Require Import Sail.Values. Require Import Sail.Prompt_monad. Require Import Sail.Prompt. Require Import Sail.State_monad. Import ListNotations. Local Open Scope Z. (*val iterS_aux : forall 'rv 'a 'e. integer -> (integer -> 'a -> monadS 'rv unit 'e) -> list 'a -> monadS 'rv unit 'e*) Fixpoint iterS_aux {RV A E} i (f : Z -> A -> monadS RV unit E) (xs : list A) := match xs with | x :: xs => f i x >>$ iterS_aux (i + 1) f xs | [] => returnS tt end. (*val iteriS : forall 'rv 'a 'e. (integer -> 'a -> monadS 'rv unit 'e) -> list 'a -> monadS 'rv unit 'e*) Definition iteriS {RV A E} (f : Z -> A -> monadS RV unit E) (xs : list A) : monadS RV unit E := iterS_aux 0 f xs. (*val iterS : forall 'rv 'a 'e. ('a -> monadS 'rv unit 'e) -> list 'a -> monadS 'rv unit 'e*) Definition iterS {RV A E} (f : A -> monadS RV unit E) (xs : list A) : monadS RV unit E := iteriS (fun _ x => f x) xs. (*val foreachS : forall 'a 'rv 'vars 'e. list 'a -> 'vars -> ('a -> 'vars -> monadS 'rv 'vars 'e) -> monadS 'rv 'vars 'e*) Fixpoint foreachS {A RV Vars E} (xs : list A) (vars : Vars) (body : A -> Vars -> monadS RV Vars E) : monadS RV Vars E := match xs with | [] => returnS vars | x :: xs => body x vars >>$= fun vars => foreachS xs vars body end. Fixpoint foreach_ZS_up' {rv e Vars} (from to step off : Z) (n : nat) `{ArithFact (0 monadS rv Vars e) {struct n} : monadS rv Vars e. exact ( match sumbool_of_bool (from + off <=? to) with left LE => match n with | O => returnS vars | S n => body (from + off) _ vars >>$= fun vars => foreach_ZS_up' rv e Vars from to step (off + step) n _ _ vars body end | right _ => returnS vars end). Defined. Fixpoint foreach_ZS_down' {rv e Vars} (from to step off : Z) (n : nat) `{ArithFact (0 monadS rv Vars e) {struct n} : monadS rv Vars e. exact ( match sumbool_of_bool (to <=? from + off) with left LE => match n with | O => returnS vars | S n => body (from + off) _ vars >>$= fun vars => foreach_ZS_down' _ _ _ from to step (off - step) n _ _ vars body end | right _ => returnS vars end). Defined. Definition foreach_ZS_up {rv e Vars} from to step vars body `{ArithFact (0 monadS 'rv 'a 'e) -> nat -> monadS 'rv (list 'a) 'e*) Definition genlistS {A RV E} (f : nat -> monadS RV A E) n : monadS RV (list A) E := let indices := List.seq 0 n in foreachS indices [] (fun n xs => (f n >>$= (fun x => returnS (xs ++ [x])))). (*val and_boolS : forall 'rv 'e. monadS 'rv bool 'e -> monadS 'rv bool 'e -> monadS 'rv bool 'e*) Definition and_boolS {RV E} (l r : monadS RV bool E) : monadS RV bool E := l >>$= (fun l => if l then r else returnS false). (*val or_boolS : forall 'rv 'e. monadS 'rv bool 'e -> monadS 'rv bool 'e -> monadS 'rv bool 'e*) Definition or_boolS {RV E} (l r : monadS RV bool E) : monadS RV bool E := l >>$= (fun l => if l then returnS true else r). Definition and_boolSP {rv E} {P Q R:bool->Prop} (x : monadS rv {b:bool & ArithFactP (P b)} E) (y : monadS rv {b:bool & ArithFactP (Q b)} E) `{H:forall l r, ArithFactP ((P l) -> ((l = true -> (Q r)) -> (R (andb l r))))} : monadS rv {b:bool & ArithFactP (R b)} E := x >>$= fun '(existT _ x p) => (if x return ArithFactP (P x) -> _ then fun p => y >>$= fun '(existT _ y q) => returnS (existT _ y (and_bool_full_proof p q H)) else fun p => returnS (existT _ false (and_bool_left_proof p H))) p. Definition or_boolSP {rv E} {P Q R:bool -> Prop} (l : monadS rv {b : bool & ArithFactP (P b)} E) (r : monadS rv {b : bool & ArithFactP (Q b)} E) `{forall l r, ArithFactP ((P l) -> (((l = false) -> (Q r)) -> (R (orb l r))))} : monadS rv {b : bool & ArithFactP (R b)} E := l >>$= fun '(existT _ l p) => (if l return ArithFactP (P l) -> _ then fun p => returnS (existT _ true (or_bool_left_proof p H)) else fun p => r >>$= fun '(existT _ r q) => returnS (existT _ r (or_bool_full_proof p q H))) p. Definition build_trivial_exS {rv E} {T:Type} (x : monadS rv T E) : monadS rv {x : T & ArithFact true} E := x >>$= fun x => returnS (existT _ x (Build_ArithFactP _ eq_refl)). (*val bool_of_bitU_fail : forall 'rv 'e. bitU -> monadS 'rv bool 'e*) Definition bool_of_bitU_fail {RV E} (b : bitU) : monadS RV bool E := match b with | B0 => returnS false | B1 => returnS true | BU => failS "bool_of_bitU" end. (*val bool_of_bitU_nondetS : forall 'rv 'e. bitU -> monadS 'rv bool 'e*) Definition bool_of_bitU_nondetS {RV E} (b : bitU) : monadS RV bool E := match b with | B0 => returnS false | B1 => returnS true | BU => undefined_boolS tt end. (*val bools_of_bits_nondetS : forall 'rv 'e. list bitU -> monadS 'rv (list bool) 'e*) Definition bools_of_bits_nondetS {RV E} bits : monadS RV (list bool) E := foreachS bits [] (fun b bools => bool_of_bitU_nondetS b >>$= (fun b => returnS (bools ++ [b]))). (*val of_bits_nondetS : forall 'rv 'a 'e. Bitvector 'a => list bitU -> monadS 'rv 'a 'e*) Definition of_bits_nondetS {RV A E} bits `{ArithFact (A >=? 