(**************************************************************************) (* Sail *) (* *) (* Copyright (c) 2013-2017 *) (* Kathyrn Gray *) (* Shaked Flur *) (* Stephen Kell *) (* Gabriel Kerneis *) (* Robert Norton-Wright *) (* Christopher Pulte *) (* Peter Sewell *) (* Alasdair Armstrong *) (* Brian Campbell *) (* Thomas Bauereiss *) (* Anthony Fox *) (* Jon French *) (* Dominic Mulligan *) (* Stephen Kell *) (* Mark Wassell *) (* *) (* All rights reserved. *) (* *) (* This software was developed by the University of Cambridge Computer *) (* Laboratory as part of the Rigorous Engineering of Mainstream Systems *) (* (REMS) project, funded by EPSRC grant EP/K008528/1. *) (* *) (* Redistribution and use in source and binary forms, with or without *) (* modification, are permitted provided that the following conditions *) (* are met: *) (* 1. Redistributions of source code must retain the above copyright *) (* notice, this list of conditions and the following disclaimer. *) (* 2. Redistributions in binary form must reproduce the above copyright *) (* notice, this list of conditions and the following disclaimer in *) (* the documentation and/or other materials provided with the *) (* distribution. *) (* *) (* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *) (* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *) (* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *) (* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *) (* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *) (* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *) (* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *) (* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *) (* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *) (* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *) (* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *) (* SUCH DAMAGE. *) (**************************************************************************) (* Could fix list: - Can probably trigger non-termination in the analysis or constant propagation with carefully constructed recursive (or mutually recursive) functions *) open Parse_ast open Ast open Ast_defs open Ast_util module Big_int = Nat_big_num open Type_check let size_set_limit = 64 let optmap v f = match v with | None -> None | Some v -> Some (f v) let kbindings_from_list = List.fold_left (fun s (v,i) -> KBindings.add v i s) KBindings.empty let bindings_from_list = List.fold_left (fun s (v,i) -> Bindings.add v i s) Bindings.empty (* union was introduced in 4.03.0, a bit too recently *) let bindings_union s1 s2 = Bindings.merge (fun _ x y -> match x,y with | _, (Some x) -> Some x | (Some x), _ -> Some x | _, _ -> None) s1 s2 let kbindings_union s1 s2 = KBindings.merge (fun _ x y -> match x,y with | _, (Some x) -> Some x | (Some x), _ -> Some x | _, _ -> None) s1 s2 let ids_in_exp exp = let open Rewriter in fold_exp { (pure_exp_alg IdSet.empty IdSet.union) with e_id = IdSet.singleton; lEXP_id = IdSet.singleton; lEXP_memory = (fun (id,s) -> List.fold_left IdSet.union (IdSet.singleton id) s); lEXP_cast = (fun (_,id) -> IdSet.singleton id) } exp let make_vector_lit sz i = let f j = if Big_int.equal (Big_int.modulus (Big_int.shift_right i (sz-j-1)) (Big_int.of_int 2)) Big_int.zero then '0' else '1' in let s = String.init sz f in L_aux (L_bin s,Generated Unknown) let tabulate f n = let rec aux acc n = let acc' = f n::acc in if Big_int.equal n Big_int.zero then acc' else aux acc' (Big_int.sub n (Big_int.of_int 1)) in if Big_int.equal n Big_int.zero then [] else aux [] (Big_int.sub n (Big_int.of_int 1)) let make_vectors sz = tabulate (make_vector_lit sz) (Big_int.shift_left (Big_int.of_int 1) sz) let is_inc_vec typ = try let (_, ord, _) = vector_typ_args_of typ in is_order_inc ord with _ -> false let rec cross = function | [] -> failwith "cross" | [(x,l)] -> List.map (fun y -> [(x,y)]) l | (x,l)::t -> let t' = cross t in List.concat (List.map (fun y -> List.map (fun l' -> (x,y)::l') t') l) let rec cross' = function | [] -> [[]] | (h::t) -> let t' = cross' t in List.concat (List.map (fun x -> List.map (fun l -> x::l) t') h) let rec cross'' = function | [] -> [[]] | (k,None)::t -> List.map (fun l -> (k,None)::l) (cross'' t) | (k,Some h)::t -> let t' = cross'' t in List.concat (List.map (fun x -> List.map (fun l -> (k,Some x)::l) t') h) let kidset_bigunion = function | [] -> KidSet.empty | h::t -> List.fold_left KidSet.union h t (* TODO: deal with non-set constraints, intersections, etc somehow *) let extract_set_nc env l var nc = let vars = Spec_analysis.equal_kids_ncs var [nc] in let rec aux_or (NC_aux (nc,l)) = match nc with | NC_equal (Nexp_aux (Nexp_var id,_), Nexp_aux (Nexp_constant n,_)) when KidSet.mem id vars -> Some [n] | NC_or (nc1,nc2) -> (match aux_or nc1, aux_or nc2 with | Some l1, Some l2 -> Some (l1 @ l2) | _, _ -> None) | _ -> None in (* Lazily expand constraints to keep close to the original form *) let rec aux expanded (NC_aux (nc,l) as nc_full) = let re nc = NC_aux (nc,l) in match nc with | NC_set (id,is) when KidSet.mem id vars -> Some (is,re NC_true) | NC_equal (Nexp_aux (Nexp_var id,_), Nexp_aux (Nexp_constant n,_)) when KidSet.mem id vars -> Some ([n], re NC_true) (* Turn (i <= 'v & 'v <= j & ...) into set constraint ('v in {i..j}) *) | NC_and (NC_aux (NC_bounded_le (Nexp_aux (Nexp_constant n, _), Nexp_aux (Nexp_var kid, _)), _) as nc1, nc2) when KidSet.mem kid vars -> let aux2 () = match aux expanded nc2 with | Some (is, nc2') -> Some (is, re (NC_and (nc1, nc2'))) | None -> None in begin match constraint_conj nc2 with | NC_aux (NC_bounded_le (Nexp_aux (Nexp_var kid', _), Nexp_aux (Nexp_constant n', _)), _) :: ncs when KidSet.mem kid' vars -> let len = Big_int.succ (Big_int.sub n' n) in if Big_int.less_equal Big_int.zero len && Big_int.less_equal len (Big_int.of_int size_set_limit) then let elem i = Big_int.add n (Big_int.of_int i) in let is = List.init (Big_int.to_int len) elem in if aux expanded (List.fold_left nc_and nc_true ncs) <> None then raise (Reporting.err_general l ("Multiple set constraints for " ^ string_of_kid var)) else Some (is, nc_full) else aux2 () | _ -> aux2 () end | NC_and (nc1,nc2) -> (match aux expanded nc1, aux expanded nc2 with | None, None -> None | None, Some (is,nc2') -> Some (is, re (NC_and (nc1,nc2'))) | Some (is,nc1'), None -> Some (is, re (NC_and (nc1',nc2))) | Some _, Some _ -> raise (Reporting.err_general l ("Multiple set constraints for " ^ string_of_kid var))) | NC_or _ -> (match aux_or nc_full with | Some is -> Some (is, re NC_true) | None -> None) | _ -> if expanded then None else aux true (Env.expand_constraint_synonyms env nc_full) in match aux false nc with | Some is -> is | None -> raise (Reporting.err_general l ("No set constraint for " ^ string_of_kid var ^ " in " ^ string_of_n_constraint nc)) let rec peel = function | [], l -> ([], l) | h1::t1, h2::t2 -> let (l1,l2) = peel (t1, t2) in ((h1,h2)::l1,l2) | _,_ -> assert false let rec split_insts = function | [] -> [],[] | (k,None)::t -> let l1,l2 = split_insts t in l1,k::l2 | (k,Some v)::t -> let l1,l2 = split_insts t in (k,v)::l1,l2 let apply_kid_insts kid_insts nc t = let kid_insts, kids' = split_insts kid_insts in let kid_insts = List.map (fun (v,i) -> (kopt_kid v,Nexp_aux (Nexp_constant i,Generated Unknown))) kid_insts in let subst = kbindings_from_list kid_insts in kids', subst_kids_nc subst nc, subst_kids_typ subst t let rec inst_src_type insts (Typ_aux (ty,l) as typ) = match ty with | Typ_id _ | Typ_var _ -> insts,typ | Typ_fn _ -> raise (Reporting.err_general l "Function type in constructor") | Typ_bidir _ -> raise (Reporting.err_general l "Mapping type in constructor") | Typ_tup ts -> let insts,ts = List.fold_right (fun typ (insts,ts) -> let insts,typ = inst_src_type insts typ in insts,typ::ts) ts (insts,[]) in insts, Typ_aux (Typ_tup ts,l) | Typ_app (id,args) -> let insts,ts = List.fold_right (fun arg (insts,args) -> let insts,arg = inst_src_typ_arg insts arg in insts,arg::args) args (insts,[]) in insts, Typ_aux (Typ_app (id,ts),l) | Typ_exist (kopts, nc, t) -> begin let kid_insts, insts' = peel (kopts,insts) in let kopts', nc', t' = apply_kid_insts kid_insts nc t in match kopts' with | [] -> insts', t' | _ -> insts', Typ_aux (Typ_exist (kopts', nc', t'), l) end | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and inst_src_typ_arg insts (A_aux (ta,l) as tyarg) = match ta with | A_nexp _ | A_order _ | A_bool _ -> insts, tyarg | A_typ typ -> let insts', typ' = inst_src_type insts typ in insts', A_aux (A_typ typ',l) let rec contains_exist (Typ_aux (ty,l)) = match ty with | Typ_id _ | Typ_var _ -> false | Typ_fn (t1,t2,_) -> List.exists contains_exist t1 || contains_exist t2 | Typ_bidir (t1, t2, _) -> contains_exist t1 || contains_exist t2 | Typ_tup ts -> List.exists contains_exist ts | Typ_app (_,args) -> List.exists contains_exist_arg args | Typ_exist _ -> true | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and contains_exist_arg (A_aux (arg,_)) = match arg with | A_nexp _ | A_order _ | A_bool _ -> false | A_typ typ -> contains_exist typ let is_number typ = match destruct_numeric typ with | Some _ -> true | None -> false let rec size_nvars_nexp (Nexp_aux (ne,_)) = match ne with | Nexp_var v -> [v] | Nexp_id _ | Nexp_constant _ -> [] | Nexp_times (n1,n2) | Nexp_sum (n1,n2) | Nexp_minus (n1,n2) -> size_nvars_nexp n1 @ size_nvars_nexp n2 | Nexp_exp n | Nexp_neg n -> size_nvars_nexp n | Nexp_app (_,args) -> List.concat (List.map size_nvars_nexp args) (* Given a type for a constructor, work out which refinements we ought to produce *) (* TODO collision avoidance *) let split_src_type all_errors env id ty (TypQ_aux (q,ql)) = let cannot l msg default = let open Reporting in match all_errors with | None -> raise (err_general l msg) | Some flag -> begin flag := false; print_err l "Error" msg; default end in let i = string_of_id id in (* This was originally written for the general case, but I cut it down to the more manageable prenex-form below *) let rec size_nvars_ty typ = let Typ_aux (ty,l) = Env.expand_synonyms env typ in match ty with | Typ_id _ | Typ_var _ -> (KidSet.empty,[[],typ]) | Typ_fn _ -> cannot l ("Function type in constructor " ^ i) (KidSet.empty,[[],typ]) | Typ_bidir _ -> cannot l ("Mapping type in constructor " ^ i) (KidSet.empty,[[],typ]) | Typ_tup ts -> let (vars,tys) = List.split (List.map size_nvars_ty ts) in let insttys = List.map (fun x -> let (insts,tys) = List.split x in List.concat insts, Typ_aux (Typ_tup tys,l)) (cross' tys) in (kidset_bigunion vars, insttys) | Typ_app (Id_aux (Id "bitvector",_), [A_aux (A_nexp sz,_);_]) -> (KidSet.of_list (size_nvars_nexp sz), [[],typ]) | Typ_app (_, tas) -> (KidSet.empty,[[],typ]) (* We only support sizes for bitvectors mentioned explicitly, not any buried inside another type *) | Typ_exist (kopts, nc, t) -> let (vars,tys) = size_nvars_ty t in let find_insts k (insts,nc) = let inst,nc' = if KidSet.mem (kopt_kid k) vars then let is,nc' = extract_set_nc env l (kopt_kid k) nc in Some is,nc' else None,nc in (k,inst)::insts,nc' in let (insts,nc') = List.fold_right find_insts kopts ([],nc) in let insts = cross'' insts in let ty_and_inst (inst0,ty) inst = let kopts, nc', ty = apply_kid_insts inst nc' ty in let ty = (* Typ_exist is not allowed an empty list of kids *) match kopts with | [] -> ty | _ -> Typ_aux (Typ_exist (kopts, nc', ty),l) in inst@inst0, ty in let tys = List.concat (List.map (fun instty -> List.map (ty_and_inst instty) insts) tys) in let free = List.fold_left (fun vars k -> KidSet.remove (kopt_kid k) vars) vars kopts in (free,tys) | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" in let size_nvars_ty (Typ_aux (ty,l) as typ) = match ty with | Typ_exist (kids,_,t) -> begin match snd (size_nvars_ty typ) with | [] -> [] | [[],_] -> [] | tys -> if contains_exist t then cannot l "Only prenex types in unions are supported by monomorphisation" [] else tys end | _ -> [] in (* TODO: reject universally quantification or monomorphise it *) let variants = size_nvars_ty ty in match variants with | [] -> None | [l,_] when List.for_all (function (_,None) -> true | _ -> false) l -> None | sample::_ -> if List.length variants > size_set_limit then cannot ql (string_of_int (List.length variants) ^ "variants for constructor " ^ i ^ "bigger than limit " ^ string_of_int size_set_limit) None else let wrap = match id with | Id_aux (Id i,l) -> (fun f -> Id_aux (Id (f i),Generated l)) | Id_aux (Operator i,l) -> (fun f -> Id_aux (Operator (f i),l)) in let name_seg = function | (_,None) -> "" | (k,Some i) -> "#" ^ string_of_kid (kopt_kid k) ^ Big_int.to_string i in let name l i = String.concat "" (i::(List.map name_seg l)) in Some (List.map (fun (l,ty) -> (l, wrap (name l),ty)) variants) let reduce_nexp subst ne = let rec eval (Nexp_aux (ne,_) as nexp) = match ne with | Nexp_constant i -> i | Nexp_sum (n1,n2) -> Big_int.add (eval n1) (eval n2) | Nexp_minus (n1,n2) -> Big_int.sub (eval n1) (eval n2) | Nexp_times (n1,n2) -> Big_int.mul (eval n1) (eval n2) | Nexp_exp n -> Big_int.shift_left (eval n) 1 | Nexp_neg n -> Big_int.negate (eval n) | _ -> raise (Reporting.err_general Unknown ("Couldn't turn nexp " ^ string_of_nexp nexp ^ " into concrete value")) in eval ne let typ_of_args args = match args with | [(E_aux (E_tuple args, (_, tannot)) as exp)] -> begin match destruct_tannot tannot with | Some (_,Typ_aux (Typ_exist _,_),_) -> let tys = List.map Type_check.typ_of args in Typ_aux (Typ_tup tys,Unknown) | _ -> Type_check.typ_of exp end | [exp] -> Type_check.typ_of exp | _ -> let tys = List.map Type_check.typ_of args in Typ_aux (Typ_tup tys,Unknown) (* Check to see if we need to monomorphise a use of a constructor. Currently assumes that bitvector sizes are always given as a variable; don't yet handle more general cases (e.g., 8 * var) *) let refine_constructor refinements l env id args = match List.find (fun (id',_) -> Id.compare id id' = 0) refinements with | (_,irefinements) -> begin let (_,constr_ty) = Env.get_union_id id env in match constr_ty with (* A constructor should always have a single argument. *) | Typ_aux (Typ_fn ([constr_ty],_,_),_) -> begin let arg_ty = typ_of_args args in match Type_check.destruct_exist (Type_check.Env.expand_synonyms env constr_ty) with | None -> None | Some (kopts,nc,constr_ty) -> (* Remove existentials in argument types to prevent unification failures *) let unwrap (Typ_aux (t,_) as typ) = match t with | Typ_exist (_,_,typ) -> typ | _ -> typ in let arg_ty = match arg_ty with | Typ_aux (Typ_tup ts,annot) -> Typ_aux (Typ_tup (List.map unwrap ts),annot) | _ -> arg_ty in let bindings = Type_check.unify l env (tyvars_of_typ constr_ty) constr_ty arg_ty in let find_kopt kopt = try Some (KBindings.find (kopt_kid kopt) bindings) with Not_found -> None in let bindings = List.map find_kopt kopts in let matches_refinement (mapping,_,_) = List.for_all2 (fun v (_,w) -> match v,w with | _,None -> true | Some (A_aux (A_nexp (Nexp_aux (Nexp_constant n, _)), _)),Some m -> Big_int.equal n m | _,_ -> false) bindings mapping in match List.find matches_refinement irefinements with | (_,new_id,_) -> Some (E_app (new_id,args)) | exception Not_found -> let print_map kopt = function | None -> string_of_kid (kopt_kid kopt) ^ " -> _" | Some ta -> string_of_kid (kopt_kid kopt) ^ " -> " ^ string_of_typ_arg ta in (Reporting.print_err l "Monomorphisation" ("Unable to refine constructor " ^ string_of_id id ^ " using mapping " ^ String.concat "," (List.map2 print_map kopts bindings)); None) end | _ -> None end | exception Not_found -> None type pat_choice = Parse_ast.l * (int * int * (id * tannot exp) list) (* We may need to split up a pattern match if (1) we've been told to case split on a variable by the user or analysis, or (2) we monomorphised a constructor that's used in the pattern. *) type split = | NoSplit | VarSplit of (tannot pat * (* pattern for this case *) (id * tannot Ast.exp) list * (* substitutions for arguments *) pat_choice list * (* optional locations of constraints/case expressions to reduce *) nexp KBindings.t) (* substitutions for type variables *) list | ConstrSplit of (tannot pat * nexp KBindings.t) list let isubst_minus subst subst' = Bindings.merge (fun _ x y -> match x,y with (Some a), None -> Some a | _, _ -> None) subst subst' let freshen_id = let counter = ref 0 in fun id -> let n = !counter in let () = counter := n + 1 in match id with | Id_aux (Id x, l) -> Id_aux (Id (x ^ "#m" ^ string_of_int n),Generated l) | Id_aux (Operator x, l) -> Id_aux (Operator (x ^ "#m" ^ string_of_int n),Generated l) (* TODO: only freshen bindings that might be shadowed *) let rec freshen_pat_bindings p = let rec aux (P_aux (p,(l,annot)) as pat) = let mkp p = P_aux (p,(Generated l, annot)) in match p with | P_lit _ | P_wild -> pat, [] | P_or (p1, p2) -> let (r1, vs1) = aux p1 in let (r2, vs2) = aux p2 in (mkp (P_or (r1, r2)), vs1 @ vs2) | P_not p -> let (r, vs) = aux p in (mkp (P_not r), vs) | P_as (p,_) -> aux p | P_typ (typ,p) -> let p',vs = aux p in mkp (P_typ (typ,p')),vs | P_id id -> let id' = freshen_id id in mkp (P_id id'),[id,E_aux (E_id id',(Generated Unknown,empty_tannot))] | P_var (p,_) -> aux p | P_app (id,args) -> let args',vs = List.split (List.map aux args) in mkp (P_app (id,args')),List.concat vs | P_vector ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_vector ps),List.concat vs | P_vector_concat ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_vector_concat ps),List.concat vs | P_string_append ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_string_append ps),List.concat vs | P_tup ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_tup ps),List.concat vs | P_list ps -> let ps,vs = List.split (List.map aux ps) in mkp (P_list ps),List.concat vs | P_cons (p1,p2) -> let p1,vs1 = aux p1 in let p2,vs2 = aux p2 in mkp (P_cons (p1, p2)), vs1@vs2 in aux p (* This cuts off function bodies at false assertions that we may have produced in a wildcard pattern match. It should handle the same assertions that find_set_assertions does. *) let stop_at_false_assertions e = let dummy_value_of_typ typ = let l = Generated Unknown in E_aux (E_exit (E_aux (E_lit (L_aux (L_unit,l)),(l,empty_tannot))),(l,empty_tannot)) in let rec nc_false (NC_aux (nc,_)) = match nc with | NC_false -> true | NC_and (nc1,nc2) -> nc_false nc1 || nc_false nc2 | _ -> false in let rec exp_false (E_aux (e,_)) = match e with | E_constraint nc -> nc_false nc | E_lit (L_aux (L_false,_)) -> true | E_app (Id_aux (Id "and_bool",_),[e1;e2]) -> exp_false e1 || exp_false e2 | _ -> false in let rec exp (E_aux (e,ann) as ea) = match e with | E_block es -> let rec aux = function | [] -> [], None | e::es -> let e,stop = exp e in match stop with | Some _ -> [e],stop | None -> let es',stop = aux es in e::es',stop in let