(*Generated by Lem from map_extra.lem.*) open HolKernel Parse boolLib bossLib; open lem_boolTheory lem_basic_classesTheory lem_functionTheory lem_assert_extraTheory lem_maybeTheory lem_listTheory lem_numTheory lem_setTheory lem_mapTheory; val _ = numLib.prefer_num(); val _ = new_theory "lem_map_extra" (*open import Bool Basic_classes Function Assert_extra Maybe List Num Set Map*) (* -------------------------------------------------------------------------- *) (* find *) (* -------------------------------------------------------------------------- *) (*val find : forall 'k 'v. MapKeyType 'k => 'k -> map 'k 'v -> 'v*) (*let find k m= match (lookup k m) with Just x -> x | Nothing -> failwith "Map_extra.find" end*) (* -------------------------------------------------------------------------- *) (* from sets / domain / range *) (* -------------------------------------------------------------------------- *) (*val fromSet : forall 'k 'v. MapKeyType 'k => ('k -> 'v) -> set 'k -> map 'k 'v*) (*let fromSet f s= Set_helpers.fold (fun k m -> Map.insert k (f k) m) s Map.empty*) (* assert fromSet_0: (fromSet succ (Set.empty : set nat) = Map.empty) assert fromSet_1: (fromSet succ {(2:nat); 3; 4}) = Map.fromList [(2,3); (3, 4); (4, 5)] *) (* -------------------------------------------------------------------------- *) (* fold *) (* -------------------------------------------------------------------------- *) (*val fold : forall 'k 'v 'r. MapKeyType 'k, SetType 'k, SetType 'v => ('k -> 'v -> 'r -> 'r) -> map 'k 'v -> 'r -> 'r*) val _ = Define ` ((fold:('k -> 'v -> 'r -> 'r) ->('k,'v)fmap -> 'r -> 'r) f m v= (ITSET (\ (k, v) r . f k v r) (FMAP_TO_SET m) v))`; (* assert fold_1: (fold (fun k v a -> (a+k)) (Map.fromList [((2:nat),(3:nat)); (3, 4); (4, 5)]) 0 = 9) assert fold_2: (fold (fun k v a -> (a+v)) (Map.fromList [((2:nat),(3:nat)); (3, 4); (4, 5)]) 0 = 12) *) (*val toList: forall 'k 'v. MapKeyType 'k => map 'k 'v -> list ('k * 'v)*) (* declare compile_message toList = "Map_extra.toList is only defined for the ocaml, isabelle and coq backend" *) (* more 'map' functions *) (* TODO: this function is in map_extra rather than map just for implementation reasons *) (*val mapMaybe : forall 'a 'b 'c. MapKeyType 'a => ('a -> 'b -> maybe 'c) -> map 'a 'b -> map 'a 'c*) (* OLD: TODO: mapMaybe depends on toList that is not defined for hol and isabelle *) val _ = Define ` ((option_map:('a -> 'b -> 'c option) ->('a,'b)fmap ->('a,'c)fmap) f m= (FOLDL (\ m' (k, v) . (case f k v of NONE => m' | SOME v' =>m' |+ (k, v') )) FEMPTY (MAP_TO_LIST m)))`; val _ = export_theory()