summaryrefslogtreecommitdiff
path: root/test/ocaml/string_of_struct
AgeCommit message (Collapse)Author
2019-03-27Interactive: Refactor sail.mlAlasdair Armstrong
Rather than having a separate variable for each backend X, opt_print_X, just have a single variable opt_print_target, where target contains a string option, such as `Some "lem"` or `Some "ocaml"`, then we have a function target that takes that string and invokes the appropriate backend, so the main function in sail.ml goes from being a giant if-then-else block to a single call to target !opt_target ast env This allows us to implement a :compile <target> command in the interactive toplevel Also implement a :rewrites <target> command which performs all the rewrites for a specific target, so rather than doing e.g. > sail -c -O -o out $FILES one could instead interactively do > sail -i :option -undefined_gen :load $FILES :option -O :option -o out :rewrites c :compile c :quit for the same result. To support this the behavior of the interactive mode has changed slightly. It no longer performs any rewrites at all, so a :rewrites interpreter is currently needed to interpret functions in the interactive toplevel, nor does it automatically set any other flags, so -undefined_gen is needed in this case, which is usually implied by the -c flag.
2018-05-03Flow typing and l-expression changes for ASL parserAlasdair Armstrong
1. Experiment with allowing some flow typing on mutable variables for translating ASL in a more idiomatic way. I realise after updating some of the test cases that this could have some problematic side effects for lem translation, where mutable variables are translated into monadic code. We'd need to ensure that whatever flow typing happens for mutable variables also works for monadic code, including within transformed loops. If this doesn't work out some of these changes may need to be reverted. 2. Make the type inference for l-expressions a bit smarter. Splits the type checking rules for l-expressions into a inference part and a checking part like the other bi-directional rules. Should not be able to type check slightly more l-expresions, such as nested vector slices that may not have checked previously. The l-expression rules for vector patterns should be simpler now, but they are also more strict about bounds checking. Previously the bounds checks were derived from the corresponding operations that would appear on the RHS (i.e. LEXP_vector would get it's check from vector_access). This meant that the l-expression bounds checks could be weakend by weakening the checks on those operations. Now this is no longer possible, there is a -no_lexp_bounds_check option which turns of bounds checking in l-expressions. Currently this is on for the generated ARM spec, but this should only be temporary. 3. Add a LEXP_vector_concat which mirrors P_vector_concat except in l-expressions. Previously there was a hack that overloaded LEXP_tup for this to translate some ASL patterns, but that was fairly ugly. Adapt the rewriter and other parts of the code to handle this. The rewriter for lexp tuple vector assignments is now a rewriter for vector concat assignments. 4. Include a newly generated version of aarch64_no_vector 5. Update the Ocaml test suite to use builtins in lib/
2018-03-07Make union types consistent in the ASTAlasdair Armstrong
Previously union types could have no-argument constructors, for example the option type was previously: union option ('a : Type) = { Some : 'a, None } Now every union constructor must have a type, so option becomes: union option ('a : Type) = { Some : 'a, None : unit } The reason for this is because previously these two different types of constructors where very different in the AST, constructors with arguments were used the E_app AST node, and no-argument constructors used the E_id node. This was particularly awkward, because it meant that E_id nodes could have polymorphic types, i.e. every E_id node that was also a union constructor had to be annotated with a type quantifier, in constrast with all other identifiers that have unquantified types. This became an issue when monomorphising types, because the machinery for figuring out function instantiations can't be applied to identifier nodes. The same story occurs in patterns, where previously unions were split across P_id and P_app nodes - now the P_app node alone is used solely for unions. This is a breaking change because it changes the syntax for union constructors - where as previously option was matched as: function is_none opt = match opt { Some(_) => false, None => true } it is now matched as function is_none opt = match opt { Some(_) => false, None() => true } note that constructor() is syntactic sugar for constructor(()), i.e. a one argument constructor with unit as it's value. This is exactly the same as for functions where a unit-function can be called as f() and not as f(()). (This commit also makes exit() work consistently in the same way) An attempt to pattern match a variable with the same name as a union-constructor now gives an error as a way to guard against mistakes made because of this change. There is probably an argument for supporting the old syntax via some syntactic sugar, as it is slightly prettier that way, but for now I have chosen to keep the implementation as simple as possible. The RISCV spec, ARM spec, and tests have been updated to account for this change. Furthermore the option type can now be included from $SAIL_DIR/lib/ using $include <option.sail>
2018-01-29Fix a bug where structs containing unions would generate bad to_string functionsAlasdair Armstrong
Added a regression test in test/ocaml/string_of_struct