(**************************************************************************) (* Sail *) (* *) (* Copyright (c) 2013-2017 *) (* Kathyrn Gray *) (* Shaked Flur *) (* Stephen Kell *) (* Gabriel Kerneis *) (* Robert Norton-Wright *) (* Christopher Pulte *) (* Peter Sewell *) (* Alasdair Armstrong *) (* Brian Campbell *) (* Thomas Bauereiss *) (* Anthony Fox *) (* Jon French *) (* Dominic Mulligan *) (* Stephen Kell *) (* Mark Wassell *) (* *) (* All rights reserved. *) (* *) (* This software was developed by the University of Cambridge Computer *) (* Laboratory as part of the Rigorous Engineering of Mainstream Systems *) (* (REMS) project, funded by EPSRC grant EP/K008528/1. *) (* *) (* Redistribution and use in source and binary forms, with or without *) (* modification, are permitted provided that the following conditions *) (* are met: *) (* 1. Redistributions of source code must retain the above copyright *) (* notice, this list of conditions and the following disclaimer. *) (* 2. Redistributions in binary form must reproduce the above copyright *) (* notice, this list of conditions and the following disclaimer in *) (* the documentation and/or other materials provided with the *) (* distribution. *) (* *) (* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *) (* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *) (* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *) (* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *) (* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *) (* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *) (* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *) (* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *) (* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *) (* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *) (* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *) (* SUCH DAMAGE. *) (**************************************************************************) open Printf ;; open Interp_ast ;; open Interp ;; open Interp_lib ;; open Interp_interface ;; open Interp_inter_imp ;; open Big_int ;; let lit_to_string = function | L_unit -> "unit" | L_zero -> "0b0" | L_one -> "0b1" | L_true -> "true" | L_false -> "false" | L_num n -> string_of_big_int n | L_hex s -> "0x"^s | L_bin s -> "0b"^s | L_undef -> "undefined" | L_string s -> "\"" ^ s ^ "\"" ;; let id_to_string = function | Id_aux(Id s,_) | Id_aux(DeIid s,_) -> s ;; let loc_to_string = function | Unknown -> "location unknown" | Int(s,_) -> s | Range(s,fline,fchar,tline,tchar) -> if fline = tline then sprintf "%s:%d:%d" s fline fchar else sprintf "%s:%d:%d-%d:%d" s fline fchar tline tchar ;; let collapse_leading s = if String.length s <= 8 then s else let first_bit = s.[0] in let templ = sprintf "%c...%c" first_bit first_bit in let regexp = Str.regexp "^\\(000000*\\|111111*\\)" in Str.replace_first regexp templ s ;; let bitvec_to_string l = "0b" ^ collapse_leading (String.concat "" (List.map (function | V_lit(L_aux(L_zero, _)) -> "0" | V_lit(L_aux(L_one, _)) -> "1" | _ -> assert false) l)) ;; (*let val_to_string v = match v with | Bitvector(bools, _, _) -> "0b" ^ collapse_leading (String.concat "" (List.map (function | true -> "1" | _ -> "0") bools)) | Bytevector words-> "0x" ^ (String.concat "" (List.map (function | 10 -> "A" | 11 -> "B" | 12 -> "C" | 13 -> "D" | 14 -> "E" | 15 -> "F" | i -> string_of_int i) words)) | Unknown0 -> "Unknown"*) (*let reg_name_to_string = function | Reg0 s -> s | Reg_slice(s,(first,second)) -> s (*contemplate putting slice here*) | Reg_field(s,f,_) -> s ^ "." ^ f | Reg_f_slice(s,f,_,(first,second)) -> s ^ "." ^ f*) let rec reg_to_string = function | Reg (id,_) -> id_to_string id | SubReg (id,r,_) -> sprintf "%s.