Require Import Sail.Instr_kinds. Require Import Sail.Values. Require FMapList. Require Import OrderedType. Require OrderedTypeEx. Require Import List. Require bbv.Word. Import ListNotations. Local Open Scope Z. (* TODO: revisit choice of FMapList *) Module NatMap := FMapList.Make(OrderedTypeEx.Nat_as_OT). Definition Memstate : Type := NatMap.t memory_byte. Definition Tagstate : Type := NatMap.t bitU. (* type regstate = map string (vector bitU) *) (* We deviate from the Lem library and prefix the fields with ss_ to avoid name clashes. *) Record sequential_state {Regs} := { ss_regstate : Regs; ss_memstate : Memstate; ss_tagstate : Tagstate }. Arguments sequential_state : clear implicits. (*val init_state : forall 'regs. 'regs -> sequential_state 'regs*) Definition init_state {Regs} regs : sequential_state Regs := {| ss_regstate := regs; ss_memstate := NatMap.empty _; ss_tagstate := NatMap.empty _ |}. Inductive ex E := | Failure : string -> ex E | Throw : E -> ex E. Arguments Failure {E} _. Arguments Throw {E} _. Inductive result A E := | Value : A -> result A E | Ex : ex E -> result A E. Arguments Value {A} {E} _. Arguments Ex {A} {E} _. (* State, nondeterminism and exception monad with result value type 'a and exception type 'e. *) (* TODO: the list was originally a set, can we reasonably go back to a set? *) Definition monadS Regs a e : Type := sequential_state Regs -> list (result a e * sequential_state Regs). (*val returnS : forall 'regs 'a 'e. 'a -> monadS 'regs 'a 'e*) Definition returnS {Regs A E} (a:A) : monadS Regs A E := fun s => [(Value a,s)]. (*val bindS : forall 'regs 'a 'b 'e. monadS 'regs 'a 'e -> ('a -> monadS 'regs 'b 'e) -> monadS 'regs 'b 'e*) Definition bindS {Regs A B E} (m : monadS Regs A E) (f : A -> monadS Regs B E) : monadS Regs B E := fun (s : sequential_state Regs) => List.flat_map (fun v => match v with | (Value a, s') => f a s' | (Ex e, s') => [(Ex e, s')] end) (m s). (*val seqS: forall 'regs 'b 'e. monadS 'regs unit 'e -> monadS 'regs 'b 'e -> monadS 'regs 'b 'e*) Definition seqS {Regs B E} (m : monadS Regs unit E) (n : monadS Regs B E) : monadS Regs B E := bindS m (fun (_ : unit) => n). (* let inline (>>$=) = bindS let inline (>>$) = seqS *) Notation "m >>$= f" := (bindS m f) (at level 50, left associativity). Notation "m >>$ n" := (seqS m n) (at level 50, left associativity). (*val chooseS : forall 'regs 'a 'e. SetType 'a => list 'a -> monadS 'regs 'a 'e*) Definition chooseS {Regs A E} (xs : list A) : monadS Regs A E := fun s => (List.map (fun x => (Value x, s)) xs). (*val readS : forall 'regs 'a 'e. (sequential_state 'regs -> 'a) -> monadS 'regs 'a 'e*) Definition readS {Regs A E} (f : sequential_state Regs -> A) : monadS Regs A E := (fun s => returnS (f s) s). (*val updateS : forall 'regs 'e. (sequential_state 'regs -> sequential_state 'regs) -> monadS 'regs unit 'e*) Definition updateS {Regs E} (f : sequential_state Regs -> sequential_state Regs) : monadS Regs unit E := (fun s => returnS tt (f s)). (*val failS : forall 'regs 'a 'e. string -> monadS 'regs 'a 'e*) Definition failS {Regs A E} msg : monadS Regs A E := fun s => [(Ex (Failure msg), s)]. (*val choose_boolS : forall 'regval 'regs 'a 'e. unit -> monadS 'regs bool 'e*) Definition choose_boolS {Regs E} (_:unit) : monadS Regs bool E := chooseS [false; true]. Definition undefined_boolS {Regs E} := @choose_boolS Regs E. (*val exitS : forall 'regs 'e 'a. unit -> monadS 'regs 'a 'e*) Definition exitS {Regs A E} (_:unit) : monadS Regs A E := failS "exit". (*val throwS : forall 'regs 'a 'e. 