es,stop = aux es in begin match stop with | None -> E_aux (E_block es,ann), stop | Some typ -> let typ' = typ_of_annot ann in if Type_check.alpha_equivalent (env_of_annot ann) typ typ' then E_aux (E_block es,ann), stop else E_aux (E_block (es@[dummy_value_of_typ typ']),ann), Some typ' end | E_cast (typ,e) -> let e,stop = exp e in let stop = match stop with Some _ -> Some typ | None -> None in E_aux (E_cast (typ,e),ann),stop | E_let (LB_aux (LB_val (p,e1),lbann),e2) -> let e1,stop = exp e1 in begin match stop with | Some _ -> e1,stop | None -> let e2,stop = exp e2 in E_aux (E_let (LB_aux (LB_val (p,e1),lbann),e2),ann), stop end | E_assert (e1,_) when exp_false e1 -> ea, Some (typ_of_annot ann) | E_throw e -> ea, Some (typ_of_annot ann) | _ -> ea, None in fst (exp e) (* Use the location pairs in choices to reduce case expressions at the first location to the given case at the second. *) let apply_pat_choices choices = let rec rewrite_ncs (NC_aux (nc,l) as nconstr) = match nc with | NC_set _ | NC_or _ -> begin match List.assoc l choices with | choice,max,_ -> NC_aux ((if choice < max then NC_true else NC_false), Generated l) | exception Not_found -> nconstr end | NC_and (nc1,nc2) -> begin match rewrite_ncs nc1, rewrite_ncs nc2 with | NC_aux (NC_false,l), _ | _, NC_aux (NC_false,l) -> NC_aux (NC_false,l) | nc1,nc2 -> NC_aux (NC_and (nc1,nc2),l) end | _ -> nconstr in let rec rewrite_assert_cond (E_aux (e,(l,ann)) as exp) = match List.assoc l choices with | choice,max,_ -> E_aux (E_lit (L_aux ((if choice < max then L_true else L_false (* wildcard *)), Generated l)),(Generated l,ann)) | exception Not_found -> match e with | E_constraint nc -> E_aux (E_constraint (rewrite_ncs nc),(l,ann)) | E_app (Id_aux (Id "and_bool",andl), [e1;e2]) -> E_aux (E_app (Id_aux (Id "and_bool",andl), [rewrite_assert_cond e1; rewrite_assert_cond e2]),(l,ann)) | _ -> exp in let rewrite_assert (e1,e2) = E_assert (rewrite_assert_cond e1, e2) in let rewrite_case (e,cases) = match List.assoc (exp_loc e) choices with | choice,max,subst -> (match List.nth cases choice with | Pat_aux (Pat_exp (p,E_aux (e,_)),_) -> let dummyannot = (Generated Unknown,empty_tannot) in (* TODO: use a proper substitution *) List.fold_left (fun e (id,e') -> E_let (LB_aux (LB_val (P_aux (P_id id, dummyannot),e'),dummyannot),E_aux (e,dummyannot))) e subst | Pat_aux (Pat_when _,(l,_)) -> raise (Reporting.err_unreachable l __POS__ "Pattern acquired a guard after analysis!") | exception Not_found -> raise (Reporting.err_unreachable (exp_loc e) __POS__ "Unable to find case I found earlier!")) | exception Not_found -> E_case (e,cases) in let open Rewriter in fold_exp { id_exp_alg with e_assert = rewrite_assert; e_case = rewrite_case } let split_defs target all_errors splits env ast = let no_errors_happened = ref true in let error_opt = if all_errors then Some no_errors_happened else None in let split_constructors defs = let sc_type_union q (Tu_aux (Tu_ty_id (ty, id), l)) = match split_src_type error_opt env id ty q with | None -> ([],[Tu_aux (Tu_ty_id (ty,id),l)]) | Some variants -> ([(id,variants)], List.map (fun (insts, id', ty) -> Tu_aux (Tu_ty_id (ty,id'),Generated l)) variants) in let sc_type_def ((TD_aux (tda,annot)) as td) = match tda with | TD_variant (id,quant,tus,flag) -> let (refinements, tus') = List.split (List.map (sc_type_union quant) tus) in (List.concat refinements, TD_aux (TD_variant (id,quant,List.concat tus',flag),annot)) | _ -> ([],td) in let sc_def d = match d with | DEF_type td -> let (refinements,td') = sc_type_def td in (refinements, DEF_type td') | _ -> ([], d) in let (refinements, defs') = List.split (List.map sc_def defs) in (List.concat refinements, defs') in let (refinements, defs') = split_constructors ast.defs in let subst_exp ref_vars substs ksubsts exp = let substs = bindings_from_list substs, ksubsts in fst (Constant_propagation.const_prop target ast ref_vars substs Bindings.empty exp) in (* Split a variable pattern into every possible value *) let split var pat_l annot = let v = string_of_id var in let env = Type_check.env_of_annot (pat_l, annot) in let typ = Type_check.typ_of_annot (pat_l, annot) in let typ = Env.expand_synonyms env typ in let Typ_aux (ty,l) = typ in let new_l = Generated l in let renew_id (Id_aux (id,l)) = Id_aux (id,new_l) in let cannot msg = let open Reporting in let error_msg = "Cannot split type " ^ string_of_typ typ ^ " for variable " ^ v ^ ": " ^ msg in if all_errors then (no_errors_happened := false; print_err pat_l "" error_msg; [P_aux (P_id var,(pat_l,annot)),[],[],KBindings.empty]) else raise (err_general pat_l error_msg) in match ty with | Typ_id (Id_aux (Id "bool",_)) | Typ_app (Id_aux (Id "atom_bool", _), [_]) -> [P_aux (P_lit (L_aux (L_true,new_l)),(l,annot)),[var, E_aux (E_lit (L_aux (L_true,new_l)),(new_l,annot))],[],KBindings.empty; P_aux (P_lit (L_aux (L_false,new_l)),(l,annot)),[var, E_aux (E_lit (L_aux (L_false,new_l)),(new_l,annot))],[],KBindings.empty] | Typ_id id -> (try (* enumerations *) let ns = Env.get_enum id env in List.map (fun n -> (P_aux (P_id (renew_id n),(l,annot)), [var,E_aux (E_id (renew_id n),(new_l,annot))],[],KBindings.empty)) ns with Type_error _ -> match id with | Id_aux (Id "bit",_) -> List.map (fun b -> P_aux (P_lit (L_aux (b,new_l)),(l,annot)), [var,E_aux (E_lit (L_aux (b,new_l)),(new_l, annot))],[],KBindings.empty) [L_zero; L_one] | _ -> cannot ("don't know about type " ^ string_of_id id)) | Typ_app (Id_aux (Id "bitvector",_), [A_aux (A_nexp len,_);_]) -> (match len with | Nexp_aux (Nexp_constant sz,_) when Big_int.greater_equal sz Big_int.zero -> let sz = Big_int.to_int sz in let num_lits = Big_int.pow_int (Big_int.of_int 2) sz in (* Check that split size is within limits before generating the list of literals *) if (Big_int.less_equal num_lits (Big_int.of_int size_set_limit)) then let lits = make_vectors sz in List.map (fun lit -> P_aux (P_lit lit,(l,annot)), [var,E_aux (E_lit lit,(new_l,annot))],[],KBindings.empty) lits else cannot ("bitvector length outside limit, " ^ string_of_nexp len) | _ -> cannot ("length not constant and positive, " ^ string_of_nexp len) ) (* set constrained numbers *) | Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (value,_) as nexp),_)]) -> begin let mk_lit kid i = let lit = L_aux (L_num i,new_l) in P_aux (P_lit lit,(l,annot)), [var,E_aux (E_lit lit,(new_l,annot))],[], match kid with None -> KBindings.empty | Some k -> KBindings.singleton k (nconstant i) in match value with | Nexp_constant i -> [mk_lit None i] | Nexp_var kvar -> let ncs = Env.get_constraints env in let nc = List.fold_left nc_and nc_true ncs in (match extract_set_nc env l kvar nc with | (is,_) -> List.map (mk_lit (Some kvar)) is | exception Reporting.Fatal_error (Reporting.Err_general (_,msg)) -> cannot msg) | _ -> cannot ("unsupport atom nexp " ^ string_of_nexp nexp) end | _ -> cannot ("unsupported type " ^ string_of_typ typ) in (* Split variable patterns at the given locations *) let map_locs ls defs = let rec match_l = function | Unknown -> [] | Unique (_, l) -> match_l l | Generated l -> [] (* Could do match_l l, but only want to split user-written patterns *) | Documented (_,l) -> match_l l | Range (p,q) -> let matches = List.filter (fun ((filename,line),_,_) -> p.Lexing.pos_fname = filename && p.Lexing.pos_lnum <= line && line <= q.Lexing.pos_lnum) ls in List.map (fun (_,var,optpats) -> (var,optpats)) matches in let split_pat vars p = let id_match = function | Id_aux (Id x,_) -> (try Some (List.assoc x vars) with Not_found -> None) | Id_aux (Operator x,_) -> (try Some (List.assoc x vars) with Not_found -> None) in let rec list f = function | [] -> None | h::t -> let t' = match list f t with | None -> [t,[],[],KBindings.empty] | Some t' -> t' in let h' = match f h with | None -> [h,[],[],KBindings.empty] | Some ps -> ps in let merge (h,hsubs,hpchoices,hksubs) (t,tsubs,tpchoices,tksubs) = if KBindings.for_all (fun kid nexp -> match KBindings.find_opt kid tksubs with | None -> true | Some nexp' -> Nexp.compare nexp nexp' == 0) hksubs then Some (h::t, hsubs@tsubs, hpchoices@tpchoices, KBindings.union (fun k a _ -> Some a) hksubs tksubs) else None in Some (List.concat (List.map (fun h -> Util.map_filter (merge h) t') h')) in let rec spl (P_aux (p,(l,annot))) = let relist f ctx ps = optmap (list f ps) (fun ps -> List.map (fun (ps,sub,pchoices,ksub) -> P_aux (ctx ps,(l,annot)),sub,pchoices,ksub) ps) in let re f p = optmap (spl p) (fun ps -> List.map (fun (p,sub,pchoices,ksub) -> (P_aux (f p,(l,annot)), sub, pchoices, ksub)) ps) in let re2 f ctx p1 p2 = (* Todo: I am not proud of this abuse of relist - but creating a special * version of re just for two entries did not seem worth it *) relist f (function [p1'; p2'] -> ctx p1' p2' | _ -> assert false) [p1; p2] in match p with | P_lit _ | P_wild -> None | P_or (p1, p2) -> re2 spl (fun p1' p2' -> P_or (p1', p2')) p1 p2 | P_not p -> (* todo: not sure that I can't split - but can't figure out how at * the moment *) raise (Reporting.err_general l ("Cannot split on 'not' pattern")) | P_as (p',id) when id_match id <> None -> raise (Reporting.err_general l ("Cannot split " ^ string_of_id id ^ " on 'as' pattern")) | P_as (p',id) -> re (fun p -> P_as (p,id)) p' | P_typ (t,p') -> re (fun p -> P_typ (t,p)) p' | P_var (p', (TP_aux (TP_var kid,_) as tp)) -> (match spl p' with | None -> None | Some ps -> let kids = Spec_analysis.equal_kids (env_of_pat p') kid in Some (List.map (fun (p,sub,pchoices,ksub) -> P_aux (P_var (p,tp),(l,annot)), sub, pchoices, match List.find_opt (fun k -> KBindings.mem k ksub) (KidSet.elements kids) with | None -> ksub | Some k -> KBindings.add kid (KBindings.find k ksub) ksub ) ps)) | P_var (p',tp) -> re (fun p -> P_var (p,tp)) p' | P_id id -> (match id_match id with | None -> None (* Total case split *) | Some None -> Some (split id l annot) (* Where the analysis proposed a specific case split, propagate a literal as normal, but perform a more careful transformation otherwise *) | Some (Some (pats,l)) -> let max = List.length pats - 1 in let lit_like = function | P_lit _ -> true | P_vector ps -> List.for_all (function P_aux (P_lit _,_) -> true | _ -> false) ps | _ -> false in let rec to_exp = function | P_aux (P_lit lit,(l,ann)) -> E_aux (E_lit lit,(Generated l,ann)) | P_aux (P_vector ps,(l,ann)) -> E_aux (E_vector (List.map to_exp ps),(Generated l,ann)) | _ -> assert false in Some (List.mapi (fun i p -> match p with | P_aux (P_lit (L_aux (L_num j,_) as lit),(pl,pannot)) -> let orig_typ = Env.base_typ_of (env_of_annot (l,annot)) (typ_of_annot (l,annot)) in let kid_subst = match orig_typ with | Typ_aux (Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (Nexp_var var,_)),_)]),_) -> KBindings.singleton var (nconstant j) | _ -> KBindings.empty in p,[id,E_aux (E_lit lit,(Generated pl,pannot))],[l,(i,max,[])],kid_subst | P_aux (p',(pl,pannot)) when lit_like p' -> p,[id,to_exp p],[l,(i,max,[])],KBindings.empty | _ -> let p',subst = freshen_pat_bindings p in match p' with | P_aux (P_wild,_) -> P_aux (P_id id,(l,annot)),[],[l,(i,max,subst)],KBindings.empty | _ -> P_aux (P_as (p',id),(l,annot)),[],[l,(i,max,subst)],KBindings.empty) pats) ) | P_app (id,ps) -> relist spl (fun ps -> P_app (id,ps)) ps | P_vector ps -> relist spl (fun ps -> P_vector ps) ps | P_vector_concat ps -> relist spl (fun ps -> P_vector_concat ps) ps | P_string_append ps -> relist spl (fun ps -> P_string_append ps) ps | P_tup ps -> relist spl (fun ps -> P_tup ps) ps | P_list ps -> relist spl (fun ps -> P_list ps) ps | P_cons (p1,p2) -> re2 spl (fun p1' p2' -> P_cons (p1', p2')) p1 p2 in spl p in let map_pat_by_loc (P_aux (p,(l,_)) as pat) = match match_l l with | [] -> None | vars -> split_pat vars pat in let map_pat (P_aux (p,(l,tannot)) as pat) = let try_by_location () = match map_pat_by_loc pat with | Some l -> VarSplit l | None -> NoSplit in match p with | P_app (id,args) -> begin match List.find (fun (id',_) -> Id.compare id id' = 0) refinements with | (_,variants) -> (* TODO: at changes to the pattern and what substitutions do we need in general? let kid,kid_annot = match args with | [P_aux (P_var (_, TP_aux (TP_var kid, _)),ann)] -> kid,ann | _ -> raise (Reporting.err_general l ("Pattern match not currently supported by monomorphisation: " ^ string_of_pat pat)) in let map_inst (insts,id',_) = let insts = match insts with [(v,Some i)] -> [(kid,Nexp_aux (Nexp_constant i, Generated l))] | _ -> assert false in (* let insts,_ = split_insts insts in let insts = List.map (fun (v,i) -> (??, Nexp_aux (Nexp_constant i,Generated l))) insts in P_aux (app (id',args),(Generated l,tannot)), *) P_aux (P_app (id',[P_aux (P_id (id_of_kid kid),kid_annot)]),(Generated l,tannot)), kbindings_from_list insts in *) let map_inst (insts,id',_) = P_aux (P_app (id',args),(Generated l,tannot)), KBindings.empty in ConstrSplit (List.map map_inst variants) | exception Not_found -> try_by_location () end | _ -> try_by_location () in let check_single_pat (P_aux (_,(l,annot)) as p) = match match_l l with | [] -> p | lvs -> let pvs = Spec_analysis.bindings_from_pat p in let pvs = List.map string_of_id pvs in let overlap = List.exists (fun (v,_) -> List.mem v pvs) lvs in let () = if overlap then Reporting.print_err l "Monomorphisation" "Splitting a singleton pattern is not possible" in p in let check_split_size lst l = let size = List.length lst in if size > size_set_limit then let open Reporting in let error_msg = "Case split is too large (" ^ string_of_int size ^ " > limit " ^ string_of_int size_set_limit ^ ")" in if all_errors then (no_errors_happened := false; print_err l "" error_msg; false) else raise (err_general l error_msg) else true in let map_fns ref_vars = let rec map_exp ((E_aux (e,annot)) as ea) = let re e = E_aux (e,annot) in match e with | E_block es -> re (E_block (List.map map_exp es)) | E_id _ | E_lit _ | E_sizeof _ | E_constraint _ | E_ref _ | E_internal_value _ -> ea | E_cast (t,e') -> re (E_cast (t, map_exp e')) | E_app (id,es) -> let es' = List.map map_exp es in let env = env_of_annot annot in begin match Env.is_union_constructor id env, refine_constructor refinements (fst annot) env id es' with | true, Some exp -> re exp | _,_ -> re (E_app (id,es')) end | E_app_infix (e1,id,e2) -> re (E_app_infix (map_exp e1,id,map_exp e2)) | E_tuple es -> re (E_tuple (List.map map_exp es)) | E_if (e1,e2,e3) -> re (E_if (map_exp e1, map_exp e2, map_exp e3)) | E_for (id,e1,e2,e3,ord,e4) -> re (E_for (id,map_exp e1,map_exp e2,map_exp e3,ord,map_exp e4)) | E_loop (loop,m,e1,e2) -> re (E_loop (loop,m,map_exp e1,map_exp e2)) | E_vector es -> re (E_vector (List.map map_exp es)) | E_vector_access (e1,e2) -> re (E_vector_access (map_exp e1,map_exp e2)) | E_vector_subrange (e1,e2,e3) -> re (E_vector_subrange (map_exp e1,map_exp e2,map_exp e3)) | E_vector_update (e1,e2,e3) -> re (E_vector_update (map_exp e1,map_exp e2,map_exp e3)) | E_vector_update_subrange (e1,e2,e3,e4) -> re (E_vector_update_subrange (map_exp e1,map_exp e2,map_exp e3,map_exp e4)) | E_vector_append (e1,e2) -> re (E_vector_append (map_exp e1,map_exp e2)) | E_list es -> re (E_list (List.map map_exp es)) | E_cons (e1,e2) -> re (E_cons (map_exp e1,map_exp e2)) | E_record fes -> re (E_record (List.map map_fexp fes)) | E_record_update (e,fes) -> re (E_record_update (map_exp e, List.map map_fexp fes)) | E_field (e,id) -> re (E_field (map_exp e,id)) | E_case (e,cases) -> re (E_case (map_exp e, List.concat (List.map map_pexp cases))) | E_let (lb,e) -> re (E_let (map_letbind lb, map_exp e)) | E_assign (le,e) -> re (E_assign (map_lexp le, map_exp e)) | E_exit e -> re (E_exit (map_exp e)) | E_throw e -> re (E_throw e) | E_try (e,cases) -> re (E_try (map_exp e, List.concat (List.map map_pexp cases))) | E_return e -> re (E_return (map_exp e)) | E_assert (e1,e2) -> re (E_assert (map_exp e1,map_exp e2)) | E_var (le,e1,e2) -> re (E_var (map_lexp le, map_exp e1, map_exp e2)) | E_internal_plet (p,e1,e2) -> re (E_internal_plet (check_single_pat p, map_exp e1, map_exp e2)) | E_internal_return e -> re (E_internal_return (map_exp e)) and map_fexp (FE_aux (FE_Fexp (id,e), annot)) = FE_aux (FE_Fexp (id,map_exp e),annot) and map_pexp = function | Pat_aux (Pat_exp (p,e),l) -> let nosplit = lazy [Pat_aux (Pat_exp (p,map_exp e),l)] in (match map_pat p with | NoSplit -> Lazy.force nosplit | VarSplit patsubsts -> if check_split_size patsubsts (pat_loc p) then List.map (fun (pat',substs,pchoices,ksubsts) -> let exp' = Spec_analysis.nexp_subst_exp ksubsts e in let exp' = apply_pat_choices pchoices exp' in let exp' = subst_exp ref_vars substs ksubsts exp' in let exp' = stop_at_false_assertions exp' in Pat_aux (Pat_exp (pat', map_exp exp'),l)) patsubsts else Lazy.force nosplit | ConstrSplit patnsubsts -> List.map (fun (pat',nsubst) -> let pat' = Spec_analysis.nexp_subst_pat nsubst pat' in let exp' = Spec_analysis.nexp_subst_exp nsubst e in Pat_aux (Pat_exp (pat', map_exp exp'),l) ) patnsubsts) | Pat_aux (Pat_when (p,e1,e2),l) -> let nosplit = lazy [Pat_aux (Pat_when (p,map_exp e1,map_exp e2),l)] in (match map_pat p with | NoSplit -> Lazy.force nosplit | VarSplit patsubsts -> if check_split_size patsubsts (pat_loc p) then List.map (fun (pat',substs,pchoices,ksubsts) -> let exp1' = Spec_analysis.nexp_subst_exp ksubsts e1 in let exp1' = apply_pat_choices pchoices exp1' in let exp1' = subst_exp ref_vars substs ksubsts exp1' in let exp2' = Spec_analysis.nexp_subst_exp ksubsts e2 in let exp2' = apply_pat_choices pchoices exp2' in let exp2' = subst_exp ref_vars substs ksubsts exp2' in let exp2' = stop_at_false_assertions exp2' in Pat_aux (Pat_when (pat', map_exp exp1', map_exp exp2'),l)) patsubsts else Lazy.force nosplit | ConstrSplit patnsubsts -> List.map (fun (pat',nsubst) -> let pat' = Spec_analysis.nexp_subst_pat nsubst pat' in let exp1' = Spec_analysis.nexp_subst_exp nsubst e1 in let exp2' = Spec_analysis.nexp_subst_exp nsubst e2 in Pat_aux (Pat_when (pat', map_exp exp1', map_exp exp2'),l) ) patnsubsts) and map_letbind (LB_aux (lb,annot)) = match lb with | LB_val (p,e) -> LB_aux (LB_val (check_single_pat p,map_exp e), annot) and map_lexp ((LEXP_aux (e,annot)) as le) = let re e = LEXP_aux (e,annot) in match e with | LEXP_id _ | LEXP_cast _ -> le | LEXP_memory (id,es) -> re (LEXP_memory (id,List.map map_exp es)) | LEXP_tup les -> re (LEXP_tup (List.map map_lexp les)) | LEXP_vector (le,e) -> re (LEXP_vector (map_lexp le, map_exp e)) | LEXP_vector_range (le,e1,e2) -> re (LEXP_vector_range (map_lexp le, map_exp e1, map_exp e2)) | LEXP_vector_concat les -> re (LEXP_vector_concat (List.map map_lexp les)) | LEXP_field (le,id) -> re (LEXP_field (map_lexp le, id)) | LEXP_deref e -> re (LEXP_deref (map_exp e)) in map_exp, map_pexp, map_letbind in let map_exp r = let (f,_,_) = map_fns r in f in let map_pexp r = let (_,f,_) = map_fns r in f in let map_letbind r = let (_,_,f) = map_fns r in f in let map_exp exp = let ref_vars = Constant_propagation.referenced_vars exp in map_exp ref_vars exp in let map_pexp top_pexp = (* Construct the set of referenced variables so that we don't accidentally make false assumptions about them during constant propagation. Note that we assume there aren't any in the guard. *) let (_,_,body,_) = destruct_pexp top_pexp in let ref_vars = Constant_propagation.referenced_vars body in map_pexp ref_vars top_pexp in let map_letbind (LB_aux (LB_val (_,e),_) as lb) = let ref_vars = Constant_propagation.referenced_vars e in map_letbind ref_vars lb in let map_funcl (FCL_aux (FCL_Funcl (id,pexp),annot)) = List.map (fun pexp -> FCL_aux (FCL_Funcl (id,pexp),annot)) (map_pexp pexp) in let map_fundef (FD_aux (FD_function (r,t,e,fcls),annot)) = FD_aux (FD_function (r,t,e,List.concat (List.map map_funcl fcls)),annot) in let map_scattered_def sd = match sd with | SD_aux (SD_funcl fcl, annot) -> List.map (fun fcl' -> SD_aux (SD_funcl fcl', annot)) (map_funcl fcl) | _ -> [sd] in let num_defs = List.length defs in let map_def idx d = Util.progress "Monomorphising " (string_of_int idx ^ "/" ^ string_of_int num_defs) idx num_defs; match d with | DEF_type _ | DEF_spec _ | DEF_default _ | DEF_reg_dec _ | DEF_overload _ | DEF_fixity _ | DEF_pragma _ | DEF_internal_mutrec _ -> [d] | DEF_fundef fd -> [DEF_fundef (map_fundef fd)] | DEF_mapdef (MD_aux (_, (l, _))) -> Reporting.unreachable l __POS__ "mappings should be gone by now" | DEF_val lb -> [DEF_val (map_letbind lb)] | DEF_scattered sd -> List.map (fun x -> DEF_scattered x) (map_scattered_def sd) | DEF_measure (id,pat,exp) -> [DEF_measure (id,pat,map_exp exp)] | DEF_loop_measures (id,_) -> Reporting.unreachable (id_loc id) __POS__ "Loop termination measures should have been rewritten before now" in List.concat (List.mapi map_def defs) in let defs'' = map_locs splits defs' in Util.progress "Monomorphising " "done" (List.length defs'') (List.length defs''); !no_errors_happened, { ast with defs = defs'' } (* The next section of code turns atom('n) types into itself('n) types, which survive into the Lem output, so can be used to parametrise functions over internal bitvector lengths (such as datasize and regsize in ARM specs *) module AtomToItself = struct let findi f = let rec aux n = function | [] -> None | h::t -> match f h with Some x -> Some (n,x) | _ -> aux (n+1) t in aux 0 let mapat f is xs = let rec aux n = function | [] -> [] | h::t when Util.IntSet.mem n is -> let h' = f h in let t' = aux (n+1) t in h'::t' | h::t -> let t' = aux (n+1) t in h::t' in aux 0 xs let mapat_extra f is xs = let rec aux n = function | [] -> [], [] | h::t when Util.IntSet.mem n is -> let h',x = f n h in let t',xs = aux (n+1) t in h'::t',x::xs | h::t -> let t',xs = aux (n+1) t in h::t',xs in aux 0 xs let tyvars_bound_in_pat pat = let rec tp_kids s (TP_aux (tp,_)) = match tp with | TP_wild -> s | TP_var kid -> KidSet.add kid s | TP_app (_,tps) -> List.fold_left tp_kids s tps in let open Rewriter in fst (fold_pat { (compute_pat_alg KidSet.empty KidSet.union) with p_var = (fun ((s,pat), tpat) -> tp_kids s tpat, P_var (pat, tpat)) } pat) let tyvars_bound_in_lb (LB_aux (LB_val (pat,_),_)) = tyvars_bound_in_pat pat let rec sizes_of_typ (Typ_aux (t,l)) = match t with | Typ_id _ | Typ_var _ -> KidSet.empty | Typ_fn _ -> raise (Reporting.err_general l "Function type on expression") | Typ_bidir _ -> raise (Reporting.err_general l "Mapping type on expression") | Typ_tup typs -> kidset_bigunion (List.map sizes_of_typ typs) | Typ_exist (kopts,_,typ) -> List.fold_left (fun s k -> KidSet.remove (kopt_kid k) s) (sizes_of_typ typ) kopts | Typ_app (Id_aux (Id "bitvector",_), [A_aux (A_nexp size,_);_]) -> KidSet.of_list (size_nvars_nexp size) | Typ_app (_,tas) -> kidset_bigunion (List.map sizes_of_typarg tas) | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and sizes_of_typarg (A_aux (ta,_)) = match ta with A_nexp _ | A_order _ | A_bool _ -> KidSet.empty | A_typ typ -> sizes_of_typ typ let sizes_of_annot (l, tannot) = match destruct_tannot tannot with | None -> KidSet.empty | Some (env,typ,_) -> sizes_of_typ (Env.base_typ_of env typ) let change_parameter_pat i = function | P_aux (P_id var, (l,_)) | P_aux (P_typ (_,P_aux (P_id var, (l,_))),_) -> P_aux (P_id var, (l,empty_tannot)), ([var],[]) | P_aux (P_lit lit,(l,_)) -> let var = mk_id ("p#" ^ string_of_int i) in let annot = (Generated l, empty_tannot) in let test : tannot exp = E_aux (E_app_infix (E_aux (E_app (mk_id "size_itself_int",[E_aux (E_id var,annot)]),annot), mk_id "==", E_aux (E_lit lit,annot)), annot) in P_aux (P_id var, (l,empty_tannot)), ([],[test]) | P_aux (_,(l,_)) -> raise (Reporting.err_unreachable l __POS__ "Expected variable pattern") (* TODO: make more precise, preferably with a proper free variables function which deals with shadowing *) let var_maybe_used_in_exp exp var = let open Rewriter in fst (fold_exp { (compute_exp_alg false (||)) with e_id = fun id -> (Id.compare id var == 0, E_id id) } exp) (* We add code to change the itself('n) parameter into the corresponding integer. We always do this for the function body (otherwise we'd have to do something clever with E_sizeof to avoid making things more complex), but only for guards when they actually use the variable. *) let add_var_rebind unconditional exp var = if unconditional || var_maybe_used_in_exp exp var then let l = Generated Unknown in let annot = (l,empty_tannot) in E_aux (E_let (LB_aux (LB_val (P_aux (P_id var,annot), E_aux (E_app (mk_id "size_itself_int",[E_aux (E_id var,annot)]),annot)),annot),exp),annot) else exp (* atom('n) arguments to function calls need to be rewritten *) let replace_with_the_value bound_nexps (E_aux (_,(l,_)) as exp) = let env = env_of exp in let typ, wrap = match typ_of exp with | Typ_aux (Typ_exist (kids,nc,typ),l) -> typ, fun t -> Typ_aux (Typ_exist (kids,nc,t),l) | typ -> typ, fun x -> x in let typ = Env.expand_synonyms env typ in let replace_size size = (* TODO: pick simpler nexp when there's a choice (also in pretty printer) *) let is_equal nexp = prove __POS__ env (NC_aux (NC_equal (size,nexp), Parse_ast.Unknown)) in if is_nexp_constant size then size else match solve_unique env size with | Some n -> nconstant n | None -> match List.find is_equal bound_nexps with | nexp -> nexp | exception Not_found -> size in let mk_exp nexp l l' = let nexp = replace_size nexp in E_aux (E_cast (wrap (Typ_aux (Typ_app (Id_aux (Id "itself",Generated Unknown), [A_aux (A_nexp nexp,l')]),Generated Unknown)), E_aux (E_app (Id_aux (Id "make_the_value",Generated Unknown),[exp]),(Generated l,empty_tannot))), (Generated l,empty_tannot)) in match destruct_numeric typ with | Some ([], nc, nexp) when prove __POS__ env nc -> mk_exp nexp l l | _ -> raise (Reporting.err_unreachable l __POS__ ("replace_with_the_value: Unsupported type " ^ string_of_typ typ)) let replace_type env typ = let Typ_aux (t,l) = Env.expand_synonyms env typ in match destruct_numeric typ with | Some ([], nc, nexp) when prove __POS__ env nc -> Typ_aux (Typ_app (mk_id "itself", [A_aux (A_nexp nexp, Generated l)]), Generated l) | _ -> raise (Reporting.err_unreachable l __POS__ ("replace_type: Unsupported type " ^ string_of_typ typ)) let rewrite_size_parameters target type_env ast = let open Rewriter in let open Util in let const_prop_exp exp = let ref_vars = Constant_propagation.referenced_vars exp in let substs = (Bindings.empty, KBindings.empty) in let assigns = Bindings.empty in fst (Constant_propagation.const_prop target ast ref_vars substs assigns exp) in let const_prop_pexp pexp = let (pat, guard, exp, a) = destruct_pexp pexp in construct_pexp (pat, guard, const_prop_exp exp, a) in let const_prop_funcl (FCL_aux (FCL_Funcl (id, pexp), a)) = FCL_aux (FCL_Funcl (id, const_prop_pexp pexp), a) in let sizes_funcl fsizes (FCL_aux (FCL_Funcl (id,pexp),(l,ann))) = let pat,guard,exp,pannot = destruct_pexp pexp in let env = env_of_annot (l,ann) in let _, typ = Env.get_val_spec_orig id env in let already_visible_nexps = NexpSet.union (Pretty_print_lem.lem_nexps_of_typ typ) (Pretty_print_lem.typeclass_nexps typ) in let types = match typ with | Typ_aux (Typ_fn (arg_typs,_,_),_) -> List.map (Env.expand_synonyms env) arg_typs | _ -> raise (Reporting.err_unreachable l __POS__ "Function clause does not have a function type") in let add_parameter (i,nmap) typ = let nmap = match Env.base_typ_of env typ with Typ_aux (Typ_app(Id_aux (Id "range",_), [A_aux (A_nexp nexp,_); A_aux (A_nexp nexp',_)]),_) when Nexp.compare nexp nexp' = 0 && not (NexpMap.mem nexp nmap) && not (NexpSet.mem nexp already_visible_nexps) -> (* Split integer variables if the nexp is not already available via a bitvector length *) NexpMap.add nexp i nmap | Typ_aux (Typ_app(Id_aux (Id "atom", _), [A_aux (A_nexp nexp,_)]), _) when not (NexpMap.mem nexp nmap) && not (NexpSet.mem nexp already_visible_nexps) -> NexpMap.add nexp i nmap | _ -> nmap in (i+1,nmap) in let (_,nexp_map) = List.fold_left add_parameter (0,NexpMap.empty) types in let nexp_list = NexpMap.bindings nexp_map in (* let () = print_endline ("Type of pattern for " ^ string_of_id id ^": " ^string_of_typ (typ_of_pat pat)); print_endline ("Types : " ^ String.concat ", " (List.map string_of_typ types)); print_endline ("Nexp map for " ^ string_of_id id); List.iter (fun (nexp, i) -> print_endline (" " ^ string_of_nexp nexp ^ " -> " ^ string_of_int i)) nexp_list in *) let parameters_for e tannot = let parameters_for_nexp env size = match solve_unique env size with | Some _ -> IntSet.empty | None -> match NexpMap.find size nexp_map with | i -> IntSet.singleton i | exception Not_found -> (* Look for equivalent nexps, but only in consistent type env *) if prove __POS__ env (NC_aux (NC_false,Unknown)) then IntSet.empty else match List.find (fun (nexp,i) -> prove __POS__ env (NC_aux (NC_equal (nexp,size),Unknown))) nexp_list with | _, i -> IntSet.singleton i | exception Not_found -> IntSet.empty in let parameters_for_typ = match destruct_tannot tannot with | Some (env,typ,_) -> begin match Env.base_typ_of env typ with | Typ_aux (Typ_app (Id_aux (Id "bitvector",_), [A_aux (A_nexp size,_);_]),_) when not (is_nexp_constant size) -> parameters_for_nexp env size | _ -> IntSet.empty end | None -> IntSet.empty in let parameters_for_exp = match e with | E_app (id, args) when Bindings.mem id fsizes -> let add_arg (i, s) arg = if IntSet.mem i (fst (Bindings.find id fsizes)) then try match destruct_numeric (typ_of arg) with | Some ([], _, nexp) -> (i + 1, IntSet.union s (parameters_for_nexp env nexp)) | _ -> (i + 1, s) with _ -> (i + 1, s) else (i + 1, s) in snd (List.fold_left add_arg (0, IntSet.empty) args) | _ -> IntSet.empty in IntSet.union parameters_for_typ parameters_for_exp in let parameters_to_rewrite = fst (fold_pexp { (compute_exp_alg IntSet.empty IntSet.union) with e_aux = (fun ((s,e),(l,annot)) -> IntSet.union s (parameters_for e annot),E_aux (e,(l,annot))) } pexp) in let new_nexps = NexpSet.of_list (List.map fst (List.filter (fun (nexp,i) -> IntSet.mem i parameters_to_rewrite) nexp_list)) in match Bindings.find id fsizes with | old,old_nexps -> Bindings.add id (IntSet.union old parameters_to_rewrite, NexpSet.union old_nexps new_nexps) fsizes | exception Not_found -> Bindings.add id (parameters_to_rewrite, new_nexps) fsizes in let sizes_def fsizes = function | DEF_fundef (FD_aux (FD_function (_,_,_,funcls),_)) -> List.fold_left sizes_funcl fsizes funcls | _ -> fsizes in let fn_sizes = List.fold_left sizes_def Bindings.empty ast.defs in let rewrite_funcl (FCL_aux (FCL_Funcl (id,pexp),(l,annot))) = let pat,guard,body,(pl,_) = destruct_pexp pexp in let pat,guard,body, nexps = (* Update pattern and add itself -> nat wrapper to body *) match Bindings.find id fn_sizes with | to_change,nexps -> let pat, vars, new_guards = match pat with P_aux (P_tup pats,(l,_)) -> let pats, vars_guards = mapat_extra change_parameter_pat to_change pats in let vars, new_guards = List.split vars_guards in P_aux (P_tup pats,(l,empty_tannot)), vars, new_guards | P_aux (_,(l,_)) -> begin if IntSet.is_empty to_change then pat, [], [] else let pat, (var, newguard) = change_parameter_pat 0 pat in pat, [var], [newguard] end in let vars, new_guards = List.concat vars, List.concat new_guards in let body = List.fold_left (add_var_rebind true) body vars in let merge_guards g1 g2 : tannot exp = E_aux (E_app_infix (g1, mk_id "&", g2),(Generated Unknown,empty_tannot)) in let guard = match guard, new_guards with | None, [] -> None | None, (h::t) -> Some (List.fold_left merge_guards h t) | Some exp, gs -> let exp' = List.fold_left (add_var_rebind false) exp vars in Some (List.fold_left merge_guards exp' gs) in pat,guard,body,nexps | exception Not_found -> pat,guard,body,NexpSet.empty in (* Update function applications *) let funcl_typ = typ_of_annot (l,annot) in let already_visible_nexps = NexpSet.union (Pretty_print_lem.lem_nexps_of_typ funcl_typ) (Pretty_print_lem.typeclass_nexps funcl_typ) in let bound_nexps = NexpSet.elements (NexpSet.union nexps already_visible_nexps) in let rewrite_e_app (id,args) = match Bindings.find id fn_sizes with | to_change,_ -> let args' = mapat (replace_with_the_value bound_nexps) to_change args in E_app (id,args') | exception Not_found -> E_app (id,args) in let body = fold_exp { id_exp_alg with e_app = rewrite_e_app } body in let guard = match guard with | None -> None | Some exp -> Some (fold_exp { id_exp_alg with e_app = rewrite_e_app } exp) in FCL_aux (FCL_Funcl (id,construct_pexp (pat,guard,body,(pl,empty_tannot))),(l,empty_tannot)) in let rewrite_e_app (id,args) = match Bindings.find id fn_sizes with | to_change,_ -> let args' = mapat (replace_with_the_value []) to_change args in E_app (id,args') | exception Not_found -> E_app (id,args) in let rewrite_letbind = fold_letbind { id_exp_alg with e_app = rewrite_e_app } in let rewrite_exp = fold_exp { id_exp_alg with e_app = rewrite_e_app } in let replace_funtype id typ = match Bindings.find id fn_sizes with | to_change,_ when not (IntSet.is_empty to_change) -> begin match typ with | Typ_aux (Typ_fn (ts,t2,eff),l2) -> Typ_aux (Typ_fn (mapat (replace_type type_env) to_change ts,t2,eff),l2) | _ -> replace_type type_env typ end | _ -> typ | exception Not_found -> typ in let type_env' = let update_val_spec id _ env = let (tq, typ) = Env.get_val_spec_orig id env in Env.update_val_spec id (tq, replace_funtype id typ) env in Bindings.fold update_val_spec fn_sizes type_env in let rewrite_def = function | DEF_fundef (FD_aux (FD_function (recopt,tannopt,effopt,funcls),(l,_))) -> let funcls = List.map rewrite_funcl funcls in (* Check whether we have ended up with itself('n) expressions where 'n is not constant. If so, try and see if constant propagation can resolve those variable expressions. In many cases the monomorphisation pass will already have performed constant propagation, but it does not for functions where it does not perform splits.*) let check_funcl (FCL_aux (FCL_Funcl (id, pexp), (l, _)) as funcl) = let has_nonconst_sizes = let check_cast (typ, _) = match unaux_typ typ with | Typ_app (itself, [A_aux (A_nexp nexp, _)]) | Typ_exist (_, _, Typ_aux (Typ_app (itself, [A_aux (A_nexp nexp, _)]), _)) when string_of_id itself = "itself" -> not (is_nexp_constant nexp) | _ -> false in fold_pexp { (pure_exp_alg false (||)) with e_cast = check_cast } pexp in if has_nonconst_sizes then (* Constant propagation requires a fully type-annotated AST, so re-check the function clause *) let (tq, typ) = Env.get_val_spec id type_env' in let env = add_typquant l tq type_env' in const_prop_funcl (Type_check.check_funcl env funcl typ) else funcl in let funcls = List.map check_funcl funcls in (* TODO rewrite tannopt? *) DEF_fundef (FD_aux (FD_function (recopt,tannopt,effopt,funcls),(l,empty_tannot))) | DEF_val lb -> DEF_val (rewrite_letbind lb) | DEF_spec (VS_aux (VS_val_spec (typschm,id,extern,cast),(l,annot))) as spec -> let typschm = match typschm with | TypSchm_aux (TypSchm_ts (tq, typ),l) -> TypSchm_aux (TypSchm_ts (tq, replace_funtype id typ), l) in DEF_spec (VS_aux (VS_val_spec (typschm,id,extern,cast),(l,annot))) | DEF_reg_dec (DEC_aux (DEC_config (id, typ, exp), a)) -> DEF_reg_dec (DEC_aux (DEC_config (id, typ, rewrite_exp exp), a)) | def -> def in (* Bindings.iter (fun id args -> print_endline (string_of_id id ^ " needs " ^ String.concat ", " (List.map string_of_int args))) fn_sizes *) { ast with defs = List.map rewrite_def ast.defs } end let is_id env id = let ids = Env.get_overloads (Id_aux (id,Parse_ast.Unknown)) env in let ids = id :: List.map (fun (Id_aux (id,_)) -> id) ids in fun (Id_aux (x,_)) -> List.mem x ids (* Type-agnostic pattern comparison for merging below *) let lit_eq' (L_aux (l1,_)) (L_aux (l2,_)) = match l1, l2 with | L_num n1, L_num n2 -> Big_int.equal n1 n2 | _,_ -> l1 = l2 let forall2 p x y = try List.for_all2 p x y with Invalid_argument _ -> false let rec typ_pat_eq (TP_aux (tp1, _)) (TP_aux (tp2, _)) = match tp1, tp2 with | TP_wild, TP_wild -> true | TP_var kid1, TP_var kid2 -> Kid.compare kid1 kid2 = 0 | TP_app (f1, args1), TP_app (f2, args2) when List.length args1 = List.length args2 -> Id.compare f1 f2 = 0 && List.for_all2 typ_pat_eq args1 args2 | _, _ -> false let rec pat_eq (P_aux (p1,_)) (P_aux (p2,_)) = match p1, p2 with | P_lit lit1, P_lit lit2 -> lit_eq' lit1 lit2 | P_wild, P_wild -> true | P_or (p1, q1), P_or (p2, q2) -> (* ToDo: A case could be made for flattening trees of P_or nodes and * comparing the lists so that we treat P_or as associative *) pat_eq p1 p2 && pat_eq q1 q2 | P_not(p1), P_not(p2) -> pat_eq p1 p2 | P_as (p1',id1), P_as (p2',id2) -> Id.compare id1 id2 == 0 && pat_eq p1' p2' | P_typ (_,p1'), P_typ (_,p2') -> pat_eq p1' p2' | P_id id1, P_id id2 -> Id.compare id1 id2 == 0 | P_var (p1', tpat1), P_var (p2', tpat2) -> typ_pat_eq tpat1 tpat2 && pat_eq p1' p2' | P_app (id1,args1), P_app (id2,args2) -> Id.compare id1 id2 == 0 && forall2 pat_eq args1 args2 | P_vector ps1, P_vector ps2 | P_vector_concat ps1, P_vector_concat ps2 | P_tup ps1, P_tup ps2 | P_list ps1, P_list ps2 -> List.for_all2 pat_eq ps1 ps2 | P_cons (p1',p1''), P_cons (p2',p2'') -> pat_eq p1' p2' && pat_eq p1'' p2'' | _,_ -> false module Analysis = struct type loc = string * int (* filename, line *) let string_of_loc (s,l) = s ^ "." ^ string_of_int l let id_pair_compare (id,l) (id',l') = match Id.compare id id' with | 0 -> compare l l' | x -> x (* Usually we do a full case split on an argument, but sometimes we find a case expression in the function body that suggests a more compact case splitting. *) type match_detail = | Total | Partial of tannot pat list * Parse_ast.l (* Arguments that we might split on *) module ArgSplits = Map.Make (struct type t = id * loc let compare = id_pair_compare end) type