0)} : monadS RV (mword A) E := bools_of_bits_nondetS bits >>$= (fun bs => returnS (of_bools bs)). (*val of_bits_failS : forall 'rv 'a 'e. Bitvector 'a => list bitU -> monadS 'rv 'a 'e*) Definition of_bits_failS {RV A E} bits `{ArithFact (A >=? 0)} : monadS RV (mword A) E := maybe_failS "of_bits" (of_bits bits). (*val mword_nondetS : forall 'rv 'a 'e. Size 'a => unit -> monadS 'rv (mword 'a) 'e let mword_nondetS () = bools_of_bits_nondetS (repeat [BU] (integerFromNat size)) >>$= (fun bs -> returnS (wordFromBitlist bs)) val whileS : forall 'rv 'vars 'e. 'vars -> ('vars -> monadS 'rv bool 'e) -> ('vars -> monadS 'rv 'vars 'e) -> monadS 'rv 'vars 'e let rec whileS vars cond body s = (cond vars >>$= (fun cond_val s' -> if cond_val then (body vars >>$= (fun vars s'' -> whileS vars cond body s'')) s' else returnS vars s')) s val untilS : forall 'rv 'vars 'e. 'vars -> ('vars -> monadS 'rv bool 'e) -> ('vars -> monadS 'rv 'vars 'e) -> monadS 'rv 'vars 'e let rec untilS vars cond body s = (body vars >>$= (fun vars s' -> (cond vars >>$= (fun cond_val s'' -> if cond_val then returnS vars s'' else untilS vars cond body s'')) s')) s *) Fixpoint whileST' {RV Vars E} limit (vars : Vars) (cond : Vars -> monadS RV bool E) (body : Vars -> monadS RV Vars E) (acc : Acc (Zwf 0) limit) : monadS RV Vars E. exact ( if Z_ge_dec limit 0 then cond vars >>$= fun cond_val => if cond_val then body vars >>$= fun vars => whileST' _ _ _ (limit - 1) vars cond body (_limit_reduces acc) else returnS vars else failS "Termination limit reached"). Defined. Definition whileST {RV Vars E} (vars : Vars) measure (cond : Vars -> monadS RV bool E) (body : Vars -> monadS RV Vars E) : monadS RV Vars E := let limit := measure vars in whileST' limit vars cond body (Zwf_guarded limit). (*val untilM : forall 'rv 'vars 'e. 'vars -> ('vars -> monad 'rv bool 'e) -> ('vars -> monad 'rv 'vars 'e) -> monad 'rv 'vars 'e*) Fixpoint untilST' {RV Vars E} limit (vars : Vars) (cond : Vars -> monadS RV bool E) (body : Vars -> monadS RV Vars E) (acc : Acc (Zwf 0) limit) : monadS RV Vars E. exact ( if Z_ge_dec limit 0 then body vars >>$= fun vars => cond vars >>$= fun cond_val => if cond_val then returnS vars else untilST' _ _ _ (limit - 1) vars cond body (_limit_reduces acc) else failS "Termination limit reached"). Defined. Definition untilST {RV Vars E} (vars : Vars) measure (cond : Vars -> monadS RV bool E) (body : Vars -> monadS RV Vars E) : monadS RV Vars E := let limit := measure vars in untilST' limit vars cond body (Zwf_guarded limit). (*val choose_boolsS : forall 'rv 'e. nat -> monadS 'rv (list bool) 'e*) Definition choose_boolsS {RV E} n : monadS RV (list bool) E := genlistS (fun _ => choose_boolS tt) n. (* TODO: Replace by chooseS and prove equivalence to prompt monad version *) (*val internal_pickS : forall 'rv 'a 'e. list 'a -> monadS 'rv 'a 'e*) Definition internal_pickS {RV A E} (xs : list A) : monadS RV A E := (* Use sufficiently many nondeterministically chosen bits and convert into an index into the list *) choose_boolsS (List.length xs) >>$= fun bs => let idx := ((nat_of_bools bs) mod List.length xs)%nat in match List.nth_error xs idx with | Some x => returnS x | None => failS "choose internal_pick" end. Fixpoint undefined_word_natS {rv e} n : monadS rv (Word.word n) e := match n with | O => returnS Word.WO | S m => choose_boolS tt >>$= fun b => undefined_word_natS m >>$= fun t => returnS (Word.WS b t) end. Definition undefined_bitvectorS {rv e} n `{ArithFact (n >=? 0)} : monadS rv (mword n) e := undefined_word_natS (Z.to_nat n) >>$= fun w => returnS (word_to_mword w).