'e -> monadS 'regs 'a 'e*) Definition throwS {Regs A E} (e : E) :monadS Regs A E := fun s => [(Ex (Throw e), s)]. (*val try_catchS : forall 'regs 'a 'e1 'e2. monadS 'regs 'a 'e1 -> ('e1 -> monadS 'regs 'a 'e2) -> monadS 'regs 'a 'e2*) Definition try_catchS {Regs A E1 E2} (m : monadS Regs A E1) (h : E1 -> monadS Regs A E2) : monadS Regs A E2 := fun s => List.flat_map (fun v => match v with | (Value a, s') => returnS a s' | (Ex (Throw e), s') => h e s' | (Ex (Failure msg), s') => [(Ex (Failure msg), s')] end) (m s). (*val assert_expS : forall 'regs 'e. bool -> string -> monadS 'regs unit 'e*) Definition assert_expS {Regs E} (exp : bool) (msg : string) : monadS Regs unit E := if exp then returnS tt else failS msg. Definition assert_expS' {Regs E} (exp : bool) (msg : string) : monadS Regs (exp = true) E := if exp return monadS Regs (exp = true) E then returnS eq_refl else failS msg. (* For early return, we abuse exceptions by throwing and catching the return value. The exception type is "either 'r 'e", where "Right e" represents a proper exception and "Left r" an early return of value "r". *) Definition monadRS Regs A R E := monadS Regs A (sum R E). (*val early_returnS : forall 'regs 'a 'r 'e. 'r -> monadRS 'regs 'a 'r 'e*) Definition early_returnS {Regs A R E} (r : R) : monadRS Regs A R E := throwS (inl r). (*val catch_early_returnS : forall 'regs 'a 'e. monadRS 'regs 'a 'a 'e -> monadS 'regs 'a 'e*) Definition catch_early_returnS {Regs A E} (m : monadRS Regs A A E) : monadS Regs A E := try_catchS m (fun v => match v with | inl a => returnS a | inr e => throwS e end). (* Lift to monad with early return by wrapping exceptions *) (*val liftRS : forall 'a 'r 'regs 'e. monadS 'regs 'a 'e -> monadRS 'regs 'a 'r 'e*) Definition liftRS {A R Regs E} (m : monadS Regs A E) : monadRS Regs A R E := try_catchS m (fun e => throwS (inr e)). (* Catch exceptions in the presence of early returns *) (*val try_catchRS : forall 'regs 'a 'r 'e1 'e2. monadRS 'regs 'a 'r 'e1 -> ('e1 -> monadRS 'regs 'a 'r 'e2) -> monadRS 'regs 'a 'r 'e2*) Definition try_catchRS {Regs A R E1 E2} (m : monadRS Regs A R E1) (h : E1 -> monadRS Regs A R E2) : monadRS Regs A R E2 := try_catchS m (fun v => match v with | inl r => throwS (inl r) | inr e => h e end). (*val maybe_failS : forall 'regs 'a 'e. string -> maybe 'a -> monadS 'regs 'a 'e*) Definition maybe_failS {Regs A E} msg (v : option A) : monadS Regs A E := match v with | Some a => returnS a | None => failS msg end. (*val read_tagS : forall 'regs 'a 'e. Bitvector 'a => 'a -> monadS 'regs bitU 'e*) Definition read_tagS {Regs A E} (addr : mword A) : monadS Regs bitU E := let addr := Word.wordToNat (get_word addr) in readS (fun s => opt_def B0 (NatMap.find addr s.(ss_tagstate))). Fixpoint genlist_acc {A:Type} (f : nat -> A) n acc : list A := match n with | O => acc | S n' => genlist_acc f n' (f n' :: acc) end. Definition genlist {A} f n := @genlist_acc A f n []. (* Read bytes from memory and return in little endian order *) (*val get_mem_bytes : forall 'regs. nat -> nat -> sequential_state 'regs -> maybe (list memory_byte * bitU)*) Definition get_mem_bytes {Regs} addr sz (s : sequential_state Regs) : option (list memory_byte * bitU) := let addrs := genlist (fun n => addr + n)%nat sz in let read_byte s addr := NatMap.find addr s.(ss_memstate) in let read_tag s addr := opt_def B0 (NatMap.find addr s.(ss_tagstate)) in option_map (fun mem_val => (mem_val, List.fold_left and_bit (List.map (read_tag s) addrs) B1)) (just_list (List.map (read_byte s) addrs)). (*val read_memt_bytesS : forall 'regs 'e. read_kind -> nat -> nat -> monadS 'regs (list memory_byte * bitU) 'e*) Definition read_memt_bytesS {Regs E} (_ : read_kind) addr sz : monadS Regs (list memory_byte * bitU) E := readS (get_mem_bytes addr sz) >>$= maybe_failS "read_memS". (*val read_mem_bytesS : forall 'regs 'e. read_kind -> nat -> nat -> monadS 'regs (list memory_byte) 'e*) Definition read_mem_bytesS {Regs E} (rk : read_kind) addr sz : monadS Regs (list memory_byte) E := read_memt_bytesS rk addr sz >>$= (fun '(bytes, _) => returnS bytes). (*val read_memtS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monadS 'regs ('b * bitU) 'e*) Definition read_memtS {Regs E A B} (rk : read_kind) (a : mword A) sz `{ArithFact (B >=? 