arg_splits = match_detail ArgSplits.t (* Function id, funcl loc for adding splits on sizes in the body when there's no corresponding argument *) module ExtraSplits = Map.Make (struct type t = id * Parse_ast.l let compare (id,l) (id',l') = let x = Id.compare id id' in if x <> 0 then x else compare l l' end) type extra_splits = (match_detail KBindings.t) ExtraSplits.t (* Arguments that we should look at in callers *) module CallerArgSet = Set.Make (struct type t = id * int let compare = id_pair_compare end) (* Type variables that we should look at in callers *) module CallerKidSet = Set.Make (struct type t = id * kid let compare (id,kid) (id',kid') = match Id.compare id id' with | 0 -> Kid.compare kid kid' | x -> x end) (* Map from locations to string sets *) module Failures = Map.Make (struct type t = Parse_ast.l let compare = compare end) module StringSet = Set.Make (struct type t = string let compare = compare end) type dependencies = | Have of arg_splits * extra_splits | Unknown of Parse_ast.l * string let string_of_match_detail = function | Total -> "[total]" | Partial (pats,_) -> "[" ^ String.concat " | " (List.map string_of_pat pats) ^ "]" let string_of_argsplits s = String.concat ", " (List.map (fun ((id,l),detail) -> string_of_id id ^ "." ^ string_of_loc l ^ string_of_match_detail detail) (ArgSplits.bindings s)) let string_of_lx lx = let open Lexing in Printf.sprintf "%s,%d,%d,%d" lx.pos_fname lx.pos_lnum lx.pos_bol lx.pos_cnum let rec simple_string_of_loc = function | Parse_ast.Unknown -> "Unknown" | Parse_ast.Unique (n, l) -> "Unique(" ^ string_of_int n ^ ", " ^ simple_string_of_loc l ^ ")" | Parse_ast.Generated l -> "Generated(" ^ simple_string_of_loc l ^ ")" | Parse_ast.Range (lx1,lx2) -> "Range(" ^ string_of_lx lx1 ^ "->" ^ string_of_lx lx2 ^ ")" | Parse_ast.Documented (_,l) -> "Documented(_," ^ simple_string_of_loc l ^ ")" let string_of_extra_splits s = String.concat ", " (List.map (fun ((id,l),ks) -> string_of_id id ^ "." ^ simple_string_of_loc l ^ ":" ^ (String.concat "," (List.map (fun (kid,detail) -> string_of_kid kid ^ "." ^ string_of_match_detail detail) (KBindings.bindings ks)))) (ExtraSplits.bindings s)) let string_of_callerset s = String.concat ", " (List.map (fun (id,arg) -> string_of_id id ^ "." ^ string_of_int arg) (CallerArgSet.elements s)) let string_of_callerkidset s = String.concat ", " (List.map (fun (id,kid) -> string_of_id id ^ "." ^ string_of_kid kid) (CallerKidSet.elements s)) let string_of_dep = function | Have (args,extras) -> "Have (" ^ string_of_argsplits args ^ ";" ^ string_of_extra_splits extras ^ ")" | Unknown (l,msg) -> "Unknown " ^ msg ^ " at " ^ Reporting.loc_to_string l (* If a callee uses a type variable as a size, does it need to be split in the current function, or is it also a parameter? (Note that there may be multiple calls, so more than one parameter can be involved) *) type call_dep = { in_fun : dependencies option; parents : CallerKidSet.t; } let empty_call_dep = { in_fun = None; parents = CallerKidSet.empty; } let in_fun_call_dep deps = { in_fun = Some deps; parents = CallerKidSet.empty } let parents_call_dep cks = { in_fun = None; parents = cks } (* Result of analysing the body of a function. The split field gives the arguments to split based on the body alone, the extra_splits field where we want to case split on a size type variable but there's no corresponding argument so we introduce a case expression, and the failures field where we couldn't do anything. The other fields are used at the end for the interprocedural phase. *) type result = { split : arg_splits; extra_splits : extra_splits; failures : StringSet.t Failures.t; (* Dependencies for type variables of each fn called, so that if the fn uses one for a bitvector size we can track it back *) split_on_call : (call_dep KBindings.t) Bindings.t; (* kids per fn *) kid_in_caller : CallerKidSet.t } let empty = { split = ArgSplits.empty; extra_splits = ExtraSplits.empty; failures = Failures.empty; split_on_call = Bindings.empty; kid_in_caller = CallerKidSet.empty } let merge_detail _ x y = match x,y with | None, x -> x | x, None -> x | Some (Partial (ps1,l1)), Some (Partial (ps2,l2)) when l1 = l2 && forall2 pat_eq ps1 ps2 -> x | _ -> Some Total let opt_merge f _ x y = match x,y with | None, _ -> y | _, None -> x | Some x, Some y -> Some (f x y) let merge_extras = ExtraSplits.merge (opt_merge (KBindings.merge merge_detail)) let dmerge x y = match x,y with | Unknown (l,s), _ -> Unknown (l,s) | _, Unknown (l,s) -> Unknown (l,s) | Have (args,extras), Have (args',extras') -> Have (ArgSplits.merge merge_detail args args', merge_extras extras extras') let dempty = Have (ArgSplits.empty, ExtraSplits.empty) let dep_bindings_merge a1 a2 = Bindings.merge (opt_merge dmerge) a1 a2 let dep_kbindings_merge a1 a2 = KBindings.merge (opt_merge dmerge) a1 a2 let call_dep_merge k d1 d2 = { in_fun = opt_merge dmerge k d1.in_fun d2.in_fun; parents = CallerKidSet.union d1.parents d2.parents } let call_kid_merge k x y = match x, y with | None, x -> x | x, None -> x | Some d1, Some d2 -> Some (call_dep_merge k d1 d2) let call_arg_merge k args args' = match args, args' with | None, x -> x | x, None -> x | Some kdep, Some kdep' -> Some (KBindings.merge call_kid_merge kdep kdep') let failure_merge _ x y = match x, y with | None, x -> x | x, None -> x | Some x, Some y -> Some (StringSet.union x y) let merge rs rs' = { split = ArgSplits.merge merge_detail rs.split rs'.split; extra_splits = merge_extras rs.extra_splits rs'.extra_splits; failures = Failures.merge failure_merge rs.failures rs'.failures; split_on_call = Bindings.merge call_arg_merge rs.split_on_call rs'.split_on_call; kid_in_caller = CallerKidSet.union rs.kid_in_caller rs'.kid_in_caller } type env = { top_kids : kid list; (* Int kids bound by the function type *) var_deps : dependencies Bindings.t; kid_deps : dependencies KBindings.t; referenced_vars : IdSet.t; globals : bool Bindings.t (* is_value or not *) } let rec split3 = function | [] -> [],[],[] | ((h1,h2,h3)::t) -> let t1,t2,t3 = split3 t in (h1::t1,h2::t2,h3::t3) let is_kid_in_env env kid = match Env.get_typ_var kid env with | _ -> true | exception _ -> false let rec kids_bound_by_typ_pat (TP_aux (tp,_)) = match tp with | TP_wild -> KidSet.empty | TP_var kid -> KidSet.singleton kid | TP_app (_,pats) -> kidset_bigunion (List.map kids_bound_by_typ_pat pats) (* We need both the explicitly bound kids from the AST, and any freshly generated kids from the typechecker. *) let kids_bound_by_pat pat = let open Rewriter in fst (fold_pat ({ (compute_pat_alg KidSet.empty KidSet.union) with p_aux = (function ((s,(P_var (P_aux (_, annot'),tpat) as p)), annot) when not (is_empty_tannot (snd annot')) -> let kids = tyvars_of_typ (typ_of_annot annot') in let new_kids = KidSet.filter (fun kid -> not (is_kid_in_env (env_of_annot annot) kid)) kids in let tpat_kids = kids_bound_by_typ_pat tpat in KidSet.union s (KidSet.union new_kids tpat_kids), P_aux (p, annot) | ((s,p),ann) -> s, P_aux (p,ann)) }) pat) (* Diff the type environment to find new type variables and record that they depend on deps *) let update_env_new_kids env deps typ_env_pre typ_env_post = let kbound = KBindings.merge (fun k x y -> match x,y with | Some k, None -> Some k | _ -> None) (Env.get_typ_vars typ_env_post) (Env.get_typ_vars typ_env_pre) in let kid_deps = KBindings.fold (fun v _ ds -> KBindings.add v deps ds) kbound env.kid_deps in { env with kid_deps = kid_deps } (* Add bound variables from a pattern to the environment with the given dependency, plus any new type variables. *) let update_env env deps pat typ_env_pre typ_env_post = let bound = Spec_analysis.bindings_from_pat pat in let var_deps = List.fold_left (fun ds v -> Bindings.add v deps ds) env.var_deps bound in update_env_new_kids { env with var_deps = var_deps } deps typ_env_pre typ_env_post (* A function argument may end up with fresh type variables due to coercing unification (which will eventually be existentially bound in the type of the function). Here we record the dependencies for these variables. *) let add_arg_only_kids env typ_env typ deps = let all_vars = tyvars_of_typ typ in let check_kid kid kid_deps = if KBindings.mem kid kid_deps then kid_deps else KBindings.add kid deps kid_deps in let kid_deps = KidSet.fold check_kid all_vars env.kid_deps in { env with kid_deps } let assigned_vars_exps es = List.fold_left (fun vs exp -> IdSet.union vs (Spec_analysis.assigned_vars exp)) IdSet.empty es (* For adding control dependencies to mutable variables *) let add_dep_to_assigned dep assigns es = let assigned = assigned_vars_exps es in Bindings.mapi (fun id d -> if IdSet.mem id assigned then dmerge dep d else d) assigns (* Functions to give dependencies for type variables in nexps, constraints, types and unification variables. For function calls we also supply a list of dependencies for arguments so that we can find dependencies for existentially bound sizes. *) let deps_of_tyvars l kid_deps arg_deps kids = let check kid deps = match KBindings.find kid kid_deps with | deps' -> dmerge deps deps' | exception Not_found -> match kid with | Kid_aux (Var kidstr, _) -> let unknown = Unknown (l, "Unknown type variable " ^ string_of_kid kid) in (* Tyvars from existentials in arguments have a special format *) if String.length kidstr > 5 && String.sub kidstr 0 4 = "'arg" then try let i = String.index kidstr '#' in let n = String.sub kidstr 4 (i-4) in let arg = int_of_string n in List.nth arg_deps arg with Not_found | Failure _ -> unknown else unknown in KidSet.fold check kids dempty let deps_of_nexp l kid_deps arg_deps nexp = let kids = nexp_frees nexp in deps_of_tyvars l kid_deps arg_deps kids let rec deps_of_nc kid_deps (NC_aux (nc,l)) = match nc with | NC_equal (nexp1,nexp2) | NC_bounded_ge (nexp1,nexp2) | NC_bounded_gt (nexp1,nexp2) | NC_bounded_le (nexp1,nexp2) | NC_bounded_lt (nexp1,nexp2) | NC_not_equal (nexp1,nexp2) -> dmerge (deps_of_nexp l kid_deps [] nexp1) (deps_of_nexp l kid_deps [] nexp2) | NC_set (kid,_) -> (match KBindings.find kid kid_deps with | deps -> deps | exception Not_found -> Unknown (l, "Unknown type variable in constraint " ^ string_of_kid kid)) | NC_or (nc1,nc2) | NC_and (nc1,nc2) -> dmerge (deps_of_nc kid_deps nc1) (deps_of_nc kid_deps nc2) | NC_true | NC_false -> dempty | NC_app (Id_aux (Id "mod", _), [A_aux (A_nexp nexp1, _); A_aux (A_nexp nexp2, _)]) -> dmerge (deps_of_nexp l kid_deps [] nexp1) (deps_of_nexp l kid_deps [] nexp2) | NC_var _ | NC_app _ -> dempty and deps_of_typ l kid_deps arg_deps typ = deps_of_tyvars l kid_deps arg_deps (tyvars_of_typ typ) and deps_of_typ_arg l fn_id env arg_deps (A_aux (aux, _)) = match aux with | A_nexp (Nexp_aux (Nexp_var kid,_)) when List.exists (fun k -> Kid.compare kid k == 0) env.top_kids -> parents_call_dep (CallerKidSet.singleton (fn_id,kid)) | A_nexp nexp -> in_fun_call_dep (deps_of_nexp l env.kid_deps arg_deps nexp) | A_order _ -> in_fun_call_dep dempty | A_typ typ -> in_fun_call_dep (deps_of_typ l env.kid_deps arg_deps typ) | A_bool nc -> in_fun_call_dep (deps_of_nc env.kid_deps nc) let mk_subrange_pattern vannot vstart vend = let (len,ord,typ) = vector_typ_args_of (Env.base_typ_of (env_of_annot vannot) (typ_of_annot vannot)) in match ord with | Ord_aux (Ord_var _,_) -> None | Ord_aux (ord',_) -> let vstart,vend = if ord' = Ord_inc then vstart,vend else vend,vstart in let dummyl = Generated Unknown in match len with | Nexp_aux (Nexp_constant len,_) -> Some (fun pat -> let end_len = Big_int.pred (Big_int.sub len vend) in (* Wrap pat in its type; in particular the type checker won't manage P_wild in the middle of a P_vector_concat *) let pat = P_aux (P_typ (typ_of_pat pat, pat),(Generated (pat_loc pat),empty_tannot)) in let pats = if Big_int.greater end_len Big_int.zero then [pat;P_aux (P_typ (bitvector_typ (nconstant end_len) ord, P_aux (P_wild,(dummyl,empty_tannot))),(dummyl,empty_tannot))] else [pat] in let pats = if Big_int.greater vstart Big_int.zero then (P_aux (P_typ (bitvector_typ (nconstant vstart) ord, P_aux (P_wild,(dummyl,empty_tannot))),(dummyl,empty_tannot)))::pats else pats in let pats = if ord' = Ord_inc then pats else List.rev pats in P_aux (P_vector_concat pats,(Generated (fst vannot),empty_tannot))) | _ -> None (* If the expression matched on in a case expression is a function argument, and has no other dependencies, we can try to use the pattern match directly rather than doing a full case split. *) let refine_dependency env (E_aux (e,(l,annot)) as exp) pexps = let check_dep id ctx = match Bindings.find id env.var_deps with | Have (args,extras) -> begin match ArgSplits.bindings args, ExtraSplits.bindings extras with | [(id',loc),Total], [] when Id.compare id id' == 0 -> (match Util.map_all (function | Pat_aux (Pat_exp (pat,_),_) -> Some (ctx pat) | Pat_aux (Pat_when (_,_,_),_) -> None) pexps with | Some pats -> if l = Parse_ast.Unknown then (Reporting.print_err l "" ("No location for pattern match: " ^ string_of_exp exp); None) else Some (Have (ArgSplits.singleton (id,loc) (Partial (pats,l)), ExtraSplits.empty)) | None -> None) | _ -> None end | Unknown _ -> None | exception Not_found -> None in match e with | E_id id -> check_dep id (fun x -> x) | E_app (fn_id, [E_aux (E_id id,vannot); E_aux (E_lit (L_aux (L_num vstart,_)),_); E_aux (E_lit (L_aux (L_num vend,_)),_)]) when is_id (env_of exp) (Id "vector_subrange") fn_id -> (match mk_subrange_pattern vannot vstart vend with | Some mk_pat -> check_dep id mk_pat | None -> None) (* TODO: Aborted attempt at considering bitvector concatenations when refining dependencies. Needs corresponding support in constant propagation to work. *) (* | E_app (append, [vec1; vec2]) when is_id (env_of exp) (Id "append") append -> (* If the expression is a concatenation resulting in a small enough bitvector, perform a (total) case split on the sub-vectors *) let vec_len v = try Util.option_map Big_int.to_int (get_constant_vec_len (env_of exp) v) with _ -> None in let pow2 n = Big_int.pow_int (Big_int.of_int 2) n in let size_set len1 len2 = Big_int.mul (pow2 len1) (pow2 len2) in begin match (vec_len (typ_of exp), vec_len (typ_of vec1), vec_len (typ_of vec2)) with | (Some len, Some len1, Some len2) when Big_int.less_equal (size_set len1 len2) (Big_int.of_int size_set_limit) -> let recur = refine_dependency env in (* Create pexps with dummy bodies (ignored by the recursive call) *) let mk_pexps len = let mk_pexp lit = let (_, ord, _) = vector_typ_args_of (typ_of exp) in let tannot = mk_tannot (env_of exp) (bitvector_typ (nint len) ord) no_effect in let pat = P_aux (P_lit lit, (Generated l, tannot)) in let exp = E_aux (E_lit (mk_lit L_unit), (Generated l, empty_tannot)) in Pat_aux (Pat_exp (pat, exp), (Generated l, empty_tannot)) in List.map mk_pexp (make_vectors len) in begin match (recur vec1 (mk_pexps len1), recur vec2 (mk_pexps len2)) with | (Some deps1, Some deps2) -> Some (dmerge deps1 deps2) | _ -> None end | _ -> None end *) | _ -> None let simplify_size_nexp env typ_env (Nexp_aux (ne,l) as nexp) = match solve_unique typ_env nexp with | Some n -> nconstant n | None -> let is_equal kid = try if Env.get_typ_var kid typ_env = K_int then prove __POS__ typ_env (NC_aux (NC_equal (Nexp_aux (Nexp_var kid,Unknown), nexp),Unknown)) else false with _ -> false in match ne with | Nexp_var _ | Nexp_constant _ -> nexp | _ -> match List.find is_equal env.top_kids with | kid -> Nexp_aux (Nexp_var kid, Generated l) | exception Not_found -> match KBindings.find_first_opt is_equal (Env.get_typ_vars typ_env) with | Some (kid,_) -> Nexp_aux (Nexp_var kid, Generated l) | None -> nexp let simplify_size_typ_arg env typ_env = function | A_aux (A_nexp nexp, l) -> A_aux (A_nexp (simplify_size_nexp env typ_env nexp), l) | x -> x (* Takes an environment of dependencies on vars, type vars, and flow control, and dependencies on mutable variables. The latter are quite conservative, we currently drop variables assigned inside loops, for example. *) let rec analyse_exp fn_id env assigns (E_aux (e,(l,annot)) as exp) = let remove_assigns es message = let assigned = assigned_vars_exps es in IdSet.fold (fun id asn -> Bindings.add id (Unknown (l, string_of_id id ^ message)) asn) assigned assigns in let non_det es = let assigns = remove_assigns es " assigned in non-deterministic expressions" in let deps, _, rs = split3 (List.map (analyse_exp fn_id env assigns) es) in (deps, assigns, List.fold_left merge empty rs) in (* We allow for arguments to functions being executed non-deterministically, but follow the type checker in processing them in-order to detect the automatic unpacking of existentials. When we spot a new type variable (using update_env_new_kids) we set them to depend on the previous argument. *) let non_det_args es typs = let assigns = remove_assigns es " assigned in non-deterministic expressions" in let rec aux env = function | [], _ -> [], empty, env | (E_aux (_,ann) as h)::t, typ::typs -> let typ_env = env_of h in let new_deps, _, new_r = analyse_exp fn_id env assigns h in let env = add_arg_only_kids env typ_env typ new_deps in let t_deps, t_r, t_env = aux env (t,typs) in new_deps::t_deps, merge new_r t_r, t_env | _ :: _, [] -> Reporting.unreachable l __POS__ "Argument and type list in non_det_args had different lengths" in let deps, r, env = aux env (es,typs) in (deps, assigns, r, env) in let merge_deps deps = List.fold_left dmerge dempty deps in let deps, assigns, r = match e with | E_block es -> let rec aux env assigns = function | [] -> (dempty, assigns, empty) | [e] -> analyse_exp fn_id env assigns e (* There's also a lone assignment case below where no env update is needed *) | E_aux (E_assign (lexp,e1),ann)::e2::es -> let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let assigns,r2 = analyse_lexp fn_id env assigns d1 lexp in let env = update_env_new_kids env d1 (env_of_annot ann) (env_of e2) in let d3, assigns, r3 = aux env assigns (e2::es) in (d3, assigns, merge (merge r1 r2) r3) | e::es -> let _, assigns, r' = analyse_exp fn_id env assigns e in let d, assigns, r = aux env assigns es in d, assigns, merge r r' in aux env assigns es | E_id id -> begin match Bindings.find id env.var_deps with | args -> (args,assigns,empty) | exception Not_found -> match Bindings.find id assigns with | args -> (args,assigns,empty) | exception Not_found -> match Env.lookup_id id (Type_check.env_of_annot (l,annot)) with | Enum _ -> dempty,assigns,empty | Register _ -> Unknown (l, string_of_id id ^ " is a register"),assigns,empty | _ -> if IdSet.mem id env.referenced_vars then Unknown (l, string_of_id id ^ " may be modified via a reference"),assigns,empty else match Bindings.find id env.globals with | true -> dempty,assigns,empty (* value *) | false -> Unknown (l, string_of_id id ^ " is a global but not a