexp (env_of_annot ann) nexp_map nexp with | (kid,_) -> E_aux (E_sizeof (nvar kid),ann) | exception Not_found -> E_aux (e,ann)) | _ -> E_aux (e,ann) in let rewrite_one_pat nexp_map (p,ann) = match p with | P_typ (typ,p') -> P_aux (P_typ (rewrite_typ_in_body (env_of_annot ann) nexp_map typ,p'),ann) | _ -> P_aux (p,ann) in let rewrite_body nexp_map pexp = let open Rewriter in fold_pexp { id_exp_alg with e_aux = rewrite_one_exp nexp_map; pat_alg = { id_pat_alg with p_aux = rewrite_one_pat nexp_map } } pexp in let rewrite_funcl spec_map (FCL_aux (FCL_Funcl (id,pexp),ann) as funcl) = match Bindings.find id spec_map with | nexp_map -> FCL_aux (FCL_Funcl (id,rewrite_body nexp_map pexp),ann) | exception Not_found -> funcl in *) let rewrite_def spec_map def = match def with | DEF_spec vs -> (match rewrite_valspec vs with | None -> spec_map, def | Some (id, nexp_map, vs) -> Bindings.add id nexp_map spec_map, DEF_spec vs) (* | DEF_fundef (FD_aux (FD_function (recopt,_,eff,funcls),ann)) -> (* Type annotations on function definitions will have been turned into valspecs by type checking, so it should be safe to drop them rather than updating them. *) let tann = Typ_annot_opt_aux (Typ_annot_opt_none,Generated Unknown) in spec_map, DEF_fundef (FD_aux (FD_function (recopt,tann,eff,List.map (rewrite_funcl spec_map) funcls),ann)) *) | _ -> spec_map, def in let _, defs = List.fold_left (fun (spec_map,t) def -> let spec_map, def = rewrite_def spec_map def in (spec_map, def::t)) (Bindings.empty, []) defs in Defs (List.rev defs) type options = { auto : bool; debug_analysis : int; all_split_errors : bool; continue_anyway : bool } let recheck defs = let w = !Util.opt_warnings in let () = Util.opt_warnings := false in let r = Type_error.check (Type_check.Env.no_casts Type_check.initial_env) defs in let () = Util.opt_warnings := w in r let mono_rewrites = MonoRewrites.mono_rewrite let monomorphise opts splits defs = let defs, env = Type_check.check Type_check.initial_env defs in let ok_analysis, new_splits, extra_splits = if opts.auto then let f,r,ex = Analysis.analyse_defs opts.debug_analysis env defs in if f || opts.all_split_errors || opts.continue_anyway then f, r, ex else raise (Reporting.err_general Unknown "Unable to monomorphise program") else true, [], Analysis.ExtraSplits.empty in let splits = new_splits @ (List.map (fun (loc,id) -> (loc,id,None)) splits) in let ok_extras, defs, extra_splits = add_extra_splits extra_splits defs in let splits = splits @ extra_splits in let () = if ok_extras || opts.all_split_errors || opts.continue_anyway then () else raise (Reporting.err_general Unknown "Unable to monomorphise program") in let ok_split, defs = split_defs opts.all_split_errors splits defs in let () = if (ok_analysis && ok_extras && ok_split) || opts.continue_anyway then () else raise (Reporting.err_general Unknown "Unable to monomorphise program") in defs let add_bitvector_casts = BitvectorSizeCasts.add_bitvector_casts let rewrite_atoms_to_singletons defs = let defs, env = Type_check.check Type_check.initial_env defs in AtomToItself.rewrite_size_parameters env defs