0)} : monadS Regs (mword B * bitU) E := let a := Word.wordToNat (get_word a) in read_memt_bytesS rk a (Z.to_nat sz) >>$= (fun '(bytes, tag) => maybe_failS "bits_of_mem_bytes" (of_bits (bits_of_mem_bytes bytes)) >>$= (fun mem_val => returnS (mem_val, tag))). (*val read_memS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monadS 'regs 'b 'e*) Definition read_memS {Regs E A B} rk (a : mword A) sz `{ArithFact (B >=? 0)} : monadS Regs (mword B) E := read_memtS rk a sz >>$= (fun '(bytes, _) => returnS bytes). (*val excl_resultS : forall 'regs 'e. unit -> monadS 'regs bool 'e*) Definition excl_resultS {Regs E} : unit -> monadS Regs bool E := (* TODO: This used to be more deterministic, checking a flag in the state whether an exclusive load has occurred before. However, this does not seem very precise; it might be safer to overapproximate the possible behaviours by always making a nondeterministic choice. *) @undefined_boolS Regs E. (* Write little-endian list of bytes to given address *) (*val put_mem_bytes : forall 'regs. nat -> nat -> list memory_byte -> bitU -> sequential_state 'regs -> sequential_state 'regs*) Definition put_mem_bytes {Regs} addr sz (v : list memory_byte) (tag : bitU) (s : sequential_state Regs) : sequential_state Regs := let addrs := genlist (fun n => addr + n)%nat sz in let a_v := List.combine addrs v in let write_byte mem '(addr, v) := NatMap.add addr v mem in let write_tag mem addr := NatMap.add addr tag mem in {| ss_regstate := s.(ss_regstate); ss_memstate := List.fold_left write_byte a_v s.(ss_memstate); ss_tagstate := List.fold_left write_tag addrs s.(ss_tagstate) |}. (*val write_memt_bytesS : forall 'regs 'e. write_kind -> nat -> nat -> list memory_byte -> bitU -> monadS 'regs bool 'e*) Definition write_memt_bytesS {Regs E} (_ : write_kind) addr sz (v : list memory_byte) (t : bitU) : monadS Regs bool E := updateS (put_mem_bytes addr sz v t) >>$ returnS true. (*val write_mem_bytesS : forall 'regs 'e. write_kind -> nat -> nat -> list memory_byte -> monadS 'regs bool 'e*) Definition write_mem_bytesS {Regs E} wk addr sz (v : list memory_byte) : monadS Regs bool E := write_memt_bytesS wk addr sz v B0. (*val write_memtS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b => write_kind -> 'a -> integer -> 'b -> bitU -> monadS 'regs bool 'e*) Definition write_memtS {Regs E A B} wk (addr : mword A) sz (v : mword B) (t : bitU) : monadS Regs bool E := match (Word.wordToNat (get_word addr), mem_bytes_of_bits v) with | (addr, Some v) => write_memt_bytesS wk addr (Z.to_nat sz) v t | _ => failS "write_mem" end. (*val write_memS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b => write_kind -> 'a -> integer -> 'b -> monadS 'regs bool 'e*) Definition write_memS {Regs E A B} wk (addr : mword A) sz (v : mword B) : monadS Regs bool E := write_memtS wk addr sz v B0. (*val read_regS : forall 'regs 'rv 'a 'e. register_ref 'regs 'rv 'a -> monadS 'regs 'a 'e*) Definition read_regS {Regs RV A E} (reg : register_ref Regs RV A) : monadS Regs A E := readS (fun s => reg.(read_from) s.(ss_regstate)). (* TODO let read_reg_range reg i j state = let v = slice (get_reg state (name_of_reg reg)) i j in [(Value (vec_to_bvec v),state)] let read_reg_bit reg i state = let v = access (get_reg state (name_of_reg reg)) i in [(Value v,state)] let read_reg_field reg regfield = let (i,j) = register_field_indices reg regfield in read_reg_range reg i j let read_reg_bitfield reg regfield = let (i,_) = register_field_indices reg regfield in read_reg_bit reg i *) (*val read_regvalS : forall 'regs 'rv 'e. register_accessors 'regs 'rv -> string -> monadS 'regs 'rv 'e*) Definition read_regvalS {Regs RV E} (acc : register_accessors Regs RV) reg : monadS Regs RV E := let '(read, _) := acc in readS (fun s => read reg s.