%s" (reg_to_string r) (id_to_string id) ;; let rec top_frame_exp_state = function | Top -> raise (Invalid_argument "top_frame_exp") | Hole_frame(_, e, _, env, mem, Top) | Thunk_frame(e, _, env, mem, Top) -> (e,(env,mem)) | Thunk_frame(_, _, _, _, s) | Hole_frame(_, _, _, _, _, s) -> top_frame_exp_state s let tunk = Unknown, None let ldots = E_aux(E_id (Id_aux (Id "...", Unknown)), tunk) let rec compact_exp (E_aux (e, l)) = let wrap e = E_aux (e, l) in match e with | E_block (e :: _) -> compact_exp e | E_nondet (e :: _) -> compact_exp e | E_if (e, _, _) -> wrap(E_if(compact_exp e, ldots, E_aux(E_block [], tunk))) | E_for (i, e1, e2, e3, o, e4) -> wrap(E_for(i, compact_exp e1, compact_exp e2, compact_exp e3, o, ldots)) | E_case (e, _) -> wrap(E_case(compact_exp e, [])) | E_let (bind, _) -> wrap(E_let(bind, ldots)) | E_app (f, args) -> wrap(E_app(f, List.map compact_exp args)) | E_app_infix (l, op, r) -> wrap(E_app_infix(compact_exp l, op, compact_exp r)) | E_tuple exps -> wrap(E_tuple(List.map compact_exp exps)) | E_vector exps -> wrap(E_vector(List.map compact_exp exps)) | E_vector_access (e1, e2) -> wrap(E_vector_access(compact_exp e1, compact_exp e2)) | E_vector_subrange (e1, e2, e3) -> wrap(E_vector_subrange(compact_exp e1, compact_exp e2, compact_exp e3)) | E_vector_update (e1, e2, e3) -> wrap(E_vector_update(compact_exp e1, compact_exp e2, compact_exp e3)) | E_vector_update_subrange (e1, e2, e3, e4) -> wrap(E_vector_update_subrange(compact_exp e1, compact_exp e2, compact_exp e3, compact_exp e4)) | E_vector_append (e1, e2) -> wrap(E_vector_append(compact_exp e1, compact_exp e2)) | E_list exps -> wrap(E_list(List.map compact_exp exps)) | E_cons (e1, e2) -> wrap(E_cons(compact_exp e1, compact_exp e2)) | E_record_update (e, fexps) -> wrap(E_record_update (compact_exp e, fexps)) | E_field (e, id) -> wrap(E_field(compact_exp e, id)) | E_assign (lexp, e) -> wrap(E_assign(lexp, compact_exp e)) | E_block [] | E_nondet [] | E_cast (_, _) | E_internal_cast (_, _) | E_id _|E_lit _|E_vector_indexed (_, _)|E_record _|E_internal_exp _ -> wrap e (* extract, compact and reverse expressions on the stack; * the top of the stack is the head of the returned list. *) let rec compact_stack ?(acc=[]) = function | Top -> acc | Hole_frame(_,e,_,env,mem,s) | Thunk_frame(e,_,env,mem,s) -> compact_stack ~acc:(((compact_exp e),(env,mem)) :: acc) s ;; let sub_to_string = function None -> "" | Some (x, y) -> sprintf " (%s, %s)" (string_of_big_int x) (string_of_big_int y) ;; let id_compare i1 i2 = match (i1, i2) with | (Id_aux(Id(i1),_),Id_aux(Id(i2),_)) | (Id_aux(Id(i1),_),Id_aux(DeIid(i2),_)) | (Id_aux(DeIid(i1),_),Id_aux(Id(i2),_)) | (Id_aux(DeIid(i1),_),Id_aux(DeIid(i2),_)) -> compare i1 i2 module Reg = struct include Map.Make(struct type t = id let compare = id_compare end) let to_string id v = sprintf "%s -> %s" (id_to_string id) (string_of_value v) let find id m = (* eprintf "reg_find called with %s\n" (id_to_string id);*) let v = find id m in (* eprintf "%s -> %s\n" (id_to_string id) (val_to_string v);*) v end ;; (* Old Mem, that used the id to map as well as the int... which seems wrong module Mem = struct include Map.Make(struct type t = (id * big_int) let compare (i1, v1) (i2, v2) = (* optimize for common case: different addresses, same id *) match compare_big_int v1 v2 with | 0 -> id_compare i1 i2 | n -> n end) (* debugging memory accesses let add (n, idx) v m = eprintf "%s[%s] <- %s\n" (id_to_string n) (string_of_big_int idx) (val_to_string v); add (n, idx) v m let find (n, idx) m = let v = find (n, idx) m in eprintf "%s[%s] -> %s\n" (id_to_string n) (string_of_big_int idx) (val_to_string v); v *) let to_string (n, idx) v = sprintf "%s[%s] -> %s" (id_to_string n) (string_of_big_int idx) (val_to_string v) end ;;*) module Mem = struct include Map.Make(struct type t = big_int let compare v1 v2 = compare_big_int v1 v2 end) (* debugging memory accesses let add idx v m = eprintf "[%s] <- %s\n" (string_of_big_int idx) (val_to_string v); add idx v m let find idx m = let v = find idx m in eprintf "[%s] -> %s\n" (string_of_big_int idx) (val_to_string v); v *) let to_string idx v = sprintf "[%s] -> %s" (string_of_big_int idx) (string_of_value v) end ;; let vconcat v v' = vec_concat (V_tuple [v; v']) ;; let slice v = function | None -> v | Some (n, m) -> slice_vector v n m ;; let rec slice_ir v = function | BF_single n -> slice_vector v n n | BF_range (n, m) -> slice_vector v n m | BF_concat (BF_aux (ir, _), BF_aux (ir', _)) -> vconcat (slice_ir v ir) (slice_ir v ir') ;; let unit_lit = V_lit (L_aux(L_unit,Interp_ast.Unknown)) let rec