value"),assigns,empty | exception Not_found -> Unknown (l, string_of_id id ^ " is not in the environment"),assigns,empty end | E_lit _ -> (dempty,assigns,empty) | E_cast (_,e) -> analyse_exp fn_id env assigns e | E_app (id,args) -> let typ_env = env_of_annot (l,annot) in let (_,fn_typ) = Env.get_val_spec_orig id typ_env in let kid_inst = instantiation_of exp in let kid_inst = KBindings.fold (fun kid -> KBindings.add (orig_kid kid)) kid_inst KBindings.empty in let fn_typ = subst_unifiers kid_inst fn_typ in let arg_typs, fn_effect = match fn_typ with | Typ_aux (Typ_fn (args,_,eff),_) -> args,eff | _ -> [], Effect_aux (Effect_set [],Unknown) in (* We have to use the types from the val_spec here so that we can track any type variables that are generated by the coercing unification that the type checker applies after inferring the type of an argument, and that only appear in the unifiers. *) let deps, assigns, r, env = non_det_args args arg_typs in let eff_dep = match fn_effect with | Effect_aux (Effect_set ([] | [BE_aux (BE_undef,_)]),_) -> dempty | _ -> Unknown (l, "Effects from function application") in let kid_inst = KBindings.map (simplify_size_typ_arg env typ_env) kid_inst in (* Change kids in instantiation to the canonical ones from the type signature *) let kid_deps = KBindings.map (deps_of_typ_arg l fn_id env deps) kid_inst in let rdep,r' = if Id.compare fn_id id == 0 then let bad = Unknown (l,"Recursive call of " ^ string_of_id id) in let kid_deps = KBindings.map (fun _ -> in_fun_call_dep bad) kid_deps in bad, { empty with split_on_call = Bindings.singleton id kid_deps } else dempty, { empty with split_on_call = Bindings.singleton id kid_deps } in (merge_deps (rdep::eff_dep::deps), assigns, merge r r') | E_tuple es | E_list es -> let deps, assigns, r = non_det es in (merge_deps deps, assigns, r) | E_if (e1,e2,e3) -> let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let d2,a2,r2 = analyse_exp fn_id env assigns e2 in let d3,a3,r3 = analyse_exp fn_id env assigns e3 in let assigns = add_dep_to_assigned d1 (dep_bindings_merge a2 a3) [e2;e3] in (dmerge d1 (dmerge d2 d3), assigns, merge r1 (merge r2 r3)) | E_loop (_,_,e1,e2) -> (* We remove all of the variables assigned in the loop, so we don't need to add control dependencies *) let assigns = remove_assigns [e1;e2] " assigned in a loop" in let d1,a1,r1 = analyse_exp fn_id env assigns e1 in let d2,a2,r2 = analyse_exp fn_id env assigns e2 in (dempty, assigns, merge r1 r2) | E_for (var,efrom,eto,eby,ord,body) -> let d1,assigns,r1 = non_det [efrom;eto;eby] in let assigns = remove_assigns [body] " assigned in a loop" in let d = merge_deps d1 in let loop_kid = mk_kid ("loop_" ^ string_of_id var) in let env' = { env with kid_deps = KBindings.add loop_kid d env.kid_deps} in let d2,a2,r2 = analyse_exp fn_id env' assigns body in (dempty, assigns, merge r1 r2) | E_vector es -> let ds, assigns, r = non_det es in (merge_deps ds, assigns, r) | E_vector_access (e1,e2) | E_vector_append (e1,e2) | E_cons (e1,e2) -> let ds, assigns, r = non_det [e1;e2] in (merge_deps ds, assigns, r) | E_vector_subrange (e1,e2,e3) | E_vector_update (e1,e2,e3) -> let ds, assigns, r = non_det [e1;e2;e3] in (merge_deps ds, assigns, r) | E_vector_update_subrange (e1,e2,e3,e4) -> let ds, assigns, r = non_det [e1;e2;e3;e4] in (merge_deps ds, assigns, r) | E_record fexps -> let es = List.map (function (FE_aux (FE_Fexp (_,e),_)) -> e) fexps in let ds, assigns, r = non_det es in (merge_deps ds, assigns, r) | E_record_update (e,fexps) -> let es = List.map (function (FE_aux (FE_Fexp (_,e),_)) -> e) fexps in let ds, assigns, r = non_det (e::es) in (merge_deps ds, assigns, r) | E_field (e,_) -> analyse_exp fn_id env assigns e | E_case (e,cases) -> let deps,assigns,r = analyse_exp fn_id env assigns e in let deps = match refine_dependency env e cases with | Some deps -> deps | None -> deps in let analyse_case (Pat_aux (pexp,_)) = match pexp with | Pat_exp (pat,e1) -> let env = update_env env deps pat (env_of_annot (l,annot)) (env_of e1) in let d,assigns,r = analyse_exp fn_id env assigns e1 in let assigns = add_dep_to_assigned deps assigns [e1] in (d,assigns,r) | Pat_when (pat,e1,e2) -> let env = update_env env deps pat (env_of_annot (l,annot)) (env_of e2) in let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in let assigns = add_dep_to_assigned deps assigns [e1;e2] in (dmerge d1 d2, assigns, merge r1 r2) in let ds,assigns,rs = split3 (List.map analyse_case cases) in (merge_deps (deps::ds), List.fold_left dep_bindings_merge Bindings.empty assigns, List.fold_left merge r rs) | E_let (LB_aux (LB_val (pat,e1),_),e2) -> let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let env = update_env env d1 pat (env_of_annot (l,annot)) (env_of e2) in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in (d2,assigns,merge r1 r2) (* There's a more general assignment case above to update env inside a block. *) | E_assign (lexp,e1) -> let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let assigns,r2 = analyse_lexp fn_id env assigns d1 lexp in (dempty, assigns, merge r1 r2) | E_sizeof nexp -> (deps_of_nexp l env.kid_deps [] nexp, assigns, empty) | E_return e | E_exit e | E_throw e -> let _, _, r = analyse_exp fn_id env assigns e in (dempty, Bindings.empty, r) | E_ref id -> (Unknown (l, "May be mutated via reference to " ^ string_of_id id), assigns, empty) | E_try (e,cases) -> let deps,_,r = analyse_exp fn_id env assigns e in let assigns = remove_assigns [e] " assigned in try expression" in let analyse_handler (Pat_aux (pexp,_)) = match pexp with | Pat_exp (pat,e1) -> let env = update_env env (Unknown (l,"Exception")) pat (env_of_annot (l,annot)) (env_of e1) in let d,assigns,r = analyse_exp fn_id env assigns e1 in let assigns = add_dep_to_assigned deps assigns [e1] in (d,assigns,r) | Pat_when (pat,e1,e2) -> let env = update_env env (Unknown (l,"Exception")) pat (env_of_annot (l,annot)) (env_of e2) in let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in let assigns = add_dep_to_assigned deps assigns [e1;e2] in (dmerge d1 d2, assigns, merge r1 r2) in let ds,assigns,rs = split3 (List.map analyse_handler cases) in (merge_deps (deps::ds), List.fold_left dep_bindings_merge Bindings.empty assigns, List.fold_left merge r rs) | E_assert (e1,_) -> analyse_exp fn_id env assigns e1 | E_app_infix _ | E_internal_plet _ | E_internal_return _ | E_internal_value _ -> raise (Reporting.err_unreachable l __POS__ ("Unexpected expression encountered in monomorphisation: " ^ string_of_exp exp)) | E_var (lexp,e1,e2) -> (* Really we ought to remove the assignment after e2 *) let d1,assigns,r1 = analyse_exp fn_id env assigns e1 in let assigns,r' = analyse_lexp fn_id env assigns d1 lexp in let d2,assigns,r2 = analyse_exp fn_id env assigns e2 in (dempty, assigns, merge r1 (merge r' r2)) | E_constraint nc -> (deps_of_nc env.kid_deps nc, assigns, empty) in let deps = match destruct_atom_bool (env_of exp) (typ_of exp) with | Some nc -> dmerge deps (deps_of_nc env.kid_deps nc) | None -> deps in let r = (* Check for bitvector types with parametrised sizes *) match destruct_tannot annot with | None -> r | Some (tenv,typ,_) -> let typ = Env.base_typ_of tenv typ in let env, tenv, typ = match destruct_exist (Env.expand_synonyms tenv typ) with | None -> env, tenv, typ | Some (kopts, nc, typ) -> { env with kid_deps = List.fold_left (fun kds kopt -> KBindings.add (kopt_kid kopt) deps kds) env.kid_deps kopts }, Env.add_constraint nc (List.fold_left (fun tenv kopt -> Env.add_typ_var l kopt tenv) tenv kopts), typ in let rec check_typ typ = if is_bitvector_typ typ then let size,_,_ = vector_typ_args_of typ in let Nexp_aux (size,_) as size_nexp = simplify_size_nexp env tenv size in let is_tyvar_parameter v = List.exists (fun k -> Kid.compare k v == 0) env.top_kids in match size with | Nexp_constant _ -> r | Nexp_var v when is_tyvar_parameter v -> { r with kid_in_caller = CallerKidSet.add (fn_id,v) r.kid_in_caller } | _ -> match deps_of_nexp l env.kid_deps [] size_nexp with | Have (args,extras) -> { r with split = ArgSplits.merge merge_detail r.split args; extra_splits = merge_extras r.extra_splits extras } | Unknown (l,msg) -> { r with failures = Failures.add l (StringSet.singleton ("Unable to monomorphise " ^ string_of_nexp size_nexp ^ ": " ^ msg)) r.failures } else match typ with | Typ_aux (Typ_tup typs,_) -> List.fold_left (fun r ty -> merge r (check_typ ty)) r typs | _ -> r in check_typ typ in (deps, assigns, r) and analyse_lexp fn_id env assigns deps (LEXP_aux (lexp,(l,_))) = (* TODO: maybe subexps and sublexps should be non-det (and in const_prop_lexp, too?) *) match lexp with | LEXP_id id | LEXP_cast (_,id) -> if IdSet.mem id env.referenced_vars then assigns, empty else Bindings.add id deps assigns, empty | LEXP_memory (id,es) -> let _, assigns, r = analyse_exp fn_id env assigns (E_aux (E_tuple es,(Unknown,empty_tannot))) in assigns, r | LEXP_tup lexps | LEXP_vector_concat lexps -> List.fold_left (fun (assigns,r) lexp -> let assigns,r' = analyse_lexp fn_id env assigns deps lexp in assigns,merge r r') (assigns,empty) lexps | LEXP_vector (lexp,e) -> let _, assigns, r1 = analyse_exp fn_id env assigns e in let assigns, r2 = analyse_lexp fn_id env assigns deps lexp in assigns, merge r1 r2 | LEXP_vector_range (lexp,e1,e2) -> let _, assigns, r1 = analyse_exp fn_id env assigns e1 in let _, assigns, r2 = analyse_exp fn_id env assigns e2 in let assigns, r3 = analyse_lexp fn_id env assigns deps lexp in assigns, merge r3 (merge r1 r2) | LEXP_field (lexp,_) -> analyse_lexp fn_id env assigns deps lexp | LEXP_deref e -> let _, assigns, r = analyse_exp fn_id env assigns e in assigns, r let rec translate_loc l = match l with | Range (pos,_) -> Some (pos.Lexing.pos_fname,pos.Lexing.pos_lnum) | Generated l -> translate_loc l | _ -> None let initial_env fn_id fn_l (TypQ_aux (tq,_)) pat body set_assertions globals = let pats = match pat with | P_aux (P_tup pats,_) -> pats | _ -> [pat] in (* For the type in an annotation, produce the corresponding tyvar (if any), and a default case split (a set if there's one, a full case split if not). *) let kids_of_annot annot = let env = env_of_annot annot in let Typ_aux (typ,_) = Env.base_typ_of env (typ_of_annot annot) in match typ with | Typ_app (Id_aux (Id "atom",_),[A_aux (A_nexp (Nexp_aux (Nexp_var kid,_)),_)]) -> Spec_analysis.equal_kids env kid | _ -> KidSet.empty in let default_split annot kids = let kids = KidSet.elements kids in let try_kid kid = try Some (KBindings.find kid set_assertions) with Not_found -> None in match Util.option_first try_kid kids with | Some (l,is) -> let l' = Generated l in let pats = List.map (fun n -> P_aux (P_lit (L_aux (L_num n,l')),(l',annot))) is in let pats = pats @ [P_aux (P_wild,(l',annot))] in Partial (pats,l) | None -> Total in let qs = match tq with | TypQ_no_forall -> [] | TypQ_tq qs -> qs in let eqn_instantiations = Type_check.instantiate_simple_equations qs in let eqn_kid_deps = KBindings.map (function | A_aux (A_nexp nexp, _) -> Some (nexp_frees nexp) | _ -> None) eqn_instantiations in let arg i pat = let rec aux (P_aux (p,(l,annot))) = let of_list pats = let ss,vs,ks = split3 (List.map aux pats) in let s = List.fold_left (ArgSplits.merge merge_detail) ArgSplits.empty ss in let v = List.fold_left dep_bindings_merge Bindings.empty vs in let k = List.fold_left dep_kbindings_merge KBindings.empty ks in s,v,k in match p with | P_lit _ | P_wild -> ArgSplits.empty,Bindings.empty,KBindings.empty | P_or (p1, p2) -> let (s1, v1, k1) = aux p1 in let (s2, v2, k2) = aux p2 in (ArgSplits.merge merge_detail s1 s2, dep_bindings_merge v1 v2, dep_kbindings_merge k1 k2) | P_not p -> aux p | P_as (pat,id) -> begin let s,v,k = aux pat in match translate_loc (id_loc id) with | Some loc -> ArgSplits.add (id,loc) Total s, Bindings.add id (Have (ArgSplits.singleton (id,loc) Total, ExtraSplits.empty)) v, k | None -> s, Bindings.add id (Unknown (l, ("Unable to give location for " ^ string_of_id id))) v, k end | P_typ (_,pat) -> aux pat | P_id id -> begin match translate_loc (id_loc id) with | Some loc -> let kids = kids_of_annot (l,annot) in let split = default_split annot kids in let s = ArgSplits.singleton (id,loc) split in s, Bindings.singleton id (Have (s, ExtraSplits.empty)), KidSet.fold (fun kid k -> KBindings.add kid (Have (s, ExtraSplits.empty)) k) kids KBindings.empty | None -> ArgSplits.empty, Bindings.singleton id (Unknown (l, ("Unable to give location for " ^ string_of_id id))), KBindings.empty end | P_var (pat, tpat) -> let s,v,k = aux pat in let kids = kids_bound_by_typ_pat tpat in let kids = KidSet.fold (fun kid s -> KidSet.union s (Spec_analysis.equal_kids (env_of_annot (l,annot)) kid)) kids kids in s,v,KidSet.fold (fun kid k -> KBindings.add kid (Have (s, ExtraSplits.empty)) k) kids k | P_app (_,pats) -> of_list pats | P_vector pats | P_vector_concat pats | P_string_append pats | P_tup pats | P_list pats -> of_list pats | P_cons (p1,p2) -> of_list [p1;p2] in aux pat in let int_quant = function | QI_aux (QI_id (KOpt_aux (KOpt_kind (K_aux (K_int,_),kid),_)),_) -> Some kid | _ -> None in let top_kids = Util.map_filter int_quant qs in let _,var_deps,kid_deps = split3 (List.mapi arg pats) in let var_deps = List.fold_left dep_bindings_merge Bindings.empty var_deps in let kid_deps = List.fold_left dep_kbindings_merge KBindings.empty kid_deps in let note_no_arg kid_deps kid = if KBindings.mem kid kid_deps then kid_deps else (* When there's no argument to case split on for a kid, we'll add a case expression instead *) let env = env_of_pat pat in let split = default_split (mk_tannot env int_typ no_effect) (KidSet.singleton kid) in let extra_splits = ExtraSplits.singleton (fn_id, fn_l) (KBindings.singleton kid split) in KBindings.add kid (Have (ArgSplits.empty, extra_splits)) kid_deps in let kid_deps = List.fold_left note_no_arg kid_deps top_kids in let merge_kid_deps_eqns k kdeps eqn_kids = match kdeps, eqn_kids with | _, Some (Some kids) -> Some (KidSet.fold (fun kid deps -> dmerge deps (KBindings.find kid kid_deps)) kids dempty) | Some deps, _ -> Some deps | _, _ -> None in let kid_deps = KBindings.merge merge_kid_deps_eqns kid_deps eqn_kid_deps in let referenced_vars = Constant_propagation.referenced_vars body in { top_kids; var_deps; kid_deps; referenced_vars; globals } (* When there's more than one pick the first *) let merge_set_asserts _ x y = match x, y with | None, _ -> y | _, _ -> x let merge_set_asserts_by_kid sets1 sets2 = KBindings.merge merge_set_asserts sets1 sets2 (* Set constraints in assertions don't always use the set syntax, so we also handle assert('N == 1 | ...) style set constraints *) let rec sets_from_assert e = let set_from_or_exps (E_aux (_,(l,_)) as e) = let mykid = ref None in let check_kid kid = match !mykid with | None -> mykid := Some kid | Some kid' -> if Kid.compare kid kid' == 0 then () else raise Not_found in let rec aux (E_aux (e,_)) = match e with | E_app (Id_aux (Id "or_bool",_),[e1;e2]) -> aux e1 @ aux e2 | E_app (Id_aux (Id "eq_int",_), [E_aux (E_sizeof (Nexp_aux (Nexp_var kid,_)),_); E_aux (E_lit (L_aux (L_num i,_)),_)]) -> (check_kid kid; [i]) (* TODO: Now that E_constraint is re-written by the typechecker, we'll end up with the following for the above - some of this function is probably redundant now *) | E_app (Id_aux (Id "eq_int",_), [E_aux (E_app (Id_aux (Id "__id", _), [E_aux (E_id id, annot)]), _); E_aux (E_lit (L_aux (L_num i,_)),_)]) -> begin match typ_of_annot annot with | Typ_aux (Typ_app (Id_aux (Id "atom", _), [A_aux (A_nexp (Nexp_aux (Nexp_var kid, _)), _)]), _) -> check_kid kid; [i] | _ -> raise Not_found end | _ -> raise Not_found in try let is = aux e in match !mykid with | None -> KBindings.empty | Some kid -> KBindings.singleton kid (l,is) with Not_found -> KBindings.empty in let rec set_from_nc_or (NC_aux (nc,_)) = match nc with | NC_equal (Nexp_aux (Nexp_var kid,_), Nexp_aux (Nexp_constant n,_)) -> Some (kid,[n]) | NC_or (nc1, nc2) -> (match set_from_nc_or nc1, set_from_nc_or nc2 with | Some (kid1,l1), Some (kid2,l2) when Kid.compare kid1 kid2 == 0 -> Some (kid1,l1 @ l2) | _ -> None) | _ -> None in let rec sets_from_nc (NC_aux (nc,l) as nc_full) = match nc with | NC_and (nc1,nc2) -> merge_set_asserts_by_kid (sets_from_nc nc1) (sets_from_nc nc2) | NC_set (kid,is) -> KBindings.singleton kid (l,is) | NC_equal (Nexp_aux (Nexp_var kid,_), Nexp_aux (Nexp_constant n,_)) -> KBindings.singleton kid (l, [n]) | NC_or _ -> (match set_from_nc_or nc_full with | Some (kid, is) -> KBindings.singleton kid (l,is) | None -> KBindings.empty) | _ -> KBindings.empty in match e with | E_aux (E_app (Id_aux (Id "and_bool",_),[e1;e2]),_) -> merge_set_asserts_by_kid (sets_from_assert e1) (sets_from_assert e2) | E_aux (E_constraint nc,_) -> sets_from_nc nc | _ -> set_from_or_exps e (* Find all the easily reached set assertions in a function body, to use as case splits. Note that this should be mirrored in stop_at_false_assertions, above. *) let rec find_set_assertions (E_aux (e,_)) = match e with | E_block es -> List.fold_left merge_set_asserts_by_kid KBindings.empty (List.map find_set_assertions es) | E_cast (_,e) -> find_set_assertions e | E_let (LB_aux (LB_val (p,e1),_),e2) -> let sets1 = find_set_assertions e1 in let sets2 = find_set_assertions e2 in let kbound = kids_bound_by_pat p in let sets2 = KBindings.filter (fun kid _ -> not (KidSet.mem kid kbound)) sets2 in merge_set_asserts_by_kid sets1 sets2 | E_assert (exp1,_) -> sets_from_assert exp1 | _ -> KBindings.empty let print_set_assertions set_assertions = if KBindings.is_empty set_assertions then print_endline "No top-level set assertions found." else begin print_endline "Top-level set assertions found:"; KBindings.iter (fun k (l,is) -> print_endline (string_of_kid k ^ " @ " ^ simple_string_of_loc l ^ " " ^ String.concat "," (List.map Big_int.to_string is))) set_assertions end let print_result r = let _ = print_endline (" splits: " ^ string_of_argsplits r.split) in let print_kbinding kid dep = let s1 = match dep.in_fun with | Some dep -> "InFun " ^ string_of_dep dep | None -> "" in let s2 = string_of_callerkidset dep.parents in let _ = print_endline (" " ^ string_of_kid kid ^ ": " ^ s1 ^ "; " ^ s2) in () in let print_binding id kdep = let _ = print_endline (" " ^ string_of_id id ^ ":") in let _ = KBindings.iter print_kbinding kdep in () in let _ = print_endline " split_on_call: " in let _ = Bindings.iter print_binding r.split_on_call in let _ = print_endline (" kid_in_caller: " ^ string_of_callerkidset r.kid_in_caller) in let _ = print_endline (" failures: \n " ^ (String.concat "\n " (List.map (fun (l,s) -> Reporting.loc_to_string l ^ ":\n " ^ String.concat "\n " (StringSet.elements s)) (Failures.bindings r.failures)))) in () let analyse_funcl debug tenv constants (FCL_aux (FCL_Funcl (id,pexp),(l,_))) = let _ = if debug > 2 then print_endline (string_of_id id) else () in let pat,guard,body,_ = destruct_pexp pexp in let (tq,_) = Env.get_val_spec_orig id tenv in let set_assertions = find_set_assertions body in let _ = if debug > 2 then print_set_assertions set_assertions in let aenv = initial_env id l tq pat body set_assertions constants in let _,_,r = analyse_exp id aenv Bindings.empty body in let r = match guard with | None -> r | Some exp -> let _,_,r' = analyse_exp id aenv Bindings.empty exp in let r' = if ExtraSplits.is_empty r'.extra_splits then r' else merge r' { empty with failures = Failures.singleton l (StringSet.singleton "Case splitting size tyvars in guards not supported") } in merge r r' in let _ = if debug > 2 then print_result r else () in r let analyse_def debug env globals = function | DEF_fundef (FD_aux (FD_function (_,_,_,funcls),_)) -> globals, List.fold_left (fun r f -> merge r (analyse_funcl debug env globals f)) empty funcls | DEF_val (LB_aux (LB_val (P_aux ((P_id id | P_typ (_,P_aux (P_id id,_))),_), exp),_)) -> Bindings.add id (Constant_fold.is_constant exp) globals, empty | _ -> globals, empty let detail_to_split = function | Total -> None | Partial (pats,l) -> Some (pats,l) let argset_to_list splits = let l = ArgSplits.bindings splits in let argelt = function | ((id,(file,loc)),detail) -> ((file,loc),string_of_id id,detail_to_split detail) in List.map argelt l let analyse_defs debug env ast = let total_defs = List.length ast.defs in let def (idx,globals,r) d = begin match d with | DEF_fundef fd -> Util.progress "Analysing " (string_of_id (id_of_fundef fd)) idx total_defs | _ -> () end; let globals,r' = analyse_def debug env globals d in idx + 1, globals, merge r r' in let _,_,r = List.fold_left def (0,Bindings.empty,empty) ast.defs in let _ = Util.progress "Analysing " "done" total_defs total_defs in (* Resolve the interprocedural dependencies *) let rec separate_deps = function | Have (splits, extras) -> splits, extras, Failures.empty | Unknown (l,msg) -> ArgSplits.empty, ExtraSplits.empty, Failures.singleton l (StringSet.singleton ("Unable to monomorphise dependency: " ^ msg)) and chase_kid_caller (id,kid) = match Bindings.find id r.split_on_call with | kid_deps -> begin match KBindings.find kid kid_deps with | call_dep -> let (splits, extras, fails) = match call_dep.in_fun with | Some deps -> separate_deps deps | None -> (ArgSplits.empty, ExtraSplits.empty, Failures.empty) in CallerKidSet.fold add_kid call_dep.parents (splits, extras, fails) | exception Not_found -> ArgSplits.empty,ExtraSplits.empty,Failures.empty end | exception Not_found -> ArgSplits.empty,ExtraSplits.empty,Failures.empty and add_kid k (splits,extras,fails) = let splits',extras',fails' = chase_kid_caller k in ArgSplits.merge merge_detail splits splits', merge_extras extras extras', Failures.merge failure_merge fails fails' in let _ = if debug > 1 then print_result r else () in let splits,extras,fails = CallerKidSet.fold add_kid r.kid_in_caller (r.split,r.extra_splits,r.failures) in let _ = if debug > 0 then (print_endline "Final splits:"; print_endline (string_of_argsplits splits); print_endline (string_of_extra_splits extras)) else () in let splits = argset_to_list splits in if Failures.is_empty fails then (true,splits,extras) else begin Failures.iter (fun l msgs -> Reporting.print_err l "Monomorphisation" (String.concat "\n" (StringSet.elements msgs))) fails; (false, splits,extras) end end let fresh_sz_var = let counter = ref 0 in fun () -> let n = !counter in let () = counter := n+1 in mk_id ("sz#" ^ string_of_int n) let add_extra_splits extras defs = let success = ref true in let add_to_body extras (E_aux (_,(l,annot)) as e) = let l' = Generated l in KBindings.fold (fun kid detail (exp,split_list) -> let nexp = Nexp_aux (Nexp_var kid,l) in let var = fresh_sz_var () in let size_annot = mk_tannot (env_of e) (atom_typ nexp) no_effect in let loc = match Analysis.translate_loc l with | Some l -> l | None -> (Reporting.print_err l "Monomorphisation" "Internal error: bad location for added case"; ("",0)) in let pexps = [Pat_aux (Pat_exp (P_aux (P_id var,(l,size_annot)),exp),(l',annot))] in E_aux (E_case (E_aux (E_sizeof nexp, (l',size_annot)), pexps),(l',annot)), ((loc, string_of_id var, Analysis.detail_to_split detail)::split_list) ) extras (e,[]) in let add_to_funcl (FCL_aux (FCL_Funcl (id,Pat_aux (pexp,peannot)),(l,annot))) = let pexp, splits = match Analysis.ExtraSplits.find (id,l) extras with | extras -> (match pexp with | Pat_exp (p,e) -> let e',sp = add_to_body extras e in Pat_exp (p,e'), sp | Pat_when (p,g,e) -> let e',sp = add_to_body extras e in Pat_when (p,g,e'), sp) | exception Not_found -> pexp, [] in FCL_aux (FCL_Funcl (id,Pat_aux (pexp,peannot)),(l,annot)), splits in let add_to_def = function | DEF_fundef (FD_aux (FD_function (re,ta,ef,funcls),annot)) -> let funcls,splits = List.split (List.map add_to_funcl funcls) in DEF_fundef (FD_aux (FD_function (re,ta,ef,funcls),annot)), List.concat splits | d -> d, [] in let defs, splits = List.split (List.map add_to_def defs) in !success, defs, List.concat splits module MonoRewrites = struct let is_constant_range = function | E_aux (E_lit _,_), E_aux (E_lit _,_) -> true | _ -> false let is_constant = function | E_aux (E_lit _,_) -> true | _ -> false let get_constant_vec_len ?solve:(solve=false) env typ = let typ = Env.base_typ_of env typ in match destruct_bitvector env typ with | Some (size,_) -> begin match nexp_simp size with | Nexp_aux (Nexp_constant i,_) -> Some i | nexp when solve -> solve_unique env nexp | _ -> None end | _ -> None let is_constant_vec_typ env typ = (get_constant_vec_len env typ <> None) let is_zeros env id = is_id env (Id "Zeros") id || is_id env (Id "zeros") id || is_id env (Id "sail_zeros") id (* We have to add casts in here with appropriate length information so that the type checker knows the expected return types. *) let rec rewrite_app env typ (id,args) = let is_append = is_id env (Id "append") in let is_subrange = is_id env (Id "vector_subrange") in let is_slice = is_id env (Id "slice") in let is_zeros id = is_zeros env id in let is_ones id = is_id env (Id "Ones") id || is_id env (Id "ones") id || is_id env (Id "sail_ones") id in let is_zero_extend = is_id env (Id "ZeroExtend") id || is_id env (Id "zero_extend") id || is_id env (Id "sail_zero_extend") id || is_id env (Id "mips_zero_extend") id || is_id env (Id "EXTZ") id in let is_sign_extend = is_id env (Id "SignExtend") id || is_id env (Id "sign_extend") id || is_id env (Id "sail_sign_extend") id || is_id env (Id "mips_sign_extend") id || is_id env (Id "EXTS") id in let is_truncate = is_id env (Id "truncate") id in let mk_exp e = E_aux (e, (Unknown, empty_tannot)) in let rec is_zeros_exp e = match unaux_exp e with | E_app (zeros, [_]) when is_zeros zeros -> true | E_lit (L_aux ((L_bin s | L_hex s), _)) -> List.for_all (fun c -> c = '0') (Util.string_to_list s) | E_cast (_, e) -> is_zeros_exp e | _ -> false in let rec get_zeros_exp_len e = match unaux_exp e with | E_app (zeros, [len]) when is_zeros zeros -> Some len | E_cast (_, e) -> get_zeros_exp_len e | _ -> match get_constant_vec_len (env_of e) (typ_of e) with | Some i -> Some (mk_exp (E_lit (L_aux (L_num i, Unknown)))) | None -> None in let try_cast_to_typ (E_aux (e,(l, _)) as exp) = let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in (* vector_typ_args_of might simplify size, so rebuild the type even if it's constant *) match size with | Nexp_aux (Nexp_constant c,_) -> E_cast (bitvector_typ (nconstant c) order, exp) | _ -> match solve_unique env size with | Some c -> E_cast (bitvector_typ (nconstant c) order, exp) | None -> e in let rewrap e = E_aux (e, (Unknown, empty_tannot)) in if is_append id then match args with (* (known-size-vector @ variable-vector) @ variable-vector *) | [E_aux (E_app (append, [e1; E_aux (E_app (subrange1, [vector1; start1; end1]),_) as sub1]),_); E_aux (E_app (subrange2, [vector2; start2; end2]),_) as sub2] when is_append append && is_subrange subrange1 && is_subrange subrange2 && is_constant_vec_typ env (typ_of e1) && is_bitvector_typ (typ_of vector1) && is_bitvector_typ (typ_of vector2) && not (is_constant_vec_typ env (typ_of sub1) || is_constant_vec_typ env (typ_of sub2)) -> let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in let (size1,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of e1)) in let midsize = nminus size size1 in begin match solve_unique env midsize with | Some c -> let midtyp = bitvector_typ (nconstant c) order in E_app (append, [e1; E_aux (E_cast (midtyp, E_aux (E_app (mk_id "subrange_subrange_concat", [vector1; start1; end1; vector2; start2; end2]), (Unknown,empty_tannot))),(Unknown,empty_tannot))]) | _ -> E_app (append, [e1; E_aux (E_app (mk_id "subrange_subrange_concat", [vector1; start1; end1; vector2; start2; end2]), (Unknown,empty_tannot))]) end | [E_aux (E_app (append, [e1; E_aux (E_app (slice1, [vector1; start1; length1]),_)]),_); E_aux (E_app (slice2, [vector2; start2; length2]),_)] when is_append append && is_slice slice1 && is_slice slice2 && is_constant_vec_typ env (typ_of e1) && is_bitvector_typ (typ_of vector1) && is_bitvector_typ (typ_of vector2) && not (is_constant length1 || is_constant length2) -> let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in let (size1,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of e1)) in let midsize = nminus size size1 in begin match solve_unique env midsize with | Some c -> let midtyp = bitvector_typ (nconstant c) order in E_app (append, [e1; E_aux (E_cast (midtyp, E_aux (E_app (mk_id "slice_slice_concat", [vector1; start1; length1; vector2; start2; length2]), (Unknown,empty_tannot))),(Unknown,empty_tannot))]) | _ -> E_app (append, [e1; E_aux (E_app (mk_id "slice_slice_concat", [vector1; start1; length1; vector2; start2; length2]), (Unknown,empty_tannot))]) end (* variable-slice @ zeros *) | [E_aux (E_app (op, [vector1; start1; len1]),_) as exp1; zeros_exp] when (is_slice op || is_subrange op) && is_zeros_exp zeros_exp && is_bitvector_typ (typ_of vector1) && not (is_constant_vec_typ env (typ_of exp1) && is_constant_vec_typ env (typ_of zeros_exp)) -> let op' = if is_subrange op then "place_subrange" else "place_slice" in begin match get_zeros_exp_len zeros_exp with | Some zlen -> try_cast_to_typ (mk_exp (E_app (mk_id op', [vector1; start1; len1; zlen]))) | None -> E_app (id, args) end (* ones @ zeros *) | [E_aux (E_app (ones1, [len1]), _); zeros_exp] when is_ones ones1 && is_zeros_exp zeros_exp && not (is_constant len1 && is_constant_vec_typ env (typ_of zeros_exp)) -> begin match get_zeros_exp_len zeros_exp with | Some zlen -> try_cast_to_typ (mk_exp (E_app (mk_id "slice_mask", [zlen; len1]))) | None -> E_app (id, args) end (* variable-range @ variable-range *) | [E_aux (E_app (subrange1, [vector1; start1; end1]),_) as exp1; E_aux (E_app (subrange2, [vector2; start2; end2]),_) as exp2] when is_subrange subrange1 && is_subrange subrange2 && is_bitvector_typ (typ_of vector1) && is_bitvector_typ (typ_of vector2) && not (is_constant_vec_typ env (typ_of exp1) || is_constant_vec_typ env (typ_of exp2)) -> try_cast_to_typ (E_aux (E_app (mk_id "subrange_subrange_concat", [vector1; start1; end1; vector2; start2; end2]), (Unknown,empty_tannot))) (* variable-slice @ variable-slice *) | [E_aux (E_app (slice1, [vector1; start1; length1]),_); E_aux (E_app (slice2, [vector2; start2; length2]),_)] when is_slice slice1 && is_slice slice2 && is_bitvector_typ (typ_of vector1) && is_bitvector_typ (typ_of vector2) && not (is_constant length1 || is_constant length2) -> try_cast_to_typ (E_aux (E_app (mk_id "slice_slice_concat", [vector1; start1; length1; vector2; start2; length2]),(Unknown,empty_tannot))) (* variable-slice @ local-var *) | [(E_aux (E_app (op, [vector1; start1; length1]),_) as exp1); (E_aux (E_id _,_) as vector2)] when (is_slice op || is_subrange op) && is_bitvector_typ (typ_of vector1) && not (is_constant_vec_typ env (typ_of exp1)) -> let op' = if is_subrange op then "subrange_subrange_concat" else "slice_slice_concat" in let zero = mk_exp (E_lit (mk_lit (L_num Big_int.zero))) in let one = mk_exp (E_lit (mk_lit (L_num (Big_int.of_int 1)))) in let length2 = mk_exp (E_app (mk_id "length", [vector2])) in let indices2 = if is_subrange op then [mk_exp (E_app_infix (length2, mk_id "-", one)); zero] else [zero; length2] in try_cast_to_typ (E_aux (E_app (mk_id op', [vector1; start1; length1; vector2] @ indices2),(Unknown,empty_tannot))) | [E_aux (E_app (append1, [e1; (E_aux (E_app (op, [vector1; start1; length1]),_) as slice1)]),_); E_aux (E_app (zeros1, [length2]),_)] when is_append append1 && (is_slice op || is_subrange op) && is_zeros zeros1 && is_constant_vec_typ env (typ_of e1) && is_bitvector_typ (typ_of vector1) && not (is_constant_vec_typ env (typ_of slice1) || is_constant length2) -> let op' = mk_id (if is_subrange op then "subrange_zeros_concat" else "slice_zeros_concat") in let (size,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in let (size1,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of e1)) in let midsize = nminus size size1 in begin match solve_unique env midsize with | Some c -> let midtyp = bitvector_typ (nconstant c) order in try_cast_to_typ (E_aux (E_app (mk_id "append", [e1; E_aux (E_cast (midtyp, E_aux (E_app (op', [vector1; start1; length1; length2]),(Unknown,empty_tannot))),(Unknown,empty_tannot))]), (Unknown,empty_tannot))) | _ -> try_cast_to_typ (E_aux (E_app (mk_id "append", [e1; E_aux (E_app (op', [vector1; start1; length1; length2]),(Unknown,empty_tannot))]), (Unknown,empty_tannot))) end (* known-length @ (known-length @ var-length) *) | [e1; E_aux (E_app (append1, [e2; e3]), _)] when is_append append1 && is_constant_vec_typ env (typ_of e1) && is_constant_vec_typ env (typ_of e2) && not (is_constant_vec_typ env (typ_of e3)) -> let (size1,order,bittyp) = vector_typ_args_of (Env.base_typ_of env (typ_of e1)) in let (size2,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of e2)) in let size12 = nexp_simp (nsum size1 size2) in let tannot12 = mk_tannot env (bitvector_typ size12 order) no_effect in E_app (id, [E_aux (E_app (append1, [e1; e2]), (Unknown, tannot12)); e3]) | _ -> E_app (id,args) else if is_id env (Id "vector_update_subrange") id then match args with | [vec1; start1; end1; (E_aux (E_app (subrange2, [vec2; start2; end2]), _) as e2)] when is_subrange subrange2 && not (is_constant_vec_typ env (typ_of e2)) -> let op = if is_number (typ_of vec2) then "vector_update_subrange_from_integer_subrange" else "vector_update_subrange_from_subrange" in try_cast_to_typ (E_aux (E_app (mk_id op, [vec1; start1; end1; vec2; start2; end2]), (Unknown, empty_tannot))) | [vec1; start1; end1; (E_aux (E_app (zeros, _), _) as e2)] when is_zeros zeros && not (is_constant_vec_typ env (typ_of e2)) -> try_cast_to_typ (E_aux (E_app (mk_id "set_subrange_zeros", [vec1; start1; end1]), (Unknown, empty_tannot))) | _ -> E_app (id, args) else if is_id env (Id "eq_bits") id || is_id env (Id "neq_bits") id then (* variable-range == variable_range *) let wrap e = if is_id env (Id "neq_bits") id then E_app (mk_id "not_bool", [mk_exp e]) else e in match args with | [E_aux (E_app (subrange1, [vector1; start1; end1]),_); E_aux (E_app (subrange2, [vector2; start2; end2]),_)] when is_subrange subrange1 && is_subrange subrange2 && is_bitvector_typ (typ_of vector1) && is_bitvector_typ (typ_of vector2) && not (is_constant_range (start1, end1) || is_constant_range (start2, end2)) -> wrap (E_app (mk_id "subrange_subrange_eq", [vector1; start1; end1; vector2; start2; end2])) | [E_aux (E_app (slice1, [vector1; len1; start1]),_); E_aux (E_app (slice2, [vector2; len2; start2]),_)] when is_slice slice1 && is_slice slice2 && is_bitvector_typ (typ_of vector1) && is_bitvector_typ (typ_of vector2) && not (is_constant len1 && is_constant start1 && is_constant len2 && is_constant start2) -> let upper start len = mk_exp (E_app_infix (start, mk_id "+", mk_exp (E_app_infix (len, mk_id "-", mk_exp (E_lit (mk_lit (L_num (Big_int.of_int 1)))))))) in wrap (E_app (mk_id "subrange_subrange_eq", [vector1; upper start1 len1; start1; vector2; upper start2 len2; start2])) | [(E_aux (E_app (op, [vector1; start1; len1]), _) as e1); E_aux (E_app (zeros2, _), _)] when (is_slice op || is_subrange op) && is_zeros zeros2 && not (is_constant_vec_typ env (typ_of e1)) && is_bitvector_typ (typ_of vector1) -> let op' = if is_subrange op then "is_zero_subrange" else "is_zeros_slice" in wrap (E_app (mk_id op', [vector1; start1; len1])) | _ -> E_app (id,args) else if is_id env (Id "IsZero") id then match args with | [E_aux (E_app (subrange1, [vector1; start1; end1]),_)] when (is_id env (Id "vector_subrange") subrange1) && is_bitvector_typ (typ_of vector1) && not (is_constant_range (start1,end1)) -> E_app (mk_id "is_zero_subrange", [vector1; start1; end1]) | [E_aux (E_app (slice1, [vector1; start1; len1]),_)] when (is_slice slice1) && is_bitvector_typ (typ_of vector1) && not (is_constant len1) -> E_app (mk_id "is_zeros_slice", [vector1; start1; len1]) | _ -> E_app (id,args) else if is_id env (Id "IsOnes") id then match args with | [E_aux (E_app (subrange1, [vector1; start1; end1]),_)] when is_id env (Id "vector_subrange") subrange1 && is_bitvector_typ (typ_of vector1) && not (is_constant_range (start1,end1)) -> E_app (mk_id "is_ones_subrange", [vector1; start1; end1]) | [E_aux (E_app (slice1, [vector1; start1; len1]),_)] when is_slice slice1 && not (is_constant len1) && is_bitvector_typ (typ_of vector1) -> E_app (mk_id "is_ones_slice", [vector1; start1; len1]) | _ -> E_app (id,args) else if is_zero_extend || is_truncate then let length_arg = List.filter (fun arg -> is_number (typ_of arg)) args in match List.filter (fun arg -> not (is_number (typ_of arg))) args with | [E_aux (E_app (append1, [E_aux (E_app (subrange1, [vector1; start1; end1]), _); zeros_exp]),_)] when is_subrange subrange1 && is_zeros_exp zeros_exp && is_append append1 && is_bitvector_typ (typ_of vector1) -> begin match get_zeros_exp_len zeros_exp with | Some zlen -> try_cast_to_typ (rewrap (E_app (mk_id "place_subrange", length_arg @ [vector1; start1; end1; zlen]))) | None -> E_app (id, args) end | [E_aux (E_app (append1, [vector1; zeros_exp]),_)] when is_constant_vec_typ env (typ_of vector1) && is_zeros_exp zeros_exp && is_append append1 -> begin match get_zeros_exp_len zeros_exp with | Some zlen -> let (vector1, start1, length1) = match vector1 with | E_aux (E_app (slice1, [vector1; start1; length1]), _) -> (vector1, start1, length1) | _ -> let (length1,_,_) = vector_typ_args_of (Env.base_typ_of env (typ_of vector1)) in (vector1, mk_exp (E_lit (mk_lit (L_num (Big_int.zero)))), mk_exp (E_sizeof length1)) in try_cast_to_typ (rewrap (E_app (mk_id "place_slice", length_arg @ [vector1; start1; length1; zlen]))) | None -> E_app (id, args) end (* If we've already rewritten to slice_slice_concat or subrange_subrange_concat, we can just drop the zero extension because those functions can do it themselves *) | [E_aux (E_cast (_, (E_aux (E_app (Id_aux ((Id "slice_slice_concat" | Id "subrange_subrange_concat" | Id "place_slice" | Id "place_subrange"),_) as op, args),_))),_)] -> try_cast_to_typ (rewrap (E_app (op, length_arg @ args))) | [E_aux (E_app (Id_aux ((Id "slice_slice_concat" | Id "subrange_subrange_concat" | Id "place_slice" | Id "place_subrange"),_) as op, args),_)] -> try_cast_to_typ (rewrap (E_app (op, length_arg @ args))) | [E_aux (E_app (slice1, [vector1; start1; length1]),_)] when is_slice slice1 && not (is_constant length1) && is_bitvector_typ (typ_of vector1) -> try_cast_to_typ (rewrap (E_app (mk_id "zext_slice", length_arg @ [vector1; start1; length1]))) | [E_aux (E_app (subrange1, [vector1; hi1; lo1]),_)] when is_subrange subrange1 && not (is_constant hi1 && is_constant lo1) && is_bitvector_typ (typ_of vector1) -> try_cast_to_typ (rewrap (E_app (mk_id "zext_subrange", length_arg @ [vector1; hi1; lo1]))) | [E_aux (E_app (ones, [len1]),_)] when is_ones ones -> try_cast_to_typ (rewrap (E_app (mk_id "zext_ones", length_arg @ [len1]))) | [E_aux (E_app (replicate_bits, [E_aux (E_lit (L_aux (L_bin "1", _)), _); len1]), _)] when is_id env (Id "replicate_bits") replicate_bits -> let start1 = mk_exp (E_lit (mk_lit (L_num Big_int.zero))) in try_cast_to_typ (rewrap (E_app (mk_id "slice_mask", length_arg @ [start1; len1]))) | [E_aux (E_app (zeros, [len1]),_)] | [E_aux (E_cast (_, E_aux (E_app (zeros, [len1]),_)), _)] when is_zeros zeros -> try_cast_to_typ (rewrap (E_app (zeros, length_arg))) | _ -> E_app (id,args) else if is_sign_extend then let length_arg = List.filter (fun arg -> is_number (typ_of arg)) args in match List.filter (fun arg -> not (is_number (typ_of arg))) args with | [E_aux (E_app (slice1, [vector1; start1; length1]),_)] when is_slice slice1 && not (is_constant length1) && is_bitvector_typ (typ_of vector1) -> try_cast_to_typ (rewrap (E_app (mk_id "sext_slice", length_arg @ [vector1; start1; length1]))) | [E_aux (E_app (subrange1, [vector1; hi1; lo1]),_) as exp1] when is_subrange subrange1 && not (is_constant_vec_typ env (typ_of exp1)) && is_bitvector_typ (typ_of vector1) -> try_cast_to_typ (rewrap (E_app (mk_id "sext_subrange", length_arg @ [vector1; hi1; lo1]))) | [E_aux (E_app (append, [E_aux (E_app (op, [vector1; start1; len1]), _); zeros_exp]), _)] when is_append append && (is_slice op || is_subrange op) && is_zeros_exp zeros_exp && is_bitvector_typ (typ_of vector1) && not (is_constant len1 && is_constant_vec_typ env (typ_of zeros_exp)) -> let op' = if is_subrange op then "place_subrange_signed" else "place_slice_signed" in begin match get_zeros_exp_len zeros_exp with | Some zlen -> E_app (mk_id op', length_arg @ [vector1; start1; len1; zlen]) | None -> E_app (id, args) end | [E_aux (E_cast (_, (E_aux (E_app (Id_aux ((Id "place_slice"),_), args),_))),_)] | [E_aux (E_app (Id_aux ((Id "place_slice"),_), args),_)] -> try_cast_to_typ (rewrap (E_app (mk_id "place_slice_signed", length_arg @ args))) | [E_aux (E_cast (_, (E_aux (E_app (Id_aux ((Id "place_subrange"),_), args),_))),_)] | [E_aux (E_app (Id_aux ((Id "place_subrange"),_), args),_)] -> try_cast_to_typ (rewrap (E_app (mk_id "place_subrange_signed", length_arg @ args))) (* If the original had a length, keep it *) (* | [E_aux (E_app (slice1, [vector1; start1; length1]),_);length2] when is_slice slice1 && not (is_constant length1) -> begin match Type_check.destruct_atom_nexp (env_of length2) (typ_of length2) with | None -> E_app (mk_id "sext_slice", [vector1; start1; length1]) | Some nlen -> let (_,order,bittyp) = vector_typ_args_of (Env.base_typ_of env typ) in E_cast (vector_typ nlen order bittyp, E_aux (E_app (mk_id "sext_slice", [vector1; start1; length1]), (Unknown,empty_tannot))) end *) | _ -> E_app (id,args) else if is_id env (Id "Extend") id then match args with | [vector; len; unsigned] -> let extz = mk_exp (rewrite_app env typ (mk_id "ZeroExtend", [vector; len])) in let exts = mk_exp (rewrite_app env typ (mk_id "SignExtend", [vector; len])) in E_if (unsigned, extz, exts) | _ -> E_app (id, args) else if is_id env (Id "UInt") id || is_id env (Id "unsigned") id then match args with | [E_aux (E_app (slice1, [vector1; start1; length1]),_)] when is_slice slice1 && not (is_constant length1) && is_bitvector_typ (typ_of vector1) -> E_app (mk_id "unsigned_slice", [vector1; start1; length1]) | [E_aux (E_app (subrange1, [vector1; start1; end1]),_)] when is_subrange subrange1 && not (is_constant_range (start1,end1)) && is_bitvector_typ (typ_of vector1) -> E_app (mk_id "unsigned_subrange", [vector1; start1; end1]) | [E_aux (E_app (append, [vector1; zeros2]), _)] when is_append append && is_zeros_exp zeros2 && not (is_constant_vec_typ env (typ_of zeros2)) -> begin match get_zeros_exp_len zeros2 with | Some len -> E_app (mk_id "shl_int", [E_aux (E_app (id, [vector1]), (Unknown, empty_tannot)); len]) | None -> E_app (id, args) end | _ -> E_app (id,args) else if is_id env (Id "__SetSlice_bits") id || is_id env (Id "SetSlice") id then match args with | [len; slice_len; vector; start; E_aux (E_app (zeros, _), _)] when is_zeros zeros && is_bitvector_typ (typ_of vector) -> E_app (mk_id "set_slice_zeros", [len; vector; start; slice_len]) | _ -> E_app (id, args) else if is_id env (Id "Replicate") id then let length_arg = List.filter (fun arg -> is_number (typ_of arg)) args in match List.filter (fun arg -> not (is_number (typ_of arg))) args with | [E_aux (E_lit (L_aux (L_bin "0", _)), _)] -> E_app (mk_id "sail_zeros", length_arg) | [E_aux (E_lit (L_aux (L_bin "1", _)), _)] -> E_app (mk_id "sail_ones", length_arg) | _ -> E_app (id, args) (* Turn constant-length subranges into slices, making the constant length more explicit, e.g. turning x[i+1 .. i] into slice(x, i, 2) *) else if is_subrange id then match get_constant_vec_len ~solve:true env typ, args with | Some i, [vector1; start1; end1] when is_bitvector_typ (typ_of vector1) && not (is_constant start1 && is_constant end1) -> let inc = is_inc_vec (typ_of vector1) in let low = if inc then start1 else end1 in let exp' = rewrap (E_app (mk_id "slice", [vector1; low; mk_exp (E_lit (mk_lit (L_num i)))])) in E_cast (bitvector_typ (nconstant i) (if inc then inc_ord else dec_ord), exp') | _, _ -> E_app (id, args) (* Rewrite (v[x .. y] + i) to (v + (i << y))[x .. y], which is more amenable to further rewriting *) else if is_id env (Id "add_bits_int") id then match args with | [E_aux (E_app (subrange1, [vec1; start1; end1]), a) as exp1; exp2] when is_subrange subrange1 && is_bitvector_typ (typ_of vec1) && not (is_constant_vec_typ env (typ_of exp1)) -> let low = if is_inc_vec (typ_of vec1) then start1 else end1 in let exp2' = mk_exp (E_app (mk_id "shl_int", [exp2; low])) in let vec1' = E_aux (E_app (id, [vec1; exp2']), a) in E_app (subrange1, [vec1'; start1; end1]) | _ -> E_app (id, args) else E_app (id,args) let rec rewrite_aux = function | E_app (id,args), (l, tannot) -> begin match destruct_tannot tannot with | Some (env, ty, _) -> E_aux (rewrite_app env ty (id,args), (l, tannot)) | None -> E_aux (E_app (id, args), (l, tannot)) end | E_assign ( LEXP_aux (LEXP_vector_range (LEXP_aux (LEXP_id id1,(l_id1,_)), start1, end1),_), E_aux (E_app (subrange2, [vector2; start2; end2]),(l_assign,_))), annot when is_id (env_of_annot annot) (Id "vector_subrange") subrange2 && not (is_constant_range (start1, end1)) -> let typ2 = Env.base_typ_of (env_of_annot annot) (typ_of vector2) in let op = if is_number typ2 then "vector_update_subrange_from_integer_subrange" else "vector_update_subrange_from_subrange" in E_aux (E_assign (LEXP_aux (LEXP_id id1,(l_id1,empty_tannot)), E_aux (E_app (mk_id op, [ E_aux (E_id id1,(Generated l_id1,empty_tannot)); start1; end1; vector2; start2; end2]),(Unknown,empty_tannot))), (l_assign, empty_tannot)) | E_assign (LEXP_aux (LEXP_vector_range (LEXP_aux (LEXP_id id1, annot1), start1, end1), _), E_aux (E_app (zeros, _), _)), annot when is_zeros (env_of_annot annot) zeros -> let lhs = LEXP_aux (LEXP_id id1, annot1) in let rhs = E_aux (E_app (mk_id "set_subrange_zeros", [E_aux (E_id id1, annot1); start1; end1]), annot1) in E_aux (E_assign (lhs, rhs), annot) | (E_let (LB_aux (LB_val (P_aux ((P_id id | P_typ (_, P_aux (P_id id, _))), _), (E_aux (E_app (subrange1, [vec1; start1; end1]), _) as exp1)), _), exp2) as e_aux), annot when is_id (env_of_annot annot) (Id "vector_subrange") subrange1 && not (is_constant_vec_typ (env_of_annot annot) (typ_of exp1))-> let open Spec_analysis in let depends1 = ids_in_exp exp1 in let assigned2 = IdSet.union (assigned_vars exp2) (bound_vars exp2) in if IdSet.is_empty (IdSet.inter depends1 assigned2) then rewrite_exp (subst id exp1 exp2) else E_aux (e_aux, annot) | e_aux, annot -> E_aux (e_aux, annot) and rewrite_exp exp = Rewriter.fold_exp { Rewriter.id_exp_alg with e_aux = rewrite_aux } exp let mono_rewrite defs = let open Rewriter in rewrite_ast_base { rewriters_base with rewrite_exp = fun _ -> fold_exp { id_exp_alg with e_aux = rewrite_aux } } defs end module BitvectorSizeCasts = struct let simplify_size_nexp env quant_kids nexp = let rec aux (Nexp_aux (ne,l) as nexp) = match solve_unique env nexp with | Some n -> Some (nconstant n) | None -> let is_equal kid = prove __POS__ env (NC_aux (NC_equal (Nexp_aux (Nexp_var kid,Unknown), nexp),Unknown)) in match List.find is_equal quant_kids with | kid -> Some (Nexp_aux (Nexp_var kid,Generated l)) | exception Not_found -> (* Normally rewriting of complex nexps in function signatures will produce a simple constant or variable above, but occasionally it's useful to work when that rewriting hasn't been applied. In particular, that rewriting isn't fully working with RISC-V at the moment. *) let re f = function | Some n1, Some n2 -> Some (Nexp_aux (f n1 n2,l)) | _ -> None in match ne with | Nexp_times(n1,n2) -> re (fun n1 n2 -> Nexp_times(n1,n2)) (aux n1, aux n2) | Nexp_sum(n1,n2) -> re (fun n1 n2 -> Nexp_sum(n1,n2)) (aux n1, aux n2) | Nexp_minus(n1,n2) -> re (fun n1 n2 -> Nexp_times(n1,n2)) (aux n1, aux n2) | Nexp_exp n -> Util.option_map (fun n -> Nexp_aux (Nexp_exp n,l)) (aux n) | Nexp_neg n -> Util.option_map (fun n -> Nexp_aux (Nexp_neg n,l)) (aux n) | _ -> None in aux nexp let specs_required = ref IdSet.empty let check_for_spec env name = let id = mk_id name in match Env.get_val_spec id env with | _ -> () | exception _ -> specs_required := IdSet.add id !specs_required (* These functions add cast functions across case splits, so that when a bitvector size becomes known in sail, the generated Lem code contains a function call to change mword 'n to (say) mword ty16, and vice versa. *) let make_bitvector_cast_fns cast_name top_env env quant_kids src_typ target_typ = let genunk = Generated Unknown in let fresh = let counter = ref 0 in fun () -> let n = !counter in let () = counter := n+1 in mk_id ("cast#" ^ string_of_int n) in let at_least_one = ref None in let rec aux (Typ_aux (src_t,src_l) as src_typ) (Typ_aux (tar_t,tar_l) as tar_typ) = let src_ann = mk_tannot env src_typ no_effect in let tar_ann = mk_tannot env tar_typ no_effect in match src_t, tar_t with | Typ_tup typs, Typ_tup typs' -> let ps,es = List.split (List.map2 aux typs typs') in P_aux (P_typ (src_typ, P_aux (P_tup ps,(Generated src_l, src_ann))),(Generated src_l, src_ann)), E_aux (E_tuple es,(Generated tar_l, tar_ann)) | Typ_app (Id_aux (Id "bitvector",_), [A_aux (A_nexp size,_); _]), Typ_app (Id_aux (Id "bitvector",_) as t_id, [A_aux (A_nexp size',l_size'); t_ord]) -> begin match simplify_size_nexp env quant_kids size, simplify_size_nexp top_env quant_kids size' with | Some size, Some size' when Nexp.compare size size' <> 0 -> let var = fresh () in let tar_typ' = Typ_aux (Typ_app (t_id, [A_aux (A_nexp size',l_size');t_ord]), tar_l) in let () = at_least_one := Some tar_typ' in P_aux (P_id var,(Generated src_l,src_ann)), E_aux (E_cast (tar_typ', E_aux (E_app (Id_aux (Id cast_name, genunk), [E_aux (E_id var, (genunk, src_ann))]), (genunk, tar_ann))), (genunk, tar_ann)) | _ -> let var = fresh () in P_aux (P_id var,(Generated src_l,src_ann)), E_aux (E_id var,(Generated src_l,tar_ann)) end | _ -> let var = fresh () in P_aux (P_id var,(Generated src_l,src_ann)), E_aux (E_id var,(Generated src_l,tar_ann)) in let src_typ' = Env.base_typ_of env src_typ in let target_typ' = Env.base_typ_of env target_typ in let pat, e' = aux src_typ' target_typ' in match !at_least_one with | Some one_target_typ -> begin check_for_spec env cast_name; let src_ann = mk_tannot env src_typ no_effect in let tar_ann = mk_tannot env target_typ no_effect in let asg_ann = mk_tannot env unit_typ no_effect in match src_typ' with (* Simple case with just the bitvector; don't need to pull apart value *) | Typ_aux (Typ_app _,_) -> (fun var exp -> let exp_ann = mk_tannot env (typ_of exp) (effect_of exp) in E_aux (E_let (LB_aux (LB_val (P_aux (P_typ (one_target_typ, P_aux (P_id var,(genunk,tar_ann))),(genunk,tar_ann)), E_aux (E_app (Id_aux (Id cast_name,genunk), [E_aux (E_id var,(genunk,src_ann))]),(genunk,tar_ann))),(genunk,tar_ann)), exp),(genunk,exp_ann))), (fun var -> [E_aux (E_assign (LEXP_aux (LEXP_cast (one_target_typ, var),(genunk,tar_ann)), E_aux (E_app (Id_aux (Id cast_name,genunk), [E_aux (E_id var,(genunk,src_ann))]),(genunk,tar_ann) )),(genunk,asg_ann))]), (fun (E_aux (_,(exp_l,exp_ann)) as exp) -> E_aux (E_cast (one_target_typ, E_aux (E_app (Id_aux (Id cast_name, genunk), [exp]), (Generated exp_l,tar_ann))), (Generated exp_l,tar_ann))) | _ -> (fun var exp -> let exp_ann = mk_tannot env (typ_of exp) (effect_of exp) in E_aux (E_let (LB_aux (LB_val (pat, E_aux (E_id var,(genunk,src_ann))),(genunk,src_ann)), E_aux (E_let (LB_aux (LB_val (P_aux (P_id var,(genunk,tar_ann)),e'),(genunk,tar_ann)), exp),(genunk,exp_ann))),(genunk,exp_ann))), (fun var -> [E_aux (E_let (LB_aux (LB_val (pat, E_aux (E_id var,(genunk,src_ann))),(genunk,src_ann)), E_aux (E_assign (LEXP_aux (LEXP_cast (one_target_typ, var),(genunk,tar_ann)), e'),(genunk,asg_ann))),(genunk,asg_ann))]), (fun (E_aux (_,(exp_l,exp_ann)) as exp) -> E_aux (E_let (LB_aux (LB_val (pat, exp),(Generated exp_l,exp_ann)), e'),(Generated exp_l,tar_ann))) end | None -> (fun _ e -> e),(fun _ -> []),(fun e -> e) let make_bitvector_cast_let cast_name top_env env quant_kids src_typ target_typ = let f,_,_ = make_bitvector_cast_fns cast_name top_env env quant_kids src_typ target_typ in f let make_bitvector_cast_assign cast_name top_env env quant_kids src_typ target_typ = let _,f,_ = make_bitvector_cast_fns cast_name top_env env quant_kids src_typ target_typ in f let make_bitvector_cast_cast cast_name top_env env quant_kids src_typ target_typ = let _,_,f = make_bitvector_cast_fns cast_name top_env env quant_kids src_typ target_typ in f let make_bitvector_env_casts top_env env quant_kids insts exp = let mk_cast var typ exp = (make_bitvector_cast_let "bitvector_cast_in" env top_env quant_kids typ (subst_kids_typ insts typ)) var exp in let mk_assign_in var typ = make_bitvector_cast_assign "bitvector_cast_in" env top_env quant_kids typ (subst_kids_typ insts typ) var in let mk_assign_out var typ = make_bitvector_cast_assign "bitvector_cast_out" top_env env quant_kids (subst_kids_typ insts typ) typ var in let locals = Env.get_locals env in let used_ids = ids_in_exp exp in let locals = Bindings.filter (fun id _ -> IdSet.mem id used_ids) locals in let immutables,mutables = Bindings.partition (fun _ (mut,_) -> mut = Immutable) locals in let assigns_in = Bindings.fold (fun var (_,typ) acc -> mk_assign_in var typ @ acc) mutables [] in let assigns_out = Bindings.fold (fun var (_,typ) acc -> mk_assign_out var typ @ acc) mutables [] in let exp = match assigns_in, exp with | [], _ -> exp | _::_, E_aux (E_block es,ann) -> E_aux (E_block (assigns_in @ es @ assigns_out),ann) | _::_, E_aux (_,(l,ann)) -> E_aux (E_block (assigns_in @ [exp] @ assigns_out), (Generated l,ann)) in Bindings.fold (fun var (mut,typ) exp -> if mut = Immutable then mk_cast var typ exp else exp) immutables exp let make_bitvector_cast_exp cast_name cast_env quant_kids typ target_typ exp = if alpha_equivalent cast_env typ target_typ then exp else let infer_arg_typ env f l typ = let (typq, ctor_typ) = Env.get_union_id f env in let quants = quant_items typq in match Env.expand_synonyms env ctor_typ with | Typ_aux (Typ_fn ([arg_typ], ret_typ, _), _) -> begin let goals = quant_kopts typq |> List.map kopt_kid |> KidSet.of_list in let unifiers = unify l env goals ret_typ typ in let arg_typ' = subst_unifiers unifiers arg_typ in arg_typ' end | _ -> typ_error env l ("Malformed constructor " ^ string_of_id f ^ " with type " ^ string_of_typ ctor_typ) in (* Push the cast down, including through constructors *) let rec aux exp (typ, target_typ) = if alpha_equivalent cast_env typ target_typ then exp else let exp_env = env_of exp in match exp with | E_aux (E_let (lb,exp'),ann) -> E_aux (E_let (lb,aux exp' (typ, target_typ)),ann) | E_aux (E_block exps,ann) -> let exps' = match List.rev exps with | [] -> [] | final::l -> aux final (typ, target_typ)::l in E_aux (E_block (List.rev exps'),ann) | E_aux (E_tuple exps,(l,ann)) -> begin match Env.expand_synonyms exp_env typ, Env.expand_synonyms exp_env target_typ with | Typ_aux (Typ_tup src_typs,_), Typ_aux (Typ_tup tgt_typs,_) -> E_aux (E_tuple (List.map2 aux exps (List.combine src_typs tgt_typs)),(l,ann)) | _ -> raise (Reporting.err_unreachable l __POS__ ("Attempted to insert cast on tuple on non-tuple type: " ^ string_of_typ typ ^ " to " ^ string_of_typ target_typ)) end | E_aux (E_app (f,args),(l,ann)) when Env.is_union_constructor f (env_of exp) -> let arg = match args with [arg] -> arg | _ -> E_aux (E_tuple args, (l,empty_tannot)) in let src_arg_typ = infer_arg_typ (env_of exp) f l typ in let tgt_arg_typ = infer_arg_typ (env_of exp) f l target_typ in E_aux (E_app (f,[aux arg (src_arg_typ, tgt_arg_typ)]),(l,ann)) | _ -> (make_bitvector_cast_cast cast_name cast_env (env_of exp) quant_kids typ target_typ) exp in aux exp (typ, target_typ) let rec extract_value_from_guard var (E_aux (e,_)) = match e with | E_app (op, ([E_aux (E_id var',_); E_aux (E_lit (L_aux (L_num i,_)),_)] | [E_aux (E_lit (L_aux (L_num i,_)),_); E_aux (E_id var',_)])) when string_of_id op = "eq_int" && Id.compare var var' == 0 -> Some i | E_app (op, [e1;e2]) when string_of_id op = "and_bool" -> (match extract_value_from_guard var e1 with | Some i -> Some i | None -> extract_value_from_guard var e2) | _ -> None let fill_in_type env typ = let tyvars = tyvars_of_typ typ in let subst = KidSet.fold (fun kid subst -> match Env.get_typ_var kid env with | K_type | K_order | K_bool -> subst | K_int -> (match solve_unique env (nvar kid) with | None -> subst | Some n -> KBindings.add kid (nconstant n) subst)) tyvars KBindings.empty in subst_kids_typ subst typ (* Extract the instantiations of kids resulting from an if or assert guard *) let rec extract (E_aux (e,_)) = match e with | E_app (op, ([E_aux (E_sizeof (Nexp_aux (Nexp_var kid,_)),_); y] | [y; E_aux (E_sizeof (Nexp_aux (Nexp_var kid,_)),_)])) when string_of_id op = "eq_int" -> (match destruct_atom_nexp (env_of y) (typ_of y) with | Some (Nexp_aux (Nexp_constant i,_)) -> [(kid,i)] | _ -> []) | E_app (op,[x;y]) when string_of_id op = "eq_int" -> (match destruct_atom_nexp (env_of x) (typ_of x), destruct_atom_nexp (env_of y) (typ_of y) with | Some (Nexp_aux (Nexp_var kid,_)), Some (Nexp_aux (Nexp_constant i,_)) | Some (Nexp_aux (Nexp_constant i,_)), Some (Nexp_aux (Nexp_var kid,_)) -> [(kid,i)] | _ -> []) | E_app (op, [x;y]) when string_of_id op = "and_bool" -> extract x @ extract y | _ -> [] (* TODO: top-level patterns *) (* TODO: proper environment tracking for variables. Currently we pretend that we can print the type of a variable in the top-level environment, but in practice they might be below a case split. Note that we'd also need to provide some way for the Lem pretty printer to know what to use; currently we just use two names for the cast, bitvector_cast_in and bitvector_cast_out, to let the pretty printer know whether to use the top-level environment. *) let add_bitvector_casts global_env ({ defs; _ } as ast) = let rewrite_body id quant_kids top_env ret_typ exp = let rewrite_aux (e,ann) = match e with | E_case (E_aux (e',ann') as exp',cases) -> begin let env = env_of_annot ann in let result_typ = Env.base_typ_of env (typ_of_annot ann) in let matched_typ = Env.base_typ_of env (typ_of_annot ann') in match e',matched_typ with | E_sizeof (Nexp_aux (Nexp_var kid,_)), _ | _, Typ_aux (Typ_app (Id_aux (Id "atom",_), [A_aux (A_nexp (Nexp_aux (Nexp_var kid,_)),_)]),_) -> let map_case pexp = let pat,guard,body,ann = destruct_pexp pexp in let body = match pat, guard with | P_aux (P_lit (L_aux (L_num i,_)),_), _ -> (* We used to just substitute kid, but fill_in_type also catches other kids defined by it *) let src_typ = fill_in_type (Env.add_constraint (nc_eq (nvar kid) (nconstant i)) env) result_typ in make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ result_typ (make_bitvector_env_casts env (env_of body) quant_kids (KBindings.singleton kid (nconstant i)) body) | P_aux (P_id var,_), Some guard -> (match extract_value_from_guard var guard with | Some i -> let src_typ = fill_in_type (Env.add_constraint (nc_eq (nvar kid) (nconstant i)) env) result_typ in make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ result_typ (make_bitvector_env_casts env (env_of body) quant_kids (KBindings.singleton kid (nconstant i)) body) | None -> body) | _ -> body in construct_pexp (pat, guard, body, ann) in E_aux (E_case (exp', List.map map_case cases),ann) | _ -> E_aux (e,ann) end | E_if (e1,e2,e3) -> let env = env_of_annot ann in let result_typ = Env.base_typ_of env (typ_of_annot ann) in let insts = extract e1 in let insts = List.fold_left (fun insts (kid,i) -> KBindings.add kid (nconstant i) insts) KBindings.empty insts in let e2' = make_bitvector_env_casts env (env_of e2) quant_kids insts e2 in let src_typ = subst_kids_typ insts result_typ in let e2' = make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ result_typ e2' in (* Ask the type checker if only one value remains for any of kids in the else branch. *) let env3 = env_of e3 in let insts3 = KBindings.fold (fun kid _ i3 -> match Type_check.solve_unique env3 (nvar kid) with | None -> i3 | Some c -> KBindings.add kid (nconstant c) i3) insts KBindings.empty in let e3' = make_bitvector_env_casts env (env_of e3) quant_kids insts3 e3 in let src_typ3 = subst_kids_typ insts3 result_typ in let e3' = make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ3 result_typ e3' in E_aux (E_if (e1,e2',e3'), ann) | E_return e' -> E_aux (E_return (make_bitvector_cast_exp "bitvector_cast_out" top_env quant_kids (fill_in_type (env_of e') (typ_of e')) ret_typ e'),ann) | E_block es -> let env = env_of_annot ann in let result_typ = Env.base_typ_of env (typ_of_annot ann) in let rec aux = function | [] -> [] | (E_aux (E_assert (assert_exp,msg),ann) as h)::t -> (* Check the assertion for constraints that instantiate kids *) let is_known_kid kid = KBindings.mem kid (Env.get_typ_vars env) in let is_int_kid kid = try Env.get_typ_var kid env = K_int with _ -> false in begin match Type_check.assert_constraint env true assert_exp with | Some nc when KidSet.for_all is_known_kid (tyvars_of_constraint nc) -> (* If the type checker can extract constraints from the assertion for pre-existing kids (not for those that are bound by the assertion itself), then look at the environment after the assertion to extract kid instantiations. *) let env_post = Env.add_constraint nc env in let check_inst kid insts = (* First check if the given kid already had a fixed value previously. *) let rec nc_fixes_kid nc = match unaux_constraint nc with | NC_equal (Nexp_aux (Nexp_var kid', _), Nexp_aux (Nexp_constant _, _)) -> Kid.compare kid kid' = 0 | NC_and (_, _) -> List.exists nc_fixes_kid (constraint_conj nc) | _ -> false in if List.exists nc_fixes_kid (Env.get_constraints env) then insts else (* Otherwise ask the solver for a new, unique value *) match solve_unique env_post (nvar kid) with | Some n -> KBindings.add kid (nconstant n) insts | None -> insts | exception _ -> insts in let kids = KidSet.filter is_int_kid (tyvars_of_constraint nc) in let insts = KidSet.fold check_inst (tyvars_of_constraint nc) KBindings.empty in if KBindings.is_empty insts then h :: (aux t) else begin (* Propagate new instantiations and insert casts *) let t' = aux t in let et = E_aux (E_block t',ann) in let et = make_bitvector_env_casts env env_post quant_kids insts et in let src_typ = subst_kids_typ insts result_typ in let et = make_bitvector_cast_exp "bitvector_cast_out" env quant_kids src_typ result_typ et in [h; et] end | _ -> h :: (aux t) end | h::t -> h::(aux t) in E_aux (E_block (aux es),ann) | _ -> E_aux (e,ann) in let open Rewriter in fold_exp { id_exp_alg with e_aux = rewrite_aux } exp in let rewrite_funcl (FCL_aux (FCL_Funcl (id,pexp),((l,_) as fcl_ann))) = let (tq,typ) = Env.get_val_spec_orig id global_env in let fun_env = List.fold_right (Env.add_typ_var l) (quant_kopts tq) global_env in let quant_kids = List.map kopt_kid (List.filter is_int_kopt (quant_kopts tq)) in let ret_typ = match typ with | Typ_aux (Typ_fn (_,ret,_),_) -> ret | Typ_aux (_,l) as typ -> raise (Reporting.err_unreachable l __POS__ ("Function clause must have function type: " ^ string_of_typ typ ^ " is not a function type")) in let pat,guard,body,annot = destruct_pexp pexp in let body = rewrite_body id quant_kids fun_env ret_typ body in (* Cast function arguments, if necessary *) let add_constraint insts = function | NC_aux (NC_equal (Nexp_aux (Nexp_var kid,_), nexp), _) -> KBindings.add kid nexp insts | _ -> insts in let insts = List.fold_left add_constraint KBindings.empty (Env.get_constraints (env_of body)) in let body = make_bitvector_env_casts fun_env (env_of body) quant_kids insts body in (* Also add a cast around the entire function clause body, if necessary *) let body = make_bitvector_cast_exp "bitvector_cast_out" fun_env quant_kids (fill_in_type (env_of body) (typ_of body)) ret_typ body in let pexp = construct_pexp (pat,guard,body,annot) in FCL_aux (FCL_Funcl (id,pexp),fcl_ann) in let rewrite_def idx = function | DEF_fundef (FD_aux (FD_function (r,t,e,fcls),fd_ann) as fd) -> Util.progress "Adding casts " (string_of_id (id_of_fundef fd)) idx (List.length defs); DEF_fundef (FD_aux (FD_function (r,t,e,List.map rewrite_funcl fcls),fd_ann)) | d -> d in specs_required := IdSet.empty; let defs = List.mapi rewrite_def defs in let _ = Util.progress "Adding casts " "done" (List.length defs) (List.length defs) in let l = Generated Unknown in let cast_specs, _ = (* TODO: use default/relevant order *) let kid = mk_kid "n" in let bitsn = bitvector_typ (nvar kid) dec_ord in let ts = mk_typschm (mk_typquant [mk_qi_id K_int kid]) (function_typ [bitsn] bitsn no_effect) in let mkfn name = mk_val_spec (VS_val_spec (ts,name,[("_", "zeroExtend")],false)) in let defs = List.map mkfn (IdSet.elements !specs_required) in check_defs initial_env defs in { ast with defs = cast_specs @ defs } end let replace_nexp_in_typ env typ orig new_nexp = let rec aux (Typ_aux (t,l) as typ) = match t with | Typ_id _ | Typ_var _ -> false, typ | Typ_fn (arg,res,eff) -> let arg' = List.map aux arg in let f1 = List.exists fst arg' in let f2, res = aux res in f1 || f2, Typ_aux (Typ_fn (List.map snd arg', res, eff),l) | Typ_bidir (t1, t2, eff) -> let f1, t1 = aux t1 in let f2, t2 = aux t2 in f1 || f2, Typ_aux (Typ_bidir (t1, t2, eff), l) | Typ_tup typs -> let fs, typs = List.split (List.map aux typs) in List.exists (fun x -> x) fs, Typ_aux (Typ_tup typs,l) | Typ_exist (kids,nc,typ') -> (* TODO avoid capture *) let f, typ' = aux typ' in f, Typ_aux (Typ_exist (kids,nc,typ'),l) | Typ_app (id, targs) -> let fs, targs = List.split (List.map aux_targ targs) in List.exists (fun x -> x) fs, Typ_aux (Typ_app (id, targs),l) | Typ_internal_unknown -> Reporting.unreachable l __POS__ "escaped Typ_internal_unknown" and aux_targ (A_aux (ta,l) as typ_arg) = match ta with | A_nexp nexp -> if prove __POS__ env (nc_eq nexp orig) then true, A_aux (A_nexp new_nexp,l) else false, typ_arg | A_typ typ -> let f, typ = aux typ in f, A_aux (A_typ typ,l) | A_order _ | A_bool _ -> false, typ_arg in aux typ let fresh_nexp_kid nexp = let rec mangle_nexp (Nexp_aux (nexp, _)) = match nexp with | Nexp_id id -> string_of_id id | Nexp_var kid -> string_of_id (id_of_kid kid) | Nexp_constant i -> (if Big_int.greater_equal i Big_int.zero then "p" else "m") ^ Big_int.to_string (Big_int.abs i) | Nexp_times (n1, n2) -> mangle_nexp n1 ^ "_times_" ^ mangle_nexp n2 | Nexp_sum (n1, n2) -> mangle_nexp n1 ^ "_plus_" ^ mangle_nexp n2 | Nexp_minus (n1, n2) -> mangle_nexp n1 ^ "_minus_" ^ mangle_nexp n2 | Nexp_exp n -> "exp_" ^ mangle_nexp n | Nexp_neg n -> "neg_" ^ mangle_nexp n | Nexp_app (id,args) -> string_of_id id ^ "_" ^ String.concat "_" (List.map mangle_nexp args) in (* TODO: I'd like to add a # to distinguish it from user-provided names, but the rewriter currently uses them as a hint that they're not printable in types, which these are explicitly supposed to be. *) mk_kid (mangle_nexp nexp (*^ "#"*)) let rewrite_toplevel_nexps ({ defs; _ } as ast) = let find_nexp env nexp_map nexp = let is_equal (kid,nexp') = prove __POS__ env (nc_eq nexp nexp') in List.find is_equal nexp_map in let rec rewrite_typ_in_spec env nexp_map (Typ_aux (t,ann) as typ_full) = match t with | Typ_fn (args,res,eff) -> let args' = List.map (rewrite_typ_in_spec env nexp_map) args in let nexp_map = List.concat (List.map fst args') in let nexp_map, res = rewrite_typ_in_spec env nexp_map res in nexp_map, Typ_aux (Typ_fn (List.map snd args',res,eff),ann) | Typ_tup typs -> let nexp_map, typs = List.fold_right (fun typ (nexp_map,t) -> let nexp_map, typ = rewrite_typ_in_spec env nexp_map typ in (nexp_map, typ::t)) typs (nexp_map,[]) in nexp_map, Typ_aux (Typ_tup typs,ann) | _ when is_number typ_full || is_bitvector_typ typ_full -> begin let nexp_opt = match destruct_atom_nexp env typ_full with | Some nexp -> Some nexp | None -> if is_bitvector_typ typ_full then let (size,_,_) = vector_typ_args_of typ_full in Some size else None in match nexp_opt with | None -> nexp_map, typ_full | Some (Nexp_aux (Nexp_constant _,_)) | Some (Nexp_aux (Nexp_var _,_)) -> nexp_map, typ_full | Some nexp -> let nexp_map, kid = match find_nexp env nexp_map nexp with | (kid,_) -> nexp_map, kid | exception Not_found -> let kid = fresh_nexp_kid nexp in (kid, nexp)::nexp_map, kid in let new_nexp = nvar kid in nexp_map, snd (replace_nexp_in_typ env typ_full nexp new_nexp) end | _ -> let typ' = Env.base_typ_of env typ_full in if Typ.compare typ_full typ' == 0 then match t with | Typ_app (f,args) -> let in_arg nexp_map (A_aux (arg,l) as arg_full) = match arg with | A_typ typ -> let nexp_map, typ' = rewrite_typ_in_spec env nexp_map typ in nexp_map, A_aux (A_typ typ',l) | A_bool _ | A_nexp _ | A_order _ -> nexp_map, arg_full in let nexp_map, args = List.fold_right (fun arg (nexp_map,args) -> let nexp_map, arg = in_arg nexp_map arg in (nexp_map, arg::args)) args (nexp_map,[]) in nexp_map, Typ_aux (Typ_app (f,args),ann) | _ -> nexp_map, typ_full else rewrite_typ_in_spec env nexp_map typ' in let rewrite_valspec (VS_aux (VS_val_spec (TypSchm_aux (TypSchm_ts (tqs,typ),ts_l),id,ext_opt,is_cast),ann)) = match tqs with | TypQ_aux (TypQ_no_forall,_) -> None | TypQ_aux (TypQ_tq qs, tq_l) -> let env = env_of_annot ann in let env = add_typquant tq_l tqs env in let nexp_map, typ = rewrite_typ_in_spec env [] typ in match nexp_map with | [] -> None | _ -> let new_vars = List.map (fun (kid,nexp) -> QI_aux (QI_id (mk_kopt K_int kid), Generated tq_l)) nexp_map in let new_constraints = List.map (fun (kid,nexp) -> QI_aux (QI_constraint (nc_eq (nvar kid) nexp), Generated tq_l)) nexp_map in let tqs = TypQ_aux (TypQ_tq (qs @ new_vars @ new_constraints),tq_l) in let vs = VS_aux (VS_val_spec (TypSchm_aux (TypSchm_ts (tqs,typ),ts_l),id,ext_opt,is_cast),ann) in Some (id, nexp_map, vs) in (* Changing types in the body confuses simple sizeof rewriting, so turn it off for now *) let rewrite_typ_in_body env nexp_map typ = let rec aux (Typ_aux (t,l) as typ_full) = match t with | Typ_tup typs -> Typ_aux (Typ_tup (List.map aux typs),l) | Typ_exist (kids,nc,typ') -> (* TODO: avoid shadowing *) Typ_aux (Typ_exist (kids,(* TODO? *) nc, aux typ'),l) | Typ_app (id,targs) -> Typ_aux (Typ_app (id,List.map aux_targ targs),l) | _ -> typ_full and aux_targ (A_aux (ta,l) as ta_full) = match ta with | A_typ typ -> A_aux (A_typ (aux typ),l) | A_order _ -> ta_full | A_nexp nexp -> A_aux (A_nexp (aux_nexp nexp), l) | A_bool nc -> A_aux (A_bool (aux_nconstraint nc), l) and aux_nexp nexp = match find_nexp env nexp_map nexp with | (kid,_) -> nvar kid | exception Not_found -> nexp and aux_nconstraint (NC_aux (nc, l)) = let rewrap nc = NC_aux (nc, l) in match nc with | NC_equal (n1, n2) -> rewrap (NC_equal (aux_nexp n1, aux_nexp n2)) | NC_bounded_ge (n1, n2) -> rewrap (NC_bounded_ge (aux_nexp n1, aux_nexp n2)) | NC_bounded_gt (n1, n2) -> rewrap (NC_bounded_gt (aux_nexp n1, aux_nexp n2)) | NC_bounded_le (n1, n2) -> rewrap (NC_bounded_le (aux_nexp n1, aux_nexp n2)) | NC_bounded_lt (n1, n2) -> rewrap (NC_bounded_lt (aux_nexp n1, aux_nexp n2)) | NC_not_equal (n1, n2) -> rewrap (NC_not_equal (aux_nexp n1, aux_nexp n2)) | NC_or (nc1, nc2) -> rewrap (NC_or (aux_nconstraint nc1, aux_nconstraint nc2)) | NC_and (nc1, nc2) -> rewrap (NC_and (aux_nconstraint nc1, aux_nconstraint nc2)) | NC_app (id, args) -> rewrap (NC_app (id, List.map aux_targ args)) | _ -> rewrap nc in aux typ in let rewrite_one_exp nexp_map (e,ann) = match e with | E_cast (typ,e') -> E_aux (E_cast (rewrite_typ_in_body (env_of_annot ann) nexp_map typ,e'),ann) | E_sizeof nexp -> (match find_nexp (env_of_annot ann) nexp_map nexp with | (kid,_) -> E_aux (E_sizeof (nvar kid),ann) | exception Not_found -> E_aux (e,ann)) | _ -> E_aux (e,ann) in let rewrite_one_pat nexp_map (p,ann) = match p with | P_typ (typ,p') -> P_aux (P_typ (rewrite_typ_in_body (env_of_annot ann) nexp_map typ,p'),ann) | _ -> P_aux (p,ann) in let rewrite_one_lexp nexp_map (lexp, ann) = match lexp with | LEXP_cast (typ, id) -> LEXP_aux (LEXP_cast (rewrite_typ_in_body (env_of_annot ann) nexp_map typ, id), ann) | _ -> LEXP_aux (lexp, ann) in let rewrite_body nexp_map pexp = let open Rewriter in fold_pexp { id_exp_alg with e_aux = rewrite_one_exp nexp_map; lEXP_aux = rewrite_one_lexp nexp_map; pat_alg = { id_pat_alg with p_aux = rewrite_one_pat nexp_map } } pexp in let rewrite_funcl spec_map (FCL_aux (FCL_Funcl (id,pexp),ann) as funcl) = match Bindings.find id spec_map with | nexp_map -> FCL_aux (FCL_Funcl (id,rewrite_body nexp_map pexp),ann) | exception Not_found -> funcl in let rewrite_def spec_map def = match def with | DEF_spec vs -> (match rewrite_valspec vs with | None -> spec_map, def | Some (id, nexp_map, vs) -> Bindings.add id nexp_map spec_map, DEF_spec vs) | DEF_fundef (FD_aux (FD_function (recopt,_,eff,funcls),ann)) -> (* Type annotations on function definitions will have been turned into valspecs by type checking, so it should be safe to drop them rather than updating them. *) let tann = Typ_annot_opt_aux (Typ_annot_opt_none,Generated Unknown) in spec_map, DEF_fundef (FD_aux (FD_function (recopt,tann,eff,List.map (rewrite_funcl spec_map) funcls),ann)) | _ -> spec_map, def in let _, defs = List.fold_left (fun (spec_map,t) def -> let spec_map, def = rewrite_def spec_map def in (spec_map, def::t)) (Bindings.empty, []) defs in (* Allow use of div and mod in nexp rewriting during later typechecking passes to help prove equivalences such as (8 * 'n) = 'p8_times_n# *) Type_check.opt_smt_div := true; { ast with defs = List.rev defs } type options = { auto : bool; debug_analysis : int; all_split_errors : bool; continue_anyway : bool } let recheck defs = let w = !Reporting.opt_warnings in let () = Reporting.opt_warnings := false in let r = Type_error.check (Type_check.Env.no_casts Type_check.initial_env) defs in let () = Reporting.opt_warnings := w in r let mono_rewrites = MonoRewrites.mono_rewrite let monomorphise target opts splits ast = let ast, env = Type_check.check Type_check.initial_env ast in let ok_analysis, new_splits, extra_splits = if opts.auto then let f,r,ex = Analysis.analyse_defs opts.debug_analysis env ast in if f || opts.all_split_errors || opts.continue_anyway then f, r, ex else raise (Reporting.err_general Unknown "Unable to monomorphise program") else true, [], Analysis.ExtraSplits.empty in let splits = new_splits @ (List.map (fun (loc,id) -> (loc,id,None)) splits) in let ok_extras, defs, extra_splits = add_extra_splits extra_splits ast.defs in let ast = { ast with defs = defs } in let splits = splits @ extra_splits in let () = if ok_extras || opts.all_split_errors || opts.continue_anyway then () else raise (Reporting.err_general Unknown "Unable to monomorphise program") in let ok_split, ast = split_defs target opts.all_split_errors splits env ast in let () = if (ok_analysis && ok_extras && ok_split) || opts.continue_anyway then () else raise (Reporting.err_general Unknown "Unable to monomorphise program") in ast let add_bitvector_casts = BitvectorSizeCasts.add_bitvector_casts let rewrite_atoms_to_singletons target defs = let defs, env = Type_check.check Type_check.initial_env defs in AtomToItself.rewrite_size_parameters target env defs