(ss_regstate)) >>$= (fun v => match v with | Some v => returnS v | None => failS ("read_regvalS " ++ reg) end). (*val write_regvalS : forall 'regs 'rv 'e. register_accessors 'regs 'rv -> string -> 'rv -> monadS 'regs unit 'e*) Definition write_regvalS {Regs RV E} (acc : register_accessors Regs RV) reg (v : RV) : monadS Regs unit E := let '(_, write) := acc in readS (fun s => write reg v s.(ss_regstate)) >>$= (fun x => match x with | Some rs' => updateS (fun s => {| ss_regstate := rs'; ss_memstate := s.(ss_memstate); ss_tagstate := s.(ss_tagstate) |}) | None => failS ("write_regvalS " ++ reg) end). (*val write_regS : forall 'regs 'rv 'a 'e. register_ref 'regs 'rv 'a -> 'a -> monadS 'regs unit 'e*) Definition write_regS {Regs RV A E} (reg : register_ref Regs RV A) (v:A) : monadS Regs unit E := updateS (fun s => {| ss_regstate := reg.(write_to) v s.(ss_regstate); ss_memstate := s.(ss_memstate); ss_tagstate := s.(ss_tagstate) |}). (* TODO val update_reg : forall 'regs 'rv 'a 'b 'e. register_ref 'regs 'rv 'a -> ('a -> 'b -> 'a) -> 'b -> monadS 'regs unit 'e let update_reg reg f v state = let current_value = get_reg state reg in let new_value = f current_value v in [(Value (), set_reg state reg new_value)] let write_reg_field reg regfield = update_reg reg regfield.set_field val update_reg_range : forall 'regs 'rv 'a 'b. Bitvector 'a, Bitvector 'b => register_ref 'regs 'rv 'a -> integer -> integer -> 'a -> 'b -> 'a let update_reg_range reg i j reg_val new_val = set_bits (reg.is_inc) reg_val i j (bits_of new_val) let write_reg_range reg i j = update_reg reg (update_reg_range reg i j) let update_reg_pos reg i reg_val x = update_list reg.is_inc reg_val i x let write_reg_pos reg i = update_reg reg (update_reg_pos reg i) let update_reg_bit reg i reg_val bit = set_bit (reg.is_inc) reg_val i (to_bitU bit) let write_reg_bit reg i = update_reg reg (update_reg_bit reg i) let update_reg_field_range regfield i j reg_val new_val = let current_field_value = regfield.get_field reg_val in let new_field_value = set_bits (regfield.field_is_inc) current_field_value i j (bits_of new_val) in regfield.set_field reg_val new_field_value let write_reg_field_range reg regfield i j = update_reg reg (update_reg_field_range regfield i j) let update_reg_field_pos regfield i reg_val x = let current_field_value = regfield.get_field reg_val in let new_field_value = update_list regfield.field_is_inc current_field_value i x in regfield.set_field reg_val new_field_value let write_reg_field_pos reg regfield i = update_reg reg (update_reg_field_pos regfield i) let update_reg_field_bit regfield i reg_val bit = let current_field_value = regfield.get_field reg_val in let new_field_value = set_bit (regfield.field_is_inc) current_field_value i (to_bitU bit) in regfield.set_field reg_val new_field_value let write_reg_field_bit reg regfield i = update_reg reg (update_reg_field_bit regfield i)*) (* TODO Add Show typeclass for value and exception type *) (*val show_result : forall 'a 'e. result 'a 'e -> string*) Definition show_result {A E} (x : result A E) : string := match x with | Value _ => "Value ()" | Ex (Failure msg) => "Failure " ++ msg | Ex (Throw _) => "Throw" end. (*val prerr_results : forall 'a 'e 's. SetType 's => set (result 'a 'e * 's) -> unit*) Definition prerr_results {A E S} (rs : list (result A E * S)) : unit := tt. (* let _ = Set.map (fun (r, _) -> let _ = prerr_endline (show_result r) in ()) rs in ()*)