perform_action ((reg, mem) as env) = function (* registers *) | Read_reg (Reg (id, _), sub) -> slice (Reg.find id reg) sub, env | Write_reg (Reg (id, _), None, value) -> unit_lit, (Reg.add id value reg, mem) | Write_reg (Reg (id, _), Some (start, stop), (V_vector _ as value)) -> let old_val = Reg.find id reg in let new_val = fupdate_vector_slice old_val value start stop in unit_lit, (Reg.add id new_val reg, mem) (* subregisters *) | Read_reg (SubReg (_, Reg (id, _), BF_aux (ir, _)), sub) -> slice (slice_ir (Reg.find id reg) ir) sub, env | Write_reg (SubReg (_, (Reg _ as r), BF_aux (ir, _)), None, value) -> (match ir with | BF_single n -> perform_action env (Write_reg (r, Some(n, n), value)) | BF_range (n, m) -> perform_action env (Write_reg (r, Some(n, m), value)) | BF_concat _ -> failwith "unimplemented: non-contiguous register write") (* memory *) | Read_mem (id, V_lit(L_aux((L_num n),_)), sub) -> slice (Mem.find n mem) sub, env | Write_mem (id, V_lit(L_aux(L_num n,_)), None, value) -> unit_lit, (reg, Mem.add n value mem) (* multi-byte accesses to memory *) | Read_mem (id, V_tuple [V_lit(L_aux(L_num n,_)); V_lit(L_aux(L_num size,_))], sub) -> let rec fetch k acc = if eq_big_int k size then slice acc sub else let slice = Mem.find (add_big_int n k) mem in fetch (succ_big_int k) (vconcat acc slice) in fetch zero_big_int (V_vector (zero_big_int, true, [])), env (* XXX no support for multi-byte slice write at the moment *) | Write_mem (id, V_tuple [V_lit(L_aux(L_num n,_)); V_lit(L_aux(L_num size,_))], None, V_vector (m, inc, vs)) -> (* normalize input vector so that it is indexed from 0 - for slices *) let value = V_vector (zero_big_int, inc, vs) in (* assumes smallest unit of memory is 8 bit *) let byte_size = 8 in let rec update k mem = if eq_big_int k size then mem else let n1 = mult_int_big_int byte_size k in let n2 = sub_big_int (mult_int_big_int byte_size (succ_big_int k)) (big_int_of_int 1) in let slice = slice_vector value n1 n2 in let mem' = Mem.add (add_big_int n k) slice mem in update (succ_big_int k) mem' in unit_lit, (reg, update zero_big_int mem) (* This case probably never happens in the POWER spec anyway *) | Write_mem (id, V_lit(L_aux(L_num n,_)), Some (start, stop), (V_vector _ as value)) -> let old_val = Mem.find n mem in let new_val = fupdate_vector_slice old_val value start stop in unit_lit, (reg, Mem.add n new_val mem) (* special case for slices of size 1: wrap value in a vector *) | Write_reg ((Reg (_, _) as r), (Some (start, stop) as slice), value) when eq_big_int start stop -> perform_action env (Write_reg (r, slice, V_vector(zero_big_int, true, [value]))) | Write_mem (id, (V_lit(L_aux(L_num _,_)) as n), (Some (start, stop) as slice), value) when eq_big_int start stop -> perform_action env (Write_mem (id, n, slice, V_vector(zero_big_int, true, [value]))) (* extern functions *) | Call_extern (name, arg) -> eval_external name arg, env | Interp.Step _ | Nondet _ | Exit _ -> unit_lit, env | _ -> assert false ;; let debug = ref true let debugf : ('a, out_channel, unit) format -> 'a = function f -> if !debug then eprintf f else ifprintf stderr f type interactive_mode = Step | Run | Next let mode_to_string = function | Step -> "step" | Run -> "run" | Next -> "next" (* ANSI/VT100 colors *) let disable_color = ref false let color bright code s = if !disable_color then s else sprintf "\x1b[%s3%dm%s\x1b[m" (if bright then "1;" else "") code s let red = color true 1 let green = color false 2 let yellow = color true 3 let blue = color true 4 let grey = color false 7 let run ?(entry=E_aux(E_app(Id_aux((Id "main"),Unknown), [E_aux(E_lit (L_aux(L_unit,Unknown)),(Unknown,None))]),(Unknown,None))) ?(reg=Reg.empty) ?(mem=Mem.empty) ?(eager_eval=true) ?mode (name, test) = let get_loc (E_aux(_, (l, _))) = loc_to_string l in let print_exp env e = debugf "%s: %s\n" (get_loc e) (Pretty_interp.pp_exp env Printing_functions.red e) in (* interactive loop for step-by-step execution *) let usage = "Usage: step go to next action [default] next go to next break point run complete current execution, bt print call stack cont print continuation of the top stack frame env print content of environment mem print content of memory quit exit interpreter" in let rec interact mode ((reg, mem) as env) stack = flush_all(); let command = Pervasives.read_line () in let command' = if command = "" then mode_to_string mode else command in begin match command' with | "s" | "step" -> Step | "n" | "next" -> Next | "r" | "run" -> Run | "e" | "env" | "environment" -> Reg.iter (fun k v -> debugf "%s\n" (Reg.to_string k v)) reg; interact mode env stack | "m" | "mem" | "memory" -> Mem.iter (fun k v -> debugf "%s\n" (Mem.to_string k v)) mem; interact mode env stack | "bt" | "backtrace" | "stack" -> List.iter (fun (e,(env,mem)) -> print_exp env e) (compact_stack stack); interact mode env stack | "c" | "cont" | "continuation" -> (* print not-compacted continuation *) let (e,(lenv,lmem)) = top_frame_exp_state stack in print_exp lenv e; interact mode env stack | "show_casts" -> Pretty_interp.ignore_casts := false; interact mode env stack | "hide_casts" -> Pretty_interp.ignore_casts := true; interact mode env stack | "q" | "quit" | "exit" -> exit 0 | _ -> debugf "%s\n" usage; interact mode env stack end in let rec loop mode env = function | Value v -> debugf "%s: %s %s\n" (grey name) (blue "return") (string_of_value v); true, mode, env | Action (a, s) -> let (top_exp,(top_env,top_mem)) = top_frame_exp_state s in let loc = get_loc (compact_exp top_exp) in let return, env' = perform_action env a in let step ?(force=false) () = if mode = Step || force then begin debugf "%s\n" (Pretty_interp.pp_exp top_env Printing_functions.red top_exp); interact mode env s end else mode in let show act lhs arrow rhs = debugf "%s: %s: %s %s %s\n" (grey loc) (green act) lhs (blue arrow) rhs in let left = "<-" and right = "->" in let (mode',env',s) = begin match a with | Read_reg (reg, sub) -> show "read_reg" (reg_to_string reg ^ sub_to_string sub) right (string_of_value return); step (),env',s | Write_reg (reg, sub, value) -> assert (return = unit_lit); show "write_reg" (reg_to_string reg ^ sub_to_string sub) left (string_of_value value); step (),env',s | Read_mem (id, args, sub) -> show "read_mem" (id_to_string id ^ string_of_value args ^ sub_to_string sub) right (string_of_value return); step (),env',s | Write_mem (id, args, sub, value) -> assert (return = unit_lit); show "write_mem" (id_to_string id ^ string_of_value args ^ sub_to_string sub) left (string_of_value value); step (),env',s (* distinguish single argument for pretty-printing *) | Call_extern (f, (V_tuple _ as args)) -> show "call_lib" (f ^ string_of_value args) right (string_of_value return); step (),env',s | Call_extern (f, arg) -> show "call_lib" (sprintf "%s(%s)" f (string_of_value arg)) right (string_of_value return); step (),env',s | Interp.Step _ -> assert (return = unit_lit); show "breakpoint" "" "" ""; step ~force:true (),env',s | Nondet exps -> let stacks = List.sort (fun (_,i1) (_,i2) -> compare i1 i2) (List.combine (List.map (set_in_context s) exps) (List.map (fun _ -> Random.bits ()) exps)) in show "nondeterministic evaluation begun" "" "" ""; let (_,_,env') = List.fold_right (fun (stack,_) (_,_,env') -> loop mode env' (resume {eager_eval = (mode = Run); track_values = false;} stack None)) stacks (false,mode,env'); in show "nondeterministic evaluation ended" "" "" ""; step (),env',s | Exit e -> show "exiting current evaluation" "" "" ""; step (),env', (set_in_context s e) | Barrier (_, _) | Write_next_IA _ -> failwith "unexpected action" end in loop mode' env' (resume {eager_eval = (mode' = Run);track_values = false} s (Some return)) | Error(l, e) -> debugf "%s: %s: %s\n" (grey (loc_to_string l)) (red "error") e; false, mode, env in debugf "%s: %s %s\n" (grey name) (blue "evaluate") (Pretty_interp.pp_exp Interp.eenv Printing_functions.red entry); let mode = match mode with | None -> if eager_eval then Run else Step | Some m -> m in try Printexc.record_backtrace true; loop mode (reg, mem) (interp {eager_eval = eager_eval; track_values = false} (fun id -> None) test entry) with e -> let trace = Printexc.get_backtrace () in debugf "%s: %s %s\n%s\n" (grey name) (red "interpretor error") (Printexc.to_string e) trace; false, mode, (